Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (68)

Search Parameters:
Keywords = textile-reinforced cement

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 22005 KiB  
Article
High-Impact Resistance of Textile/Fiber-Reinforced Cement-Based Composites: Experiment and Theory Analysis
by Zongcai Deng and Dongyue Liu
Textiles 2025, 5(3), 26; https://doi.org/10.3390/textiles5030026 - 4 Jul 2025
Viewed by 268
Abstract
To develop cement-based composite materials with exceptional impact resistance, this study investigates the impact resistance performance of steel fiber- and glass fiber-reinforced specimens, as well as steel fiber and glass fiber textile-reinforced specimens, through drop weight impact tests. The results showed that the [...] Read more.
To develop cement-based composite materials with exceptional impact resistance, this study investigates the impact resistance performance of steel fiber- and glass fiber-reinforced specimens, as well as steel fiber and glass fiber textile-reinforced specimens, through drop weight impact tests. The results showed that the impact resistance of specimens increases with the number of glass fiber textile layers, glass fiber volume fractions, and glass fiber lengths, with 36GF1.5SF1.0 exhibitinh ultra-high impact resistance with a failure impact energy of 114 kJ. Compared to the specimens reinforced with glass textiles, the specimens with glass fiber showed better impact resistance at the same volume fraction. The failure mode of unreinforced specimens is divided into several pieces, while fiber-reinforced specimens have local punching shear failure at the impact site, maintaining better integrity. An impact damage evolution equation and life prediction model based on a two-parameter Weibull distribution are developed. The research results will provide a reference for the selection of fibers for engineering applications. Full article
Show Figures

Figure 1

21 pages, 5306 KiB  
Article
Experimental Study of the Axial Tensile Properties of Basalt Fiber Textile–Reinforced Fine-Aggregate Concrete Thin Slab
by Liyang Wang and Zongcai Deng
Buildings 2025, 15(9), 1540; https://doi.org/10.3390/buildings15091540 - 2 May 2025
Viewed by 517
Abstract
Traditional concrete has low tensile strength, is prone to cracking, and has poor durability, which limits its scope of application. Basalt Fiber Textile–Reinforced Concrete (BTRC), a new type of fiber-reinforced cement material, offers advantages such as light weight, increased strength, improved crack resistance, [...] Read more.
Traditional concrete has low tensile strength, is prone to cracking, and has poor durability, which limits its scope of application. Basalt Fiber Textile–Reinforced Concrete (BTRC), a new type of fiber-reinforced cement material, offers advantages such as light weight, increased strength, improved crack resistance, and high durability. It effectively addresses the limitations of traditional concrete. However, the tensile properties of BTRC have not been fully studied, especially with fine aggregate concrete as the matrix, and there are few reports on this topic. Therefore, this study conducted uniaxial tensile tests of Basalt Textile–Reinforced Fine Aggregate Concrete (BTRFAC) and systematically investigated the effects of two mesh sizes (5 mm × 5 mm and 10 mm × 10 mm) and two to four layers of fiber mesh on the tensile strength, strain hardening behavior, crack propagation, and ductile tensile mechanical properties of BTRFAC thin slabs. The tests revealed that an increase in the number of fiber mesh layers significantly reinforced the material’s tensile strength and ductility. The tensile strength of the 5 mm mesh specimen (four-layer mesh) reached 2.96 MPa, which is 193% higher than plain concrete, and the ultimate tensile strain increased by 413%. The tensile strength of the 10 mm mesh specimen (four-layer mesh) was 2.12 MPa, which is 109% higher than plain concrete, and the ultimate tensile strain increased by 298%. The strength utilization rate of the 5 mm and 10 mm mesh fibers was 41% and 54% respectively, mainly due to the weakening effect caused by interface slippage between the fiber mesh and the matrix. An excessively small mesh size may lead to premature debonding from the matrix, but its denser fiber distribution and larger bonding area exhibit better strain hardening characteristics. More than three layers of fiber mesh can significantly improve the uniformity of crack distribution and delay propagation of the main crack. A calculation formula for the tensile bearing capacity of BTRFAC thin slabs is proposed, and the error between the theoretical value and the experimental value was very small. This research provides a theoretical basis and reference data for the design and application of basalt fiber mesh–reinforced concrete thin slabs. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

