Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (29)

Search Parameters:
Keywords = task assignment of UAV swarm

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1749 KB  
Article
Secure Communication and Dynamic Formation Control of Intelligent Drone Swarms Using Blockchain Technology
by Huayu Li, Peiyan Li, Jing Liu and Peiying Zhang
Information 2025, 16(9), 768; https://doi.org/10.3390/info16090768 - 4 Sep 2025
Viewed by 426
Abstract
With the increasing deployment of unmanned aerial vehicle (UAV) swarms in scenarios such as disaster response, environmental monitoring, and military reconnaissance, the need for secure and scalable formation control has become critical. Traditional centralized architectures face challenges such as limited scalability, communication bottlenecks, [...] Read more.
With the increasing deployment of unmanned aerial vehicle (UAV) swarms in scenarios such as disaster response, environmental monitoring, and military reconnaissance, the need for secure and scalable formation control has become critical. Traditional centralized architectures face challenges such as limited scalability, communication bottlenecks, and single points of failure in large-scale swarm coordination. To address these issues, this paper proposes a blockchain-based decentralized formation control framework that integrates smart contracts to manage UAV registration, identity authentication, formation assignment, and positional coordination. The system follows a leader–follower structure, where the leader broadcasts formation tasks via on-chain events, while followers respond in real-time through event-driven mechanisms. A parameterized control model based on dynamic angle and distance adjustments is employed to support various formations, including V-shape, line, and circular configurations. The transformation from relative to geographic positions is achieved using Haversine and Euclidean methods. Experimental validation in a simulated environment demonstrates that the proposed method achieves lower communication latency and better responsiveness compared to polling-based schemes, while offering enhanced scalability and robustness. This work provides a feasible and secure decentralized control solution for future UAV swarm systems. Full article
Show Figures

Figure 1

17 pages, 1182 KB  
Article
Task Allocation Algorithm for Heterogeneous UAV Swarm with Temporal Task Chains
by Haixiao Liu, Zhichao Shao, Quanzhi Zhou, Jianhua Tu and Shuo Zhu
Drones 2025, 9(8), 574; https://doi.org/10.3390/drones9080574 - 13 Aug 2025
Viewed by 819
Abstract
In disaster relief operations, integrating disaster reconnaissance, material delivery, and effect evaluation into a temporal task chain can significantly reduce emergency response cycles and improve rescue efficiency. However, since multiple types of heterogeneous UAVs need to be coordinated during the rescue temporal task [...] Read more.
In disaster relief operations, integrating disaster reconnaissance, material delivery, and effect evaluation into a temporal task chain can significantly reduce emergency response cycles and improve rescue efficiency. However, since multiple types of heterogeneous UAVs need to be coordinated during the rescue temporal task chains assignment process, this places higher demands on the real-time dynamic decision-making and system fault tolerance of its task assignment algorithm. This study addresses the sequential dependencies among disaster reconnaissance, material delivery, and effect evaluation stages. A task allocation model for heterogeneous UAV swarm targeting temporal task chains is formulated, with objectives to minimize task completion time and energy consumption. A dynamic coalition formation algorithm based on temporary leader election and multi-round negotiation mechanisms is proposed to enhance continuous decision-making capabilities in complex disaster environments. A simulation scenario involving twenty heterogeneous UAVs and seven temporal rescue task chains is constructed. The results show that the proposed algorithm reduces average task completion time by 15.2–23.7% and average fuel consumption by 18.3–26.4% compared with cooperative network protocols and distributed auctions, with up to a 43% reduction in fuel consumption fluctuations. Full article
Show Figures

Figure 1

39 pages, 17182 KB  
Article
A Bi-Layer Collaborative Planning Framework for Multi-UAV Delivery Tasks in Multi-Depot Urban Logistics
by Junfu Wen, Fei Wang and Yebo Su
Drones 2025, 9(7), 512; https://doi.org/10.3390/drones9070512 - 21 Jul 2025
Viewed by 844
Abstract
To address the modeling complexity and multi-objective collaborative optimization challenges in multi-depot and multiple unmanned aerial vehicle (UAV) delivery task planning, this paper proposes a bi-layer planning framework, which comprehensively considers resource constraints, multi-depot coordination, and the coupling characteristics of path execution. The [...] Read more.
To address the modeling complexity and multi-objective collaborative optimization challenges in multi-depot and multiple unmanned aerial vehicle (UAV) delivery task planning, this paper proposes a bi-layer planning framework, which comprehensively considers resource constraints, multi-depot coordination, and the coupling characteristics of path execution. The novelty of this work lies in the seamless integration of an enhanced genetic algorithm and tailored swarm optimization within a unified two-tier architecture. The upper layer tackles the task assignment problem by formulating a multi-objective optimization model aimed at minimizing economic costs, delivery delays, and the number of UAVs deployed. The Enhanced Non-Dominated Sorting Genetic Algorithm II (ENSGA-II) is developed, incorporating heuristic initialization, goal-oriented search operators, an adaptive mutation mechanism, and a staged evolution control strategy to improve solution feasibility and distribution quality. The main contributions are threefold: (1) a novel ENSGA-II design for efficient and well-distributed task allocation; (2) an improved PSO-based path planner with chaotic initialization and adaptive parameters; and (3) comprehensive validation demonstrating substantial gains over baseline methods. The lower layer addresses the path planning problem by establishing a multi-objective model that considers path length, flight risk, and altitude variation. An improved particle swarm optimization (PSO) algorithm is proposed by integrating chaotic initialization, linearly adjusted acceleration coefficients and maximum velocity, a stochastic disturbance-based position update mechanism, and an adaptively tuned inertia weight to enhance algorithmic performance and path generation quality. Simulation results under typical task scenarios demonstrate that the proposed model achieves an average reduction of 47.8% in economic costs and 71.4% in UAV deployment quantity while significantly reducing delivery window violations. The framework exhibits excellent capability in multi-objective collaborative optimization. The ENSGA-II algorithm outperforms baseline algorithms significantly across performance metrics, achieving a hypervolume (HV) value of 1.0771 (improving by 72.35% to 109.82%) and an average inverted generational distance (IGD) of 0.0295, markedly better than those of comparison algorithms (ranging from 0.0893 to 0.2714). The algorithm also demonstrates overwhelming superiority in the C-metric, indicating outstanding global optimization capability in terms of distribution, convergence, and the diversity of the solution set. Moreover, the proposed framework and algorithm are both effective and feasible, offering a novel approach to low-altitude urban logistics delivery problems. Full article
(This article belongs to the Section Innovative Urban Mobility)
Show Figures

Figure 1

37 pages, 3151 KB  
Review
Systematic Review of Multi-Objective UAV Swarm Mission Planning Systems from Regulatory Perspective
by Luke Checker, Hui Xie, Siavash Khaksar and Iain Murray
Drones 2025, 9(7), 509; https://doi.org/10.3390/drones9070509 - 20 Jul 2025
Viewed by 2467
Abstract
Advancements in Unmanned Aerial Vehicle (UAV) technologies have increased exponentially in recent years, with UAV swarm being a key area of interest. UAV swarm overcomes the energy reserve, payload, and single-objective limitations of single UAVs, enabling broader mission scopes. Despite these advantages, UAV [...] Read more.
Advancements in Unmanned Aerial Vehicle (UAV) technologies have increased exponentially in recent years, with UAV swarm being a key area of interest. UAV swarm overcomes the energy reserve, payload, and single-objective limitations of single UAVs, enabling broader mission scopes. Despite these advantages, UAV swarm has yet to see widespread application within global industry. A leading factor hindering swarm application within industry is the divide that currently exists between the functional capacity of modern UAV swarm systems and the functionality required by legislation. This paper investigates this divide through an overview of global legislative practice, contextualized via a case study of Australia’s UAV regulatory environment. The overview highlighted legislative objectives that coincided with open challenges in the UAV swarm literature. These objectives were then formulated into analysis criteria that assessed whether systems presented sufficient functionality to address legislative concern. A systematic review methodology was used to apply analysis criteria to multi-objective UAV swarm mission planning systems. Analysis focused on multi-objective mission planning systems due to their role in defining the functional capacity of UAV swarms within complex real-world operational environments. This, alongside the popularity of these systems within the modern literature, makes them ideal candidates for defining new enabling technologies that could address the identified areas of weakness. The results of this review highlighted several legislative considerations that remain under-addressed by existing technologies. These findings guided the proposal of enabling technologies to bridge the divide between functional capacity and legislative concern. Full article
Show Figures

Figure 1

25 pages, 2540 KB  
Article
Two-Stage Uncertain UAV Combat Mission Assignment Problem Based on Uncertainty Theory
by Haitao Zhong, Rennong Yang, Aoyu Zheng, Mingfa Zheng and Yu Mei
Aerospace 2025, 12(6), 553; https://doi.org/10.3390/aerospace12060553 - 17 Jun 2025
Viewed by 373
Abstract
Based on uncertainty theory, this paper studies the problem of unmanned aerial vehicle (UAV) combat mission assignment under an uncertain environment. First, considering both the target value, which is the combat mission benefit gained from attacking the target, and the unit fuel consumption [...] Read more.
Based on uncertainty theory, this paper studies the problem of unmanned aerial vehicle (UAV) combat mission assignment under an uncertain environment. First, considering both the target value, which is the combat mission benefit gained from attacking the target, and the unit fuel consumption of UAV as uncertain variables, an uncertain UAV combat mission assignment model is established. And according to decisions under the realization of uncertain variables, the first stage generates an initial mission allocation scheme corresponding to the realization of target value, while the second stage dynamically adjusts the scheme according to the realization of unit fuel consumption; a two-stage uncertain UAV combat mission assignment (TUCMA) model is obtained. Then, because of the difficulty of obtaining analytical solutions due to uncertainty and the complexity of solving the second stage, the TUCMA model is transformed into an expected value-effective deterministic model of the two-stage uncertain UAV combat mission assignment (ETUCMA). A modified particle swarm optimization (PSO) algorithm is designed to solve the ETUCMA model to get the expected value-effective solution of the TUCMA model. Finally, experimental simulations of multiple UAV combat task allocation scenarios demonstrate that the proposed modified PSO algorithm yields an optimal decision with maximum combat mission benefits under a maximum iteration limit, which are significantly greater benefits than those for the mission assignment achieved by the original PSO algorithm. The proposed modified PSO exhibits superior performance compared with the ant colony optimization algorithm, enabling the acquisition of an optimal allocation scheme with greater benefits. This verifies the effectiveness and superiority of the proposed model and algorithm in maximizing combat mission benefits. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

17 pages, 428 KB  
Article
Dynamic UAV Task Allocation and Path Planning with Energy Management Using Adaptive PSO in Rolling Horizon Framework
by Zhen Han and Weian Guo
Appl. Sci. 2025, 15(8), 4220; https://doi.org/10.3390/app15084220 - 11 Apr 2025
Cited by 4 | Viewed by 1336
Abstract
Unmanned aerial vehicles (UAVs) are increasingly deployed in dynamic environments for applications such as surveillance, delivery, and data collection, where efficient task allocation and path planning are critical to minimizing mission completion time while managing limited energy resources. This paper proposes a novel [...] Read more.
Unmanned aerial vehicles (UAVs) are increasingly deployed in dynamic environments for applications such as surveillance, delivery, and data collection, where efficient task allocation and path planning are critical to minimizing mission completion time while managing limited energy resources. This paper proposes a novel approach that integrates energy management into a rolling horizon framework for dynamic UAV task allocation and path planning. We introduce an enhanced Particle Swarm Optimization (PSO) algorithm, incorporating adaptive perturbation strategies and a local search mechanism based on simulated annealing, to optimize UAV task assignments and routes. The rolling horizon framework enables the system to adapt to evolving task demands over time. Energy consumption is explicitly modeled, accounting for flight, computation, and recharging at designated stations, ensuring practical applicability. Extensive simulations demonstrate that the proposed method reduces the mission makespan significantly compared to conventional static planning approaches, while effectively balancing energy usage and recharging requirements. These results highlight the potential of our approach for real-world UAV operations in dynamic settings. Full article
(This article belongs to the Topic Electronic Communications, IOT and Big Data, 2nd Volume)
Show Figures

Figure 1

21 pages, 3706 KB  
Article
Multi-Joint Symmetric Optimization Approach for Unmanned Aerial Vehicle Assisted Edge Computing Resources in Internet of Things-Based Smart Cities
by Aarthi Chelladurai, M. D. Deepak, Przemysław Falkowski-Gilski and Parameshachari Bidare Divakarachari
Symmetry 2025, 17(4), 574; https://doi.org/10.3390/sym17040574 - 10 Apr 2025
Viewed by 589
Abstract
Smart cities are equipped with a vast number of IoT devices, which help to collect and analyze data to improve the quality of life for urban people by offering a sustainable and connected environment. However, the rapid growth of IoT systems has issues [...] Read more.
Smart cities are equipped with a vast number of IoT devices, which help to collect and analyze data to improve the quality of life for urban people by offering a sustainable and connected environment. However, the rapid growth of IoT systems has issues related to the Quality of Service (QoS) and allocation of limited resources in IoT-based smart cities. The cloud in the IoT system also faces issues related to higher consumption of energy and extended latency. This research presents an effort to overcome these challenges by introducing opposition-based learning incorporated into Golden Jackal Optimization (OL-GJO) to assign distributed edge capabilities to diminish the energy consumption and delay in IoT-based smart cities. In the context of IoT-based smart cities, a three-layered architecture is developed, comprising the IoT system, the Unmanned Aerial Vehicle (UAV)-assisted edge layer, and the cloud layer. Moreover, the controller positioned at the edge of UAV helps determine the number of tasks. The proposed approach, based on opposition-based learning, is put forth to offer effective computing resources for delay-sensitive tasks. The multi-joint symmetric optimization uses OL-GJO, where opposition-based learning confirms a symmetric search process is employed, improving the task scheduling process in UAV-assisted edge computing. The experimental findings exhibit that OL-GJO performs in an effective manner while offloading resources. For 200 tasks, the delay experienced by OL-GJO is 2.95 ms, whereas Multi Particle Swarm Optimization (M-PSO) and the auction-based approach experience delays of 7.19 ms and 3.78 ms, respectively. Full article
Show Figures

Figure 1

38 pages, 3124 KB  
Review
Multi-UAV Task Assignment in Dynamic Environments: Current Trends and Future Directions
by Shahad Alqefari and Mohamed El Bachir Menai
Drones 2025, 9(1), 75; https://doi.org/10.3390/drones9010075 - 19 Jan 2025
Cited by 8 | Viewed by 4543
Abstract
The rapid advancement of unmanned aerial vehicles (UAVs) has transformed a wide range of applications, including military operations, disaster response, agricultural monitoring, and infrastructure inspection. Deploying multiple UAVs to work collaboratively offers significant advantages in terms of enhanced coverage, redundancy, and operational efficiency. [...] Read more.
The rapid advancement of unmanned aerial vehicles (UAVs) has transformed a wide range of applications, including military operations, disaster response, agricultural monitoring, and infrastructure inspection. Deploying multiple UAVs to work collaboratively offers significant advantages in terms of enhanced coverage, redundancy, and operational efficiency. However, as UAV missions become more complex and operate in dynamic environments, the task assignment problem becomes increasingly challenging. Multi-UAV dynamic task assignment is critical for optimizing mission success. It involves allocating tasks to UAVs in real-time while adapting to unpredictable changes, such as sudden task appearances, UAV failures, and varying mission requirements. A key contribution of this article is that it provides a comprehensive study of state-of-the-art solutions for dynamic task assignment in multi-UAV systems from 2013 to 2024. It also introduces a comparative framework to evaluate algorithms based on metrics such as responsiveness, robustness, and scalability in handling real-world dynamic conditions. Our analysis reveals distinct strengths and limitations across three major approaches: market-based, intelligent optimization, and clustering-based solutions. Market-based solutions excel in distributed coordination and real-time adaptability, but face challenges with communication overhead. Intelligent optimization solutions, including evolutionary and swarm intelligence, provide high flexibility and performance in complex scenarios but require significant computational resources. Clustering-based solutions efficiently group and allocate tasks geographically, reducing overlap and improving efficiency, although they struggle with adaptability in dynamic environments. By identifying these strengths, limitations, and emerging trends, this article not only offers a detailed comparative analysis but also highlights critical research gaps. Specifically, it underscores the need for scalable algorithms that can efficiently handle larger UAV fleets, robust methods to adapt to sudden task changes and UAV failures, and multi-objective optimization frameworks to balance competing goals such as energy efficiency and task completion. These insights serve as a guide for future research and a valuable resource for developing resilient and efficient strategies for multi-UAV dynamic task assignment in complex environments. Full article
Show Figures

Figure 1

27 pages, 2352 KB  
Article
LEVIOSA: Natural Language-Based Uncrewed Aerial Vehicle Trajectory Generation
by Godwyll Aikins, Mawaba Pascal Dao, Koboyo Josias Moukpe, Thomas C. Eskridge and Kim-Doang Nguyen
Electronics 2024, 13(22), 4508; https://doi.org/10.3390/electronics13224508 - 17 Nov 2024
Cited by 5 | Viewed by 3689
Abstract
This paper presents LEVIOSA, a novel framework for text- and speech-based uncrewed aerial vehicle (UAV) trajectory generation. By leveraging multimodal large language models (LLMs) to interpret natural language commands, the system converts text and audio inputs into executable flight paths for UAV swarms. [...] Read more.
This paper presents LEVIOSA, a novel framework for text- and speech-based uncrewed aerial vehicle (UAV) trajectory generation. By leveraging multimodal large language models (LLMs) to interpret natural language commands, the system converts text and audio inputs into executable flight paths for UAV swarms. The approach aims to simplify the complex task of multi-UAV trajectory generation, which has significant applications in fields such as search and rescue, agriculture, infrastructure inspection, and entertainment. The framework involves two key innovations: a multi-critic consensus mechanism to evaluate trajectory quality and a hierarchical prompt structuring for improved task execution. The innovations ensure fidelity to user goals. The framework integrates several multimodal LLMs for high-level planning, converting natural language inputs into 3D waypoints that guide UAV movements and per-UAV low-level controllers to control each UAV in executing its assigned 3D waypoint path based on the high-level plan. The methodology was tested on various trajectory types with promising accuracy, synchronization, and collision avoidance results. The findings pave the way for more intuitive human–robot interactions and advanced multi-UAV coordination. Full article
(This article belongs to the Special Issue Predictive and Learning Control in Engineering Applications)
Show Figures

Figure 1

19 pages, 11922 KB  
Article
Changing the Formations of Unmanned Aerial Vehicles
by Krzysztof Falkowski and Maciej Kurenda
Appl. Sci. 2024, 14(22), 10424; https://doi.org/10.3390/app142210424 - 13 Nov 2024
Viewed by 1229
Abstract
The development of hierarchical structures of unmanned aerial vehicles (UAVs) increases the efficiency of unmanned aerial systems. The grouping of UAVs increases the region of recognition or force of assault. Achieving these requirements is possible through a UAV formation. The UAVs in the [...] Read more.
The development of hierarchical structures of unmanned aerial vehicles (UAVs) increases the efficiency of unmanned aerial systems. The grouping of UAVs increases the region of recognition or force of assault. Achieving these requirements is possible through a UAV formation. The UAVs in the formation must be controlled and managed by a commander, but the commander cannot control individual UAVs. The UAVs within the formation have assigned specific individual tasks, so is possible to achieve the flight of the formation with minimum collisions between UAVs and maximized equipment utilization. This paper aims to present a method of formation control for multiple UAVs that allows dynamic changes in the constellations of UAVs. The article includes the results of tests and research conducted in real-world conditions involving a formation capable of adapting its configuration. The results are presented as an element of research for the autonomy swarm, which can be controlled by one pilot/operator. The control of a swarm consisting of many UAVs (several hundred) by one person is now a current problem. The article presents a fragment of research work on high-autonomy UAV swarms. Here is presented a field test that focuses on UAV constellation control. Full article
Show Figures

Figure 1

18 pages, 4038 KB  
Article
Target Trajectory Prediction-Based UAV Swarm Cooperative for Bird-Driving Strategy at Airport
by Xi Wang, Xuan Zhang, Yi Lu, Hongqiang Zhang, Zhuo Li, Pengliang Zhao and Xing Wang
Electronics 2024, 13(19), 3868; https://doi.org/10.3390/electronics13193868 - 29 Sep 2024
Viewed by 2062
Abstract
This study presents a novel cooperative bird-driving strategy utilizing unmanned aerial vehicles (UAV) swarms, specifically designed for airport environments, to mitigate the risks posed by bird interference with aircraft operations. Our approach introduces a target trajectory prediction framework that integrates Long Short-Term Memory [...] Read more.
This study presents a novel cooperative bird-driving strategy utilizing unmanned aerial vehicles (UAV) swarms, specifically designed for airport environments, to mitigate the risks posed by bird interference with aircraft operations. Our approach introduces a target trajectory prediction framework that integrates Long Short-Term Memory (LSTM) networks with Kalman Filter algorithms (KF), improves the response speed of UAV swarms in bird-driving tasks, optimizes task allocation, and improves the accuracy and precision of trajectory prediction, making the entire bird-driving process more efficient and accurate. Within this framework, UAV swarms collaborate to drive birds that encroach upon designated protected areas, thereby optimizing bird-driving operations. We present a distributed collaborative bird-driving strategy to ensure effective coordination among UAV swarm members. Simulation experiments demonstrate that our strategy effectively drives dynamically changing targets, preventing them from remaining within the protected area. The proposed solution integrates dynamic target trajectory prediction using LSTM and Kalman Filter, task assignment optimization through the Hungarian algorithm, and 3D Dubins path planning. This innovative approach not only improves the operational efficiency of bird-driving in airport environments but also highlights the potential of UAV swarms to perform airborne missions in complex scenarios. Our work makes a significant contribution to the field of UAV swarm collaboration and provides practical insights for real-world applications. Full article
Show Figures

Figure 1

20 pages, 11298 KB  
Article
Air–Ground Collaborative Multi-Target Detection Task Assignment and Path Planning Optimization
by Tianxiao Ma, Ping Lu, Fangwei Deng and Keke