Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (15)

Search Parameters:
Keywords = temporo-parietal-cortex

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 1350 KiB  
Review
Autobiographical Memory: A Scoping Meta-Review of Neuroimaging Data Enlightens the Inconsistencies Between Theory and Experimentation
by Edoardo Donarelli, Cristina Civilotti, Giulia Di Fini, Gabriella Gandino and Alessia Celeghin
Brain Sci. 2025, 15(5), 515; https://doi.org/10.3390/brainsci15050515 - 18 May 2025
Viewed by 578
Abstract
Background/Objectives: Autobiographical memory (AM) is typically viewed in terms of comprising episodic (EAM) and semantic (SAM) components. Despite the emergence of numerous meta-analyses, the literature on these constructs remains fragmented. We aimed to summarize neural activations and to discuss the relations between constructs [...] Read more.
Background/Objectives: Autobiographical memory (AM) is typically viewed in terms of comprising episodic (EAM) and semantic (SAM) components. Despite the emergence of numerous meta-analyses, the literature on these constructs remains fragmented. We aimed to summarize neural activations and to discuss the relations between constructs based on theory and experimentation, while evaluating the consistency between literature sources and discussing the critical issues and challenges of current research. Methods: We conducted a scoping meta-review on AM, EAM, and SAM based on meta-analytic studies in five scientific databases (PubMed, Web of Science, Scopus, PsychInfo, and PsychArticles). No temporal or language limits were applied. Results: We included twelve meta-analyses on AM, EAM and SAM in healthy populations. The meta-analyses of AM and EAM actually investigated the same construct, leading to misinterpretation. The two available meta-analyses on SAM used two different operationalizations of the construct. Neural data about EAM were analyzed via mean rank classification, finding the most relevant areas in the posterior cingulate cortex, hippocampus, precuneus, temporo-parietal junction, angular gyrus, and medial prefrontal cortex. SAM was linked to the posterior and anterior cingulate cortexes, middle and inferior frontal gyri, thalamus, middle and superior temporal gyri, inferior frontal and fusiform gyri, and parahippocampal cortex. Conclusions: Variability in reported activation patterns persists, reflecting differences in methodology and assumptions. We propose the homogenization the notations of EAM and AM based on experimental practice. In this notation, AM does not have a separate experimental task nor activation pattern and may not indicate a separate construct but an array of its components. Full article
(This article belongs to the Section Neurotechnology and Neuroimaging)
Show Figures

Figure 1

23 pages, 2074 KiB  
Article
Two Sides of Theory of Mind: Mental State Attribution to Moving Shapes in Paranoid Schizophrenia Is Independent of the Severity of Positive Symptoms
by Christina Fuchs, Sarita Silveira, Thomas Meindl, Richard Musil, Kim Laura Austerschmidt, Dirk W. Eilert, Norbert Müller, Hans-Jürgen Möller, Rolf Engel, Maximilian Reiser, Martin Driessen, Thomas Beblo and Kristina Hennig-Fast
Brain Sci. 2024, 14(5), 461; https://doi.org/10.3390/brainsci14050461 - 2 May 2024
Cited by 3 | Viewed by 2834
Abstract
Background: Theory of Mind (ToM) impairment has repeatedly been found in paranoid schizophrenia. The current study aims at investigating whether this is related to a deficit in ToM (undermentalizing) or an increased ToM ability to hyperattribute others’ mental states (overmentalizing). Methods: Mental state [...] Read more.
Background: Theory of Mind (ToM) impairment has repeatedly been found in paranoid schizophrenia. The current study aims at investigating whether this is related to a deficit in ToM (undermentalizing) or an increased ToM ability to hyperattribute others’ mental states (overmentalizing). Methods: Mental state attribution was examined in 24 patients diagnosed with schizophrenia (12 acute paranoid (APS) and 12 post-acute paranoid (PPS)) with regard to positive symptoms as well as matched healthy persons using a moving shapes paradigm. We used 3-T-functional magnetic resonance imaging (fMRI) to provide insights into the neural underpinnings of ToM due to attributional processes in different states of paranoid schizophrenia. Results: In the condition that makes demands on theory of mind skills (ToM condition), in patients with diagnosed schizophrenia less appropriate mental state descriptions have been used, and they attributed mental states less often to the moving shapes than healthy persons. On a neural level, patients suffering from schizophrenia exhibited within the ToM network hypoactivity in the medial prefrontal cortex (MPFC) and hyperactivity in the temporo-parietal junction (TPJ) as compared to the healthy sample. Conclusions: Our results indicate both undermentalizing and hypoactivity in the MPFC and increased overattribution related to hyperactivity in the TPJ in paranoid schizophrenia, providing new implications for understanding ToM in paranoid schizophrenia. Full article
(This article belongs to the Special Issue Cognitive Dysfunction in Schizophrenia)
Show Figures

Figure 1

32 pages, 12093 KiB  
Article
Information-Theoretic Approaches in EEG Correlates of Auditory Perceptual Awareness under Informational Masking
by Alexandre Veyrié, Arnaud Noreña, Jean-Christophe Sarrazin and Laurent Pezard
Biology 2023, 12(7), 967; https://doi.org/10.3390/biology12070967 - 6 Jul 2023
Viewed by 1867
Abstract
In informational masking paradigms, the successful segregation between the target and masker creates auditory perceptual awareness. The dynamics of the build-up of auditory perception is based on a set of interactions between bottom–up and top–down processes that generate neuronal modifications within the brain [...] Read more.
In informational masking paradigms, the successful segregation between the target and masker creates auditory perceptual awareness. The dynamics of the build-up of auditory perception is based on a set of interactions between bottom–up and top–down processes that generate neuronal modifications within the brain network activity. These neural changes are studied here using event-related potentials (ERPs), entropy, and integrated information, leading to several measures applied to electroencephalogram signals. The main findings show that the auditory perceptual awareness stimulated functional activation in the fronto-temporo-parietal brain network through (i) negative temporal and positive centro-parietal ERP components; (ii) an enhanced processing of multi-information in the temporal cortex; and (iii) an increase in informational content in the fronto-central cortex. These different results provide information-based experimental evidence about the functional activation of the fronto-temporo-parietal brain network during auditory perceptual awareness. Full article
(This article belongs to the Special Issue Neural Correlates of Perception in Noise in the Auditory System)
Show Figures

Figure 1

13 pages, 2313 KiB  
Brief Report
The Possibility of Eidetic Memory in a Patient Report of Epileptogenic Zone in Right Temporo-Parietal-Occipital Cortex
by Brent M. Berry, Laura R. Miller, Meaghan Berns and Michal Kucewicz
Life 2023, 13(4), 956; https://doi.org/10.3390/life13040956 - 6 Apr 2023
Cited by 1 | Viewed by 3192
Abstract
Eidetic memory has been reported in children and in patients with synesthesia but is otherwise thought to be a rare phenomenon. Presented herein is a patient with right-sided language dominance, as proven via multiple functional imaging and neuropsychometric methods, who has a seizure [...] Read more.
Eidetic memory has been reported in children and in patients with synesthesia but is otherwise thought to be a rare phenomenon. Presented herein is a patient with right-sided language dominance, as proven via multiple functional imaging and neuropsychometric methods, who has a seizure onset zone in the right temporo-parietal-occipital cortex. This patient’s medically refractory epilepsy and thus hyperactive cortex could possibly contribute to near eidetic ability with paired-associates learning tasks (in both short-term and long-term retention). There are reports of epilepsy negatively affecting memory, but as far as the authors are aware to date, there is limited evidence of any lesion enhancing cognitive functions (whether through direct lesion or via compensatory mechanism) that would be localized to a seizure onset zone in the dominant temporo-parietal-occipital junction. Full article
(This article belongs to the Section Physiology and Pathology)
Show Figures

Figure 1

15 pages, 3121 KiB  
Systematic Review
The Neural Signatures of Shame, Embarrassment, and Guilt: A Voxel-Based Meta-Analysis on Functional Neuroimaging Studies
by Luca Piretti, Edoardo Pappaianni, Claudia Garbin, Raffaella Ida Rumiati, Remo Job and Alessandro Grecucci
Brain Sci. 2023, 13(4), 559; https://doi.org/10.3390/brainsci13040559 - 26 Mar 2023
Cited by 9 | Viewed by 6889
Abstract
Self-conscious emotions, such as shame and guilt, play a fundamental role in regulating moral behaviour and in promoting the welfare of society. Despite their relevance, the neural bases of these emotions are uncertain. In the present meta-analysis, we performed a systematic literature review [...] Read more.
Self-conscious emotions, such as shame and guilt, play a fundamental role in regulating moral behaviour and in promoting the welfare of society. Despite their relevance, the neural bases of these emotions are uncertain. In the present meta-analysis, we performed a systematic literature review in order to single out functional neuroimaging studies on healthy individuals specifically investigating the neural substrates of shame, embarrassment, and guilt. Seventeen studies investigating the neural correlates of shame/embarrassment and seventeen studies investigating guilt brain representation met our inclusion criteria. The analyses revealed that both guilt and shame/embarrassment were associated with the activation of the left anterior insula, involved in emotional awareness processing and arousal. Guilt-specific areas were located within the left temporo-parietal junction, which is thought to be involved in social cognitive processes. Moreover, specific activations for shame/embarrassment involved areas related to social pain (dorsal anterior cingulate and thalamus) and behavioural inhibition (premotor cortex) networks. This pattern of results might reflect the distinct action tendencies associated with the two emotions. Full article
(This article belongs to the Section Cognitive, Social and Affective Neuroscience)
Show Figures

Figure 1

12 pages, 882 KiB  
Article
Functional Correlates of Microglial and Astrocytic Activity in Symptomatic Sporadic Alzheimer’s Disease: A CSF/18F-FDG-PET Study
by Chiara Giuseppina Bonomi, Agostino Chiaravalloti, Riccardo Camedda, Francesco Ricci, Nicola Biagio Mercuri, Orazio Schillaci, Giacomo Koch, Alessandro Martorana and Caterina Motta
Biomedicines 2023, 11(3), 725; https://doi.org/10.3390/biomedicines11030725 - 28 Feb 2023
Cited by 2 | Viewed by 2060
Abstract
Glial and microglial cells contribute to brain glucose consumption and could actively participate in shaping patterns of brain hypometabolism. Here, we aimed to investigate the association between 18F-fluorodeoxyglucose (18F-FDG) uptake and markers of microglial and astrocytic activity in a cohort [...] Read more.
Glial and microglial cells contribute to brain glucose consumption and could actively participate in shaping patterns of brain hypometabolism. Here, we aimed to investigate the association between 18F-fluorodeoxyglucose (18F-FDG) uptake and markers of microglial and astrocytic activity in a cohort of patients with Alzheimer’s Disease (AD). We dosed cerebrospinal fluid (CSF) levels of soluble Triggering Receptor Expressed on Myeloid cells (sTREM2), Glial Fibrillary Acidic Protein (GFAP), a marker of reactive astrogliosis, and β-S100, a calcium-binding protein associated with a neurotoxic astrocytic profile. No associations were found between sTREM-2 and 18F-FDG uptake. Instead, 18F-FDG uptake was associated negatively with CSF β-S100 in the left supramarginal gyrus, inferior parietal lobe and middle temporal gyrus (Brodmann Areas (BA) 21 and 40). Increased β-S100 levels could negatively regulate neuronal activity in the temporo-parietal cortex to prevent damage associated with AD hyperactivity, or rather they could reflect neurotoxic astrocytic activation contributing to AD progression in key strategic areas. We also identified a trend of positive association of 18F-FDG uptake with CSF GFAP in the right fronto-medial and precentral gyri (BA 6, 9 and 11), which has been reported in early AD and could either be persisting as an epiphenomenon tied to disease progression or be specifically aimed at preserving functions in the frontal cortex. Overall, CSF markers of astrogliosis seem to correlate with cortical glucose uptake in symptomatic sporadic AD, highlighting the role of astrocytes in shaping regional hypometabolism and possibly clinical presentation. Full article
(This article belongs to the Section Neurobiology and Clinical Neuroscience)
Show Figures

Figure 1

12 pages, 1311 KiB  
Brief Report
Transcranial Magnetic Stimulation Improves Executive Functioning through Modulation of Social Cognitive Networks in Patients with Mild Cognitive Impairment: Preliminary Results
by Leonardo Sacco, Martino Ceroni, Deborah Pacifico, Giorgia Zerboni, Stefania Rossi, Salvatore Galati, Serena Caverzasio, Alain Kaelin-Lang and Gianna C. Riccitelli
Diagnostics 2023, 13(3), 415; https://doi.org/10.3390/diagnostics13030415 - 23 Jan 2023
Cited by 4 | Viewed by 3012
Abstract
(1) Background: Patients with mild cognitive impairment (MCI) often present impairment in executive functions (EFs). This study aimed to investigate the effect of high-frequency repetitive transcranial magnetic stimulation (rTMS) on EFs in patients with MCI. (2) Methods: A prospective trial was conducted on [...] Read more.
(1) Background: Patients with mild cognitive impairment (MCI) often present impairment in executive functions (EFs). This study aimed to investigate the effect of high-frequency repetitive transcranial magnetic stimulation (rTMS) on EFs in patients with MCI. (2) Methods: A prospective trial was conducted on 11 patients with MCI. Participants underwent 25 min of 20 Hz rTMS for ten days on the right temporo-parietal junction (RTPJ) and medial prefrontal cortex (MPFC). Before (T0) and after rTMS treatment (T1), global cognitive profile and EFs were investigated using the Montreal cognitive assessment (MoCA), trial making test (TMT) A and B, and frontal assessment battery (FAB). Depression symptoms were assessed using the geriatric depression scale (GDS). Statistical analysis included Wilcoxon signed-rank test. (3) Results: After treatment, patients showed a significant improvement in the MoCA EFs subtask (T0 vs. T1, p = 0.015) and TMT-B (T0 vs. T1, p = 0.028). Five MCI patients with EF impairment showed full recovery of these deficits. No significant changes in the GDS were observed. (4) Conclusions: rTMS stimulation over the TPJ and MPFC induced significant short-term improvements in EFs in MCI patients. These findings suggest that the TPJ and MPFC may be involved in the attention-executive skills to redirect attention toward behaviorally relevant stimuli. Full article
(This article belongs to the Special Issue Diagnosis and Management of Dementia)
Show Figures

Figure 1

18 pages, 1364 KiB  
Article
Pilot-RCT Finds No Evidence for Modulation of Neuronal Networks of Auditory Hallucinations by Transcranial Direct Current Stimulation
by Lynn Marquardt, Alexander R. Craven, Kenneth Hugdahl, Erik Johnsen, Rune Andreas Kroken, Isabella Kusztrits, Karsten Specht, Anne Synnøve Thomassen, Sarah Weber and Marco Hirnstein
Brain Sci. 2022, 12(10), 1382; https://doi.org/10.3390/brainsci12101382 - 12 Oct 2022
Cited by 3 | Viewed by 2567
Abstract
Background: Transcranial direct current stimulation (tDCS) is used as treatment for auditory verbal hallucinations (AVH). The theory behind the treatment is that tDCS increases activity in prefrontal cognitive control areas, which are assumed to be hypoactive, and simultaneously decreases activity in temporal [...] Read more.
Background: Transcranial direct current stimulation (tDCS) is used as treatment for auditory verbal hallucinations (AVH). The theory behind the treatment is that tDCS increases activity in prefrontal cognitive control areas, which are assumed to be hypoactive, and simultaneously decreases activity in temporal speech perception areas, which are assumed to be hyperactive during AVH. We tested this hypofrontal/hypertemporal reversal theory by investigating anatomical, neurotransmitter, brain activity, and network connectivity changes over the course of tDCS treatment. Methods: A double-blind, randomized controlled trial was conducted with 21 patients receiving either sham or real tDCS treatment (2 mA) twice daily for 5 days. The anode was placed over the left dorsolateral prefrontal cortex (DLPFC) and the cathode over the left temporo-parietal cortex (TPC). Multimodal neuroimaging as well as clinical and neurocognitive functioning assessment were performed before, immediately after, and three months after treatment. Results: We found a small reduction in AVH severity in the real tDCS group, but no corresponding neuroimaging changes in either DLPFCD or TPC. Limitations: The study has a small sample size. Conclusion: The results suggest that the currently leading theory behind tDCS treatment of AVH may need to be revised, if confirmed by studies with larger N. Tentative findings point to the involvement of Broca’s area as a critical structure for tDCS treatment. Full article
(This article belongs to the Special Issue Brain Stimulation in Psychiatric Disorders)
Show Figures

Figure 1

9 pages, 896 KiB  
Article
Posterior Lissencephaly Associated with Subcortical Band Heterotopia Due to a Variation in the CEP85L Gene: A Case Report and Refining of the Phenotypic Spectrum
by Gianluca Contrò, Alessia Micalizzi, Sara Giangiobbe, Stefano Giuseppe Caraffi, Roberta Zuntini, Simonetta Rosato, Marzia Pollazzon, Alessandra Terracciano, Manuela Napoli, Susanna Rizzi, Grazia Gabriella Salerno, Francesca Clementina Radio, Marcello Niceta, Elena Parrini, Carlo Fusco, Giancarlo Gargano, Renzo Guerrini, Marco Tartaglia, Antonio Novelli, Orsetta Zuffardi and Livia Garavelliadd Show full author list remove Hide full author list
Genes 2021, 12(8), 1208; https://doi.org/10.3390/genes12081208 - 5 Aug 2021
Cited by 2 | Viewed by 5555
Abstract
Lissencephaly describes a group of conditions characterized by the absence of normal cerebral convolutions and abnormalities of cortical development. To date, at least 20 genes have been identified as involved in the pathogenesis of this condition. Variants in CEP85L, encoding a protein [...] Read more.
Lissencephaly describes a group of conditions characterized by the absence of normal cerebral convolutions and abnormalities of cortical development. To date, at least 20 genes have been identified as involved in the pathogenesis of this condition. Variants in CEP85L, encoding a protein involved in the regulation of neuronal migration, have been recently described as causative of lissencephaly with a posterior-prevalent involvement of the cerebral cortex and an autosomal dominant pattern of inheritance. Here, we describe a 3-year-old boy with slightly delayed psychomotor development and mild dysmorphic features, including bitemporal narrowing, protruding ears with up-lifted lobes and posterior plagiocephaly. Brain MRI at birth identified type 1 lissencephaly, prevalently in the temporo–occipito–parietal regions of both hemispheres with “double-cortex” (Dobyns’ 1–2 degree) periventricular band alterations. Whole-exome sequencing revealed a previously unreported de novo pathogenic variant in the CEP85L gene (NM_001042475.3:c.232+1del). Only 20 patients have been reported as carriers of pathogenic CEP85L variants to date. They show lissencephaly with prevalent posterior involvement, variable cognitive deficits and epilepsy. The present case report indicates the clinical variability associated with CEP85L variants that are not invariantly associated with severe phenotypes and poor outcome, and underscores the importance of including this gene in diagnostic panels for lissencephaly. Full article
Show Figures

Figure 1

20 pages, 2876 KiB  
Article
Reorganization of the Social Brain in Individuals with Only One Intact Cerebral Hemisphere
by Dorit Kliemann, Ralph Adolphs, Lynn K. Paul, J. Michael Tyszka and Daniel Tranel
Brain Sci. 2021, 11(8), 965; https://doi.org/10.3390/brainsci11080965 - 22 Jul 2021
Cited by 8 | Viewed by 4309
Abstract
Social cognition and emotion are ubiquitous human processes that recruit a reliable set of brain networks in healthy individuals. These brain networks typically comprise midline (e.g., medial prefrontal cortex) as well as lateral regions of the brain including homotopic regions in both hemispheres [...] Read more.
Social cognition and emotion are ubiquitous human processes that recruit a reliable set of brain networks in healthy individuals. These brain networks typically comprise midline (e.g., medial prefrontal cortex) as well as lateral regions of the brain including homotopic regions in both hemispheres (e.g., left and right temporo-parietal junction). Yet the necessary roles of these networks, and the broader roles of the left and right cerebral hemispheres in socioemotional functioning, remains debated. Here, we investigated these questions in four rare adults whose right (three cases) or left (one case) cerebral hemisphere had been surgically removed (to a large extent) to treat epilepsy. We studied four closely matched healthy comparison participants, and also compared the patient findings to data from a previously published larger healthy comparison sample (n = 33). Participants completed standardized socioemotional and cognitive assessments to investigate social cognition. Functional magnetic resonance imaging (fMRI) data were obtained during passive viewing of a short, animated movie that distinctively recruits two social brain networks: one engaged when thinking about other agents’ internal mental states (e.g., beliefs, desires, emotions; so-called Theory of Mind or ToM network), and the second engaged when thinking about bodily states (e.g., pain, hunger; so-called PAIN network). Behavioral assessments demonstrated remarkably intact general cognitive functioning in all individuals with hemispherectomy. Social-emotional functioning was somewhat variable in the hemispherectomy participants, but strikingly, none of these individuals had consistently impaired social-emotional processing and none of the assessment scores were consistent with a psychiatric disorder. Using inter-region correlation analyses, we also found surprisingly typical ToM and PAIN networks, as well as typical differentiation of the two networks (in the intact hemisphere of patients with either right or left hemispherectomy), based on idiosyncratic reorganization of cortical activation. The findings argue that compensatory brain networks can process social and emotional information following hemispherectomy across different age levels (from 3 months to 20 years old), and suggest that social brain networks typically distributed across midline and lateral brain regions in this domain can be reorganized, to a substantial degree. Full article
(This article belongs to the Special Issue Emotions and the Right Hemisphere)
Show Figures

Figure 1

14 pages, 1236 KiB  
Article
DUAL-tDCS Treatment over the Temporo-Parietal Cortex Enhances Writing Skills: First Evidence from Chronic Post-Stroke Aphasia
by Francesca Pisano, Carlo Caltagirone, Chiara Incoccia and Paola Marangolo
Life 2021, 11(4), 343; https://doi.org/10.3390/life11040343 - 14 Apr 2021
Cited by 6 | Viewed by 3439
Abstract
The learning of writing skills involves the re-engagement of previously established independent procedures. Indeed, the writing deficit an adult may acquire after left hemispheric brain injury is caused by either an impairment to the lexical route, which processes words as a whole, to [...] Read more.
The learning of writing skills involves the re-engagement of previously established independent procedures. Indeed, the writing deficit an adult may acquire after left hemispheric brain injury is caused by either an impairment to the lexical route, which processes words as a whole, to the sublexical procedure based on phoneme-to-grapheme conversion rules, or to both procedures. To date, several approaches have been proposed for writing disorders, among which, interventions aimed at restoring the sub-lexical procedure were successful in cases of severe agraphia. In a randomized double-blind crossover design, fourteen chronic Italian post-stroke aphasics underwent dual transcranial direct current stimulation (tDCS) (20 min, 2 mA) with anodal and cathodal current simultaneously placed over the left and right temporo-parietal cortex, respectively. Two different conditions were considered: (1) real, and (2) sham, while performing a writing task. Each experimental condition was performed for ten workdays over two weeks. After real stimulation, a greater amelioration in writing with respect to the sham was found. Relevantly, these effects generalized to different language tasks not directly treated. This evidence suggests, for the first time, that dual tDCS associated with training is efficacious for severe agraphia. Our results confirm the critical role of the temporo-parietal cortex in writing skills. Full article
Show Figures

Figure 1

16 pages, 5648 KiB  
Review
TMS–EEG Co-Registration in Patients with Mild Cognitive Impairment, Alzheimer’s Disease and Other Dementias: A Systematic Review
by Raffaele Nardone, Luca Sebastianelli, Viviana Versace, Davide Ferrazzoli, Leopold Saltuari and Eugen Trinka
Brain Sci. 2021, 11(3), 303; https://doi.org/10.3390/brainsci11030303 - 27 Feb 2021
Cited by 20 | Viewed by 5513
Abstract
An established method to assess effective brain connectivity is the combined use of transcranial magnetic stimulation with simultaneous electroencephalography (TMS–EEG) because TMS-induced cortical responses propagate to distant anatomically connected brain areas. Alzheimer’s disease (AD) and other dementias are associated with changes in brain [...] Read more.
An established method to assess effective brain connectivity is the combined use of transcranial magnetic stimulation with simultaneous electroencephalography (TMS–EEG) because TMS-induced cortical responses propagate to distant anatomically connected brain areas. Alzheimer’s disease (AD) and other dementias are associated with changes in brain networks and connectivity, but the underlying pathophysiology of these processes is poorly defined. We performed here a systematic review of the studies employing TMS–EEG co-registration in patients with dementias. TMS–EEG studies targeting the motor cortex have revealed a significantly reduced TMS-evoked P30 in AD patients in the temporo-parietal cortex ipsilateral to stimulation side as well as in the contralateral fronto-central area, and we have demonstrated a deep rearrangement of the sensorimotor system even in mild AD patients. TMS–EEG studies targeting other cortical areas showed alterations of effective dorsolateral prefrontal cortex connectivity as well as an inverse correlation between prefrontal-to-parietal connectivity and cognitive impairment. Moreover, TMS–EEG analysis showed a selective increase in precuneus neural activity. TMS–EEG co-registrations can also been used to investigate whether different drugs may affect cognitive functions in patients with dementias. Full article
(This article belongs to the Special Issue Quantitative EEG and Cognitive Neuroscience)
Show Figures

Figure 1

13 pages, 3257 KiB  
Article
The Development of Brain Network in Males with Autism Spectrum Disorders from Childhood to Adolescence: Evidence from fNIRS Study
by Wei Cao, Huilin Zhu, Yan Li, Yu Wang, Wuxia Bai, Uchong Lao, Yingying Zhang, Yan Ji, Sailing He and Xiaobing Zou
Brain Sci. 2021, 11(1), 120; https://doi.org/10.3390/brainsci11010120 - 18 Jan 2021
Cited by 14 | Viewed by 5339
Abstract
In the current study, functional near-infrared spectroscopy (fNIRS) was used to collect resting-state signals from 77 males with autism spectrum disorders (ASD, age: 6~16.25) and 40 typically developing (TD) males (age: 6~16.58) in the theory-of-mind (ToM) network. The graph theory analysis was used [...] Read more.
In the current study, functional near-infrared spectroscopy (fNIRS) was used to collect resting-state signals from 77 males with autism spectrum disorders (ASD, age: 6~16.25) and 40 typically developing (TD) males (age: 6~16.58) in the theory-of-mind (ToM) network. The graph theory analysis was used to obtain the brain network properties in ToM network, and the multiple regression analysis demonstrated that males with ASD showed a comparable global network topology, and a similar age-related decrease in the medial prefrontal cortex area (mPFC) compared to TD individuals. Nevertheless, participants with ASD showed U-shaped trajectories of nodal metrics of right temporo-parietal junction (TPJ), and an age-related decrease in the left middle frontal gyrus (MFG), while trajectories of TD participants were opposite. The nodal metrics of the right TPJ was negatively associated with the social deficits of ASD, while the nodal metrics of the left MFG was negatively associated with the communication deficits of ASD. Current findings suggested a distinct developmental trajectory of the ToM network in males with ASD from childhood to adolescence. Full article
Show Figures

Figure 1

16 pages, 3100 KiB  
Article
Ex Vivo MRI Analytical Methods and Brain Pathology in Preterm Lambs Treated with Postnatal Dexamethasone
by Nathanael J. Yates, Kirk W. Feindel, Andrew Mehnert, Richard Beare, Sophia Quick, Dominique Blache, J. Jane Pillow and Rod W. Hunt
Brain Sci. 2020, 10(4), 211; https://doi.org/10.3390/brainsci10040211 - 3 Apr 2020
Cited by 6 | Viewed by 4247
Abstract
Postnatal glucocorticoids such as dexamethasone are effective in promoting lung development in preterm infants, but are prescribed cautiously due to concerns of neurological harm. We developed an analysis pipeline for post-mortem magnetic resonance imaging (MRI) to assess brain development and hence the neurological [...] Read more.
Postnatal glucocorticoids such as dexamethasone are effective in promoting lung development in preterm infants, but are prescribed cautiously due to concerns of neurological harm. We developed an analysis pipeline for post-mortem magnetic resonance imaging (MRI) to assess brain development and hence the neurological safety profile of postnatal dexamethasone in preterm lambs. Lambs were delivered via caesarean section at 129 days’ (d) gestation (full term ≈ 150 d) with saline-vehicle control (Saline, n = 9), low-dose tapered dexamethasone (cumulative dose = 0.75 mg/kg, n = 8), or high-dose tapered dexamethasone (cumulative dose = 2.67 mg/kg, n = 8), for seven days. Naïve fetal lambs (136 d gestation) were used as end-point maturation controls. The left-brain hemispheres were immersion-fixed in 10 % formalin (24 h), followed by paraformaldehyde (>6 months). Image sequences were empirically optimized for T1- and T2-weighted MRI and analysed using accessible methods. Spontaneous lesions detected in the white matter of the frontal cortex, temporo-parietal cortex, occipital lobe, and deep to the parahippocampal gyrus were confirmed with histology. Neither postnatal dexamethasone treatment nor gestation showed any associations with lesion incidence, frontal cortex (total, white, or grey matter) or hippocampal volume (all p > 0.05). Postnatal dexamethasone did not appear to adversely affect neurodevelopment. Our post-mortem MRI analysis pipeline is suitable for other animal models of brain development. Full article
(This article belongs to the Special Issue Prevention and Intervention for Pediatric Brain Injury)
Show Figures

Figure 1

16 pages, 3934 KiB  
Article
Brain Functional Connectivity Is Modified by a Hypocaloric Mediterranean Diet and Physical Activity in Obese Women
by Natalia García-Casares, María R. Bernal-López, Nuria Roé-Vellvé, Mario Gutiérrez-Bedmar, Jose C. Fernández-García, Juan A. García-Arnés, José R. Ramos-Rodriguez, Francisco Alfaro, Sonia Santamaria-Fernández, Trevor Steward, Susana Jiménez-Murcia, Isabel Garcia-Garcia, Pedro Valdivielso, Fernando Fernández-Aranda, Francisco J. Tinahones and Ricardo Gómez-Huelgas
Nutrients 2017, 9(7), 685; https://doi.org/10.3390/nu9070685 - 1 Jul 2017
Cited by 16 | Viewed by 7931
Abstract
Functional magnetic resonance imaging (fMRI) in the resting state has shown altered brain connectivity networks in obese individuals. However, the impact of a Mediterranean diet on cerebral connectivity in obese patients when losing weight has not been previously explored. The aim of this [...] Read more.
Functional magnetic resonance imaging (fMRI) in the resting state has shown altered brain connectivity networks in obese individuals. However, the impact of a Mediterranean diet on cerebral connectivity in obese patients when losing weight has not been previously explored. The aim of this study was to examine the connectivity between brain structures before and six months after following a hypocaloric Mediterranean diet and physical activity program in a group of sixteen obese women aged 46.31 ± 4.07 years. Before and after the intervention program, the body mass index (BMI) (kg/m2) was 38.15 ± 4.7 vs. 34.18 ± 4.5 (p < 0.02), and body weight (kg) was 98.5 ± 13.1 vs. 88.28 ± 12.2 (p < 0.03). All subjects underwent a pre- and post-intervention fMRI under fasting conditions. Functional connectivity was assessed using seed-based correlations. After the intervention, we found decreased connectivity between the left inferior parietal cortex and the right temporal cortex (p < 0.001), left posterior cingulate (p < 0.001), and right posterior cingulate (p < 0.03); decreased connectivity between the left superior frontal gyrus and the right temporal cortex (p < 0.01); decreased connectivity between the prefrontal cortex and the somatosensory cortex (p < 0.025); and decreased connectivity between the left and right posterior cingulate (p < 0.04). Results were considered significant at a voxel-wise threshold of p ≤ 0.05, and a cluster-level family-wise error correction for multiple comparisons of p ≤ 0.05. In conclusion, functional connectivity between brain structures involved in the pathophysiology of obesity (the inferior parietal lobe, posterior cingulate, temporo-insular cortex, prefrontal cortex) may be modified by a weight loss program including a Mediterranean diet and physical exercise. Full article
Show Figures

Figure 1

Back to TopTop