27 pages, 2338 KiB  
Review
Strengthening of Masonry and Concrete Members with Textile-Reinforced Alkali-Activated Mortars: A Review on the Mechanical Performance
by Paraskevi D. Askouni, Panagiotis Kapsalis, Catherine G. Papanicolaou and Thanasis C. Triantafillou
Materials 2025, 18(7), 1517; https://doi.org/10.3390/ma18071517 - 28 Mar 2025
Viewed by 516
Abstract
Textile-reinforced alkali-activated mortar (TRAAM) is a composite material that is characterized by a strain- or deflection-hardening response under tension or flexure, respectively, as well as by a good bond with concrete and masonry substrates. Owing to comparable or even superior mechanical performance compared [...] Read more.
Textile-reinforced alkali-activated mortar (TRAAM) is a composite material that is characterized by a strain- or deflection-hardening response under tension or flexure, respectively, as well as by a good bond with concrete and masonry substrates. Owing to comparable or even superior mechanical performance compared to “conventional” cement- or lime-based textile-reinforced mortar (TRM) systems and its potentially eco-friendly energy and environmental performance, TRAAM has been incorporated to retrofitting schemes. The current article reviews the studies that investigate TRAAM as a strengthening overlay for masonry and concrete members. This article focuses on the mechanical performance of the strengthened members, which, where possible, is also compared with that of members strengthened with conventional TRM systems. It is concluded that TRAAM can enhance the flexural and shear capacity of masonry and concrete members, while it can also upgrade the compression strength and seismic response of concrete members. In addition, it is concluded that the effectiveness of TRAAM can be comparable with that of “conventional” TRM systems. The combination of TRAAM with thermal insulation boards has also been proposed for structural and energy upgrading of masonry walls. Furthermore, TRAAM can be a promising solution for increasing the fire resistance of strengthened masonry members. However, research on the long-term performance of TRAAM, including durability, creep, and shrinkage, is still limited. Finally, the lack of established standards for TRM retrofitting is more evident for TRAAM applications. Full article
Show Figures

Figure 1

20 pages, 5373 KiB  
Article
Potential of and Current Challenges in Reusing Recycled Carbon Fibres in Concrete Construction Applications
by Vanessa Overhage and Thomas Gries
Sustainability 2025, 17(6), 2779; https://doi.org/10.3390/su17062779 - 20 Mar 2025
Cited by 1 | Viewed by 659
Abstract
The non-corrosive properties of carbon fibres allow for slimmer concrete components, which may reduce CO2 emissions during production. Given that cement production contributes approximately 8% of global CO2 emissions, finding alternatives is crucial. Textile-reinforced concrete (TRC) employs technical textiles instead of [...] Read more.
The non-corrosive properties of carbon fibres allow for slimmer concrete components, which may reduce CO2 emissions during production. Given that cement production contributes approximately 8% of global CO2 emissions, finding alternatives is crucial. Textile-reinforced concrete (TRC) employs technical textiles instead of steel reinforcements and has been extensively studied for its mechanical properties. Carbon’s high tensile strength allows for significantly reduced mass compared to steel while eliminating additional cover requirements. Although producing recycled carbon fibres (rCFs) is energy-intensive, it offers significant energy and raw material savings and can lower global warming risks compared to virgin fibres. This study investigates the potential of rCFs in various forms as concrete reinforcement, highlighting both opportunities and challenges based on experimental results and existing studies. The investigations demonstrated that rCFs, whether used as nonwoven or yarn reinforcement, enhance both the tensile and yield strength of concrete. Furthermore, in many instances, a gradual failure mode rather than an abrupt one is observed. Consequently, the use of rCF textiles as reinforcement in concrete presents significant potential for promoting sustainability within the construction industry. The integration of rCF into carbon concrete presents a promising pathway to enhance the sustainability of construction materials. Full article
Show Figures

Figure 1

38 pages, 9985 KiB  
Article
Experimental and Computational Assessment of Building Structures Reinforced with Textile Fiber Waste to Improve Thermo-Mechanical Performance
by Rabeb Ayed, Emiliano Borri, Safa Skouri, Mohamed Lachheb, Salwa Bouadila, Zohir Younsi, Luisa F. Cabeza and Mariem Lazaar
Buildings 2025, 15(3), 425; https://doi.org/10.3390/buildings15030425 - 29 Jan 2025
Viewed by 1392
Abstract
Faced with the growing demand for energy-efficient construction and the need to address environmental challenges, the building sector must innovate to reduce energy consumption and promote sustainability. This study investigates a dual solution to these challenges by enhancing the thermo-mechanical performance of building [...] Read more.
Faced with the growing demand for energy-efficient construction and the need to address environmental challenges, the building sector must innovate to reduce energy consumption and promote sustainability. This study investigates a dual solution to these challenges by enhancing the thermo-mechanical performance of building materials through the integration of textile fiber waste, using a combination of experimental and computational methodologies. This investigation focused on incorporating textile fiber wastes in cementitious composites for construction applications. A series of mechanical and thermal tests were carried out on the cement mortars with different proportions of incorporated textile fibers after 7 and 28 days of water curing. The results showed that the incorporation of fibers can significantly improve the thermal insulation of buildings by reducing the thermal conductivity of cement mortar by up to 52%. To complement experimental findings, computational models were developed using COMSOL Multiphysics 6.2 software to predict the thermal diffusivity and volumetric heat capacity of textile-reinforced mortars. These models revealed that mortars incorporating 40% textile fibers as a sand replacement achieved significant reductions in thermal conductivity, thermal diffusivity, and volumetric heat capacity by approximately 40%, 21%, and 23%, respectively, compared with ordinary cement mortar. Furthermore, this study numerically examined the potential of combining textile-reinforced mortar with phase-change material (PCM) in building applications. The aim of the research was to overcome the challenges of cooling buildings in scorching summer conditions. The optimization of roof and wall composition was based on an assessment of air temperature variation within a space. Full article
Show Figures

Figure 1

17 pages, 22966 KiB  
Article
Steel-Reinforced Polyurethane with Mineral Interlayer for Masonry Protection: Laboratory Tests
by Łukasz Hojdys, Piotr Krajewski and Arkadiusz Kwiecień
Materials 2025, 18(3), 503; https://doi.org/10.3390/ma18030503 - 22 Jan 2025
Viewed by 777
Abstract
This paper presents the results of an experimental investigation on a steel-reinforced polyurethane (SRPU) composite system with a mineral interlayer, designed for the protection of existing structures. The composite SRPU was reinforced with unidirectional steel textile embedded in polyurethane matrix PS. In the [...] Read more.
This paper presents the results of an experimental investigation on a steel-reinforced polyurethane (SRPU) composite system with a mineral interlayer, designed for the protection of existing structures. The composite SRPU was reinforced with unidirectional steel textile embedded in polyurethane matrix PS. In the study, SRPU was applied to a brick substrate via a layer of lime- or cement-based mortar of a thickness of 3 mm, 6 mm, or 10 mm. Single-lap shear tests (SLSTs) were carried out on specimens with and without a mortar interlayer. The reference specimens without a mineral interlayer carried higher loads than the specimens with an interlayer. An increase in the interlayer thickness reduced the shear bond strength. The stiffness of the bond under shear of the tested systems was unaffected by the presence of the mineral interlayer. The mechanical properties of the applied mortars influenced the observed failure modes. The tested SRPU system demonstrated notable efficiency in monotonic testing, outperforming previously reported results. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

23 pages, 15546 KiB  
Article
Sustainable Alkali-Activated Self-Compacting Concrete for Precast Textile-Reinforced Concrete: Experimental–Statistical Modeling Approach
by Vitalii Kryzhanovskyi and Jeanette Orlowsky
Materials 2024, 17(24), 6280; https://doi.org/10.3390/ma17246280 - 22 Dec 2024
Cited by 1 | Viewed by 1164
Abstract
Industrial and construction wastes make up about half of all world wastes. In order to reduce their negative impact on the environment, it is possible to use part of them for concrete production. Using experimental–statistical modeling techniques, the combined effect of brick powder, [...] Read more.
Industrial and construction wastes make up about half of all world wastes. In order to reduce their negative impact on the environment, it is possible to use part of them for concrete production. Using experimental–statistical modeling techniques, the combined effect of brick powder, recycling sand, and alkaline activator on fresh and hardened properties of self-compacting concrete for the production of textile-reinforced concrete was investigated. Experimental data on flowability, passing ability, spreading speed, segregation resistance, air content, and density of fresh mixtures were obtained. The standard passing ability tests were modified using a textile mesh to maximize the approximation to the real conditions of textile concrete production. To determine the dynamics of concrete strength development, compression and flexural tests at the ages of 1, 3, 7, and 28 days and splitting tensile strength tests of 28 days were conducted. The preparation technology of the investigated modified mixtures depending on the composition is presented. The resulting mathematical models allow for the optimization of concrete compositions for partial replacement of slag cement with brick powder (up to 30%), and natural sand with recycled sand (up to 100%) with the addition of an alkaline activator in the range of 0.5–1% of the cement content. This allows us to obtain sustainable, alkali-activated high-strength self-compacting recycling concrete, which significantly reduces the negative impact on the environment and promotes the development of a circular economy in the construction industry. Full article
(This article belongs to the Special Issue Artificial Intelligence in Materials Science and Engineering)
Show Figures

Figure 1

16 pages, 1396 KiB  
Article
Life Cycle Assessment of End-of-Life Tire Disposal Methods and Potential Integration of Recycled Crumb Rubber in Cement Composites
by Girts Kolendo, Viktoria Voronova, Girts Bumanis, Aleksandrs Korjakins and Diana Bajare
Appl. Sci. 2024, 14(24), 11667; https://doi.org/10.3390/app142411667 - 13 Dec 2024
Cited by 4 | Viewed by 2772
Abstract
Globally, 1.5 billion annual tire outputs generate a substantial volume of end-of-life tires (ELTs), creating significant environmental challenges. Despite increased recovery rates, ELT management costs in Europe underscore the need for proactive strategies to mitigate environmental and health risks. This study comprehensively evaluates [...] Read more.
Globally, 1.5 billion annual tire outputs generate a substantial volume of end-of-life tires (ELTs), creating significant environmental challenges. Despite increased recovery rates, ELT management costs in Europe underscore the need for proactive strategies to mitigate environmental and health risks. This study comprehensively evaluates the environmental impact of disposal methods, including landfilling, incineration, and crumb rubber production, using Life Cycle Assessment (LCA) via the OpenLCA software 2.0.2. While incineration is sometimes identified as a disposal method, unprocessed scrap tires have potential applications in civil engineering that can better align with sustainability goals. Detailed ELT composition analysis reveals significant recycling potential, with car and truck tires containing 10–20% steel fiber content, less than 1–8% textile fibers, and approximately 80% natural and synthetic rubber content. Recycling 1 ton of ELTs saves an estimated 1.4–1.6 tons of CO2 Eq. compared to incineration. Mechanical recycling and application of recycled crumb rubber in concrete show significant environmental advantages, reducing mass density by approximately 55% and enhancing ductility by up to 40%, according to material testing results. These properties make crumb rubber particularly suitable for acoustic and resilient applications. Additionally, its elasticity and durability offer effective solutions for shoreline reinforcement, mitigating erosion and providing stability during flooding events. When used as a replacement for river sand in cement composites, crumb rubber contributes to a 24.06% reduction in CO2 emissions, highlighting its potential for environmentally friendly construction. Full article
Show Figures

Figure 1

24 pages, 6705 KiB  
Article
Tensile Behavior Assessment of Grid-Type CFRP Textile-Reinforced Mortar with Different Design Variables
by Jung-Il Suh, Sung-Woo Park and Kyung-Min Kim
Materials 2024, 17(24), 6049; https://doi.org/10.3390/ma17246049 - 10 Dec 2024
Cited by 2 | Viewed by 1018
Abstract
This study investigates the tensile behavior of carbon-fiber-reinforced polymer (CFRP) and textile-reinforced mortar (TRM) under various design variables to enhance understanding and application in construction structures. TRM reinforced with CFRP grids is highly effective for strengthening existing structures due to its lightweight nature, [...] Read more.
This study investigates the tensile behavior of carbon-fiber-reinforced polymer (CFRP) and textile-reinforced mortar (TRM) under various design variables to enhance understanding and application in construction structures. TRM reinforced with CFRP grids is highly effective for strengthening existing structures due to its lightweight nature, durability, ease of installation, and corrosion resistance. The research aims to evaluate how design parameters such as the CFRP grid type, mortar matrix strength (influenced by the water-to-cement ratio), specimen length, and grid width affect TRM’s mechanical properties. Through the direct tensile test using a universal testing machine, TRM specimens were subjected to load until failure, with data collected on stress–strain relationships, crack patterns, and strengths. Specimens included untreated CFRP grids (Groups KC, Q47, and Q85) and sand-coated CFRP grids (Specimens AQ47_7 and AQ85_7), each tested under controlled laboratory conditions. The results indicate that crack formation significantly influenced load transfer mechanisms within the specimens, with longitudinal strands bearing load as cracks propagated through the mortar matrix. The presence of sand-coated CFRP grids notably enhanced interfacial bond strength, leading to increased cracking strength and ultimate strength compared with their untreated counterparts. The findings underscore the importance of the surface treatment of CFRP grids for improving TRM performance, with implications for enhancing structural integrity and durability in practical applications. The results provide valuable insights into optimizing TRM design for better crack control and mechanical efficiency in infrastructure. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

15 pages, 7222 KiB  
Article
Recycled-Textile-Waste-Based Sustainable Bricks: A Mechanical, Thermal, and Qualitative Life Cycle Overview
by Hafsa Jamshaid, Ambar Shah, Muhammad Shoaib and Rajesh Kumar Mishra
Sustainability 2024, 16(10), 4036; https://doi.org/10.3390/su16104036 - 11 May 2024
Cited by 5 | Viewed by 14352
Abstract
The textile industry, renowned for its comfort-providing role, is undergoing a significant transformation to address its environmental impact. The escalating environmental impact of the textile industry, characterised by substantial contributions to global carbon emissions, wastewater, and the burgeoning issue of textile waste, demands [...] Read more.
The textile industry, renowned for its comfort-providing role, is undergoing a significant transformation to address its environmental impact. The escalating environmental impact of the textile industry, characterised by substantial contributions to global carbon emissions, wastewater, and the burgeoning issue of textile waste, demands urgent attention. This study aims at identifying the feasibility of the future use of textile scraps in the construction and architecture industry by analysing the effect of different binders. In this study, synthetic knitted post-consumer-waste fabrics were taken from a waste market for use as a reinforcement, and different binders were used as the matrix. In the experiment phase, the waste fabrics were mixed with synthetic binders and hydraulic binders to form brick samples. The mechanical and thermal properties of these samples were tested and compared with those of clay bricks. In terms of mechanical properties, unsaturated polyester resin (UPR) samples showed the highest mechanical strength, while acrylic glue (GL) samples had the lowest mechanical strength. White cement (WC) samples showed moderate mechanical properties. Through several tests, it was observed that UPR samples showed the highest values of tensile, bending, and compressive strengths, i.e., 0.111 MPa, 0.134 MPa, and 3.114 MPa, respectively. For WC, the tensile, bending, and compressive strengths were 0.064 MPa, 0.106 MPa, and 2.670 MPa, respectively. For GL, the least favourable mechanical behaviour was observed, i.e., 0.0162 MPa, 0.0492 MPa, and 1.542 MPa, respectively. In terms of thermal conductivity, WC samples showed exceptional resistance to heat transfer. They showed a minimum temperature rise of 54.3 °C after 15 min, as compared to 57.3 °C for GL-based samples and 58.1 °C for UPR. When it comes to polymeric binders, UPR showed better thermal insulation properties, whereas GL allowed for faster heat transfer for up to 10 min of heating. This study explores a circular textile system by assessing the potential of using textile waste as a building material, contributing to greener interior design. This study demonstrated the usefulness of adding short, recycled PET fibres as a reinforcement in UPR composites. The use of the PET fibre avoids the need to use a surface treatment to improve interfacial adhesion to the UPR matrix because of the chemical affinity between the two polyesters, i.e., the PET fibre and the unsaturated polyester resin. This can find application in the construction field, such as in the reinforcement of wooden structural elements, infill walls, and partition walls, or in furniture or for decorative purposes. Full article
Show Figures

Figure 1

30 pages, 3770 KiB  
Review
Recent Advances in Polymer Nanocomposites: Unveiling the Frontier of Shape Memory and Self-Healing Properties—A Comprehensive Review
by Huma Jamil, Muhammad Faizan, Muhammad Adeel, Teofil Jesionowski, Grzegorz Boczkaj and Aldona Balčiūnaitė
Molecules 2024, 29(6), 1267; https://doi.org/10.3390/molecules29061267 - 13 Mar 2024
Cited by 36 | Viewed by 8637
Abstract
Shape memory and self-healing polymer nanocomposites have attracted considerable attention due to their modifiable properties and promising applications. The incorporation of nanomaterials (polypyrrole, carboxyl methyl cellulose, carbon nanotubes, titania nanotubes, graphene, graphene oxide, mesoporous silica) into these polymers has significantly enhanced their performance, [...] Read more.
Shape memory and self-healing polymer nanocomposites have attracted considerable attention due to their modifiable properties and promising applications. The incorporation of nanomaterials (polypyrrole, carboxyl methyl cellulose, carbon nanotubes, titania nanotubes, graphene, graphene oxide, mesoporous silica) into these polymers has significantly enhanced their performance, opening up new avenues for diverse applications. The self-healing capability in polymer nanocomposites depends on several factors, including heat, quadruple hydrogen bonding, π–π stacking, Diels–Alder reactions, and metal–ligand coordination, which collectively govern the interactions within the composite materials. Among possible interactions, only quadruple hydrogen bonding between composite constituents has been shown to be effective in facilitating self-healing at approximately room temperature. Conversely, thermo-responsive self-healing and shape memory polymer nanocomposites require elevated temperatures to initiate the healing and recovery processes. Thermo-responsive (TRSMPs), light-actuated, magnetically actuated, and Electrically actuated Shape Memory Polymer Nanocomposite are discussed. This paper provides a comprehensive overview of the different types of interactions involved in SMP and SHP nanocomposites and examines their behavior at both room temperature and elevated temperature conditions, along with their biomedical applications. Among many applications of SMPs, special attention has been given to biomedical (drug delivery, orthodontics, tissue engineering, orthopedics, endovascular surgery), aerospace (hinges, space deployable structures, morphing aircrafts), textile (breathable fabrics, reinforced fabrics, self-healing electromagnetic interference shielding fabrics), sensor, electrical (triboelectric nanogenerators, information energy storage devices), electronic, paint and self-healing coating, and construction material (polymer cement composites) applications. Full article
Show Figures

Graphical abstract

18 pages, 10842 KiB  
Article
Mechanical Properties and Water Permeability of Textile-Reinforced Reactive Powder Concrete with Lightweight Aggregate
by Marcin Różycki, Izabela Hager, Tomasz Zdeb, Mateusz Sitarz, Katarzyna Mróz, Jarosław Zdeb and Natalia Smorońska
Materials 2023, 16(24), 7619; https://doi.org/10.3390/ma16247619 - 12 Dec 2023
Cited by 3 | Viewed by 1799
Abstract
This paper focuses on the development of thin-walled panels with specific properties for applications such as water-tight structures. The authors propose the use of textile-reinforced concrete (TRC) as a composite material and highlight its advantages, which include high tensile strength, improved crack resistance, [...] Read more.
This paper focuses on the development of thin-walled panels with specific properties for applications such as water-tight structures. The authors propose the use of textile-reinforced concrete (TRC) as a composite material and highlight its advantages, which include high tensile strength, improved crack resistance, and design flexibility. The study presents a novel approach which combines TRC with reactive powder concrete (RPC) as a matrix and a lightweight aggregate. RPC, known for its brittle behaviour, is reinforced with glass fibres and a textile fabric to increase its flexural strength. The research includes a comprehensive analysis of the physical and mechanical properties of both the unreinforced RPC matrix and the TRC composite. In particular, the lightweight aggregate RPC matrix has a porosity of 41%, and its mechanical properties, such as flexural and compressive strength, are discussed. The TRC composites, produced in thicknesses ranging from 1 mm to 4 mm, are subjected to flexural tests to evaluate their behaviour under load. The thicker elements show typical damage phases, while the thinner elements show greater flexibility and elasticity. SEM observations confirm good adhesion between the glass fibres and the RPC matrix. Water permeability tests show that the TRC composite, despite its highly porous structure, achieves a water permeability two orders of magnitude higher than that of a reference material, highlighting the roles of both the porous aggregate and the matrix hydration. The paper concludes with a proof of concept—a canoe called the PKanoe, which is constructed from the developed TRC composite. The design of the canoe is supported by numerical analysis to ensure its optimal shape and structural integrity under load. The research contributes to the exploration of innovative materials for sustainable civil engineering applications and addresses both structural and environmental considerations. Full article
Show Figures

Figure 1

21 pages, 5487 KiB  
Article
Parametric Assessment to Evaluate and Compare the Carbon Footprint of Diverse Manufacturing Processes for Building Complex Surfaces
by Alberto Speroni, Matteo Cavaglià, Andrea Giovanni Mainini, Valentina Casarini, Simona Bovi, Juan Diego Blanco Cadena, Francesco Pittau and Tiziana Poli
Buildings 2023, 13(12), 2989; https://doi.org/10.3390/buildings13122989 - 30 Nov 2023
Cited by 1 | Viewed by 3008
Abstract
At present, building design is faced with a need to properly manage complex geometries and surfaces. This fact is not only driven by the increased demand for visually stunning spaces but also stems from the rise of new design paradigms, such as “user-centred [...] Read more.
At present, building design is faced with a need to properly manage complex geometries and surfaces. This fact is not only driven by the increased demand for visually stunning spaces but also stems from the rise of new design paradigms, such as “user-centred design”, that include bespoke optimization approaches. Nevertheless, the escalating adoption of customized components and one-off solutions raises valid concerns regarding the optimal use of energy and resources in this production paradigm. This study focuses on the Life Cycle Assessment of a novel Cement–Textile Composite (CTC) patented material. It combines a synthetic reinforcing textile with a customized concrete matrix, to generate rigid elements that are able to statically preserve complex spatial arrangements, particularly double-curvature surfaces. Moreover, the CTC offers a low-volume cost-effective alternative for custom-made cladding applications. The study performed a comparative carbon footprint assessment of the CTC production process in contrast to other technologies, such as CNC milling and 3D printing. To facilitate meaningful comparisons among diverse construction alternatives and to derive generalized data capable of characterizing their overall capacity, independent of specific production configurations, the present study implemented a generalized parametric shape of reference defined as a bounding box (BBOX), which encloses the volume of the target shape. Comparing different production technologies of the same shape with the same BBOX results in a significant carbon saving, up to 9/10th of the carbon footprint, when the CTC technology is adopted. The study therefore highlights the potential environmental advantages of CTC in the fields of architectural design and building engineering. Full article
(This article belongs to the Special Issue Advanced Materials and Systems for Energy Efficient Buildings)
Show Figures

Figure 1

17 pages, 6951 KiB  
Article
Robot-Assisted Manufacturing Technology for 3D Non-Metallic Reinforcement Structures in the Construction Applications
by Danny Friese, Lars Hahn, Hung Le Xuan, Johannes Mersch, Tobias Neef, Viktor Mechtcherine and Chokri Cherif
Buildings 2023, 13(11), 2748; https://doi.org/10.3390/buildings13112748 - 31 Oct 2023
Cited by 3 | Viewed by 2059
Abstract
Of all industrial sectors, the construction industry accounts for about 37% of carbon dioxide (CO2) emissions. This encompasses the complete life cycle of buildings, from the construction phase to service life to component disposal. The main source of emissions of climate-damaging [...] Read more.
Of all industrial sectors, the construction industry accounts for about 37% of carbon dioxide (CO2) emissions. This encompasses the complete life cycle of buildings, from the construction phase to service life to component disposal. The main source of emissions of climate-damaging greenhouse gases such as CO2, with a share of 9% of global emissions, is the production of ordinary cement as the main binder of concrete. The use of innovative approaches such as impregnated carbon yarns as non-corrosive reinforcement embedded in concrete has the potential to dramatically reduce the amount of concrete required in construction, since no excessive concrete cover is needed to protect against corrosion, as is the case with steel reinforcement. At the same time, architectural design options are expanded via this approach. This is achieved above all using novel robotic manufacturing technologies to enable no-cut direct fiber placement. This innovative technological approach to fabricating 2D and 3D biologically inspired textiles, including non-metallic structures for textile-reinforced concrete (TRC) components, will promote an automatable construction method that reduces greenhouse gas emissions. Furthermore, the impregnated yarn which is fabricated enables the production of load-adapted and gradual non-metallic reinforcement components. Novel and improved design strategies with innovative reinforcement patterns allow the full mechanical potential of TRC to be realized. The development of a robotic fabrication technology has gone beyond the state of the art to implement spatially branched, biologically inspired 3D non-metallic reinforcement structures. A combined robotic fabrication technology, based on the developed flexible 3D yarn-guiding and impregnation module and a 3D yarn fixation module, is required to implement this sophisticated approach to fabricate freely formed 3D non-metallic reinforcement structures. This paper presents an overview of the development process of the innovative technological concept. Full article
(This article belongs to the Special Issue Research on the Performance of Non-metallic Reinforced Concrete)
Show Figures

Figure 1

17 pages, 6427 KiB  
Review
Review of Out-of-Plane Strengthening Techniques of Unreinforced Masonry Walls
by Athanasia K. Thomoglou, P. Jagadesh and Maristella E. Voutetaki
Fibers 2023, 11(9), 78; https://doi.org/10.3390/fib11090078 - 19 Sep 2023
Cited by 14 | Viewed by 3636
Abstract
When a seismic load is applied horizontally or laterally on unreinforced masonry walls (URM), the walls behave in two different ways, viz., in-plane (IP) and out-of-plane (OoP). This review beneficially provides a literature overview of the most cited research papers on Scopus, and [...] Read more.
When a seismic load is applied horizontally or laterally on unreinforced masonry walls (URM), the walls behave in two different ways, viz., in-plane (IP) and out-of-plane (OoP). This review beneficially provides a literature overview of the most cited research papers on Scopus, and the database is evaluated with VOSviewer software for scientometric analysis. This review paper delves into the practical applications of various types of reinforcement for masonry walls, specifically focusing on four commonly used systems: externally bonded strengthening techniques using fiber-reinforced polymers (FRP), steel-reinforced grout (SRG), fabric-reinforced cementitious mortar (FRCM), and textile-reinforced mortars (TRM). The main objective of the paper is to explore the efficacy of these reinforcement techniques in strengthening masonry walls, and to provide a comprehensive overview of their respective advantages and limitations. A further detailed study of the extent of the literature is performed about the effect of the different strengthening systems on the mechanical properties of different categories of masonry walls like a cement block, stone, and clay brick are described and categorized. The efficiency of OoP strengthening can depend on various factors, such as the types of masonry units, the rendering mortar, the type of strengthening system, the bond between the different materials interfaces, the geometry of the wall, and the loading conditions. By utilizing the practical method of Dematel (Decision-making trial and evaluation laboratory) analysis, this review can delve deeply into the impact of various factors and precisely identify the crucial components of the cause-and-effect connection. The results indicate that the bond between material interfaces is the critical factor. This meticulous and structured review offers valuable perspectives for researchers and engineers, showcasing current research trends and presenting potential avenues for future exploration. Full article
Show Figures

Graphical abstract

Back to TopTop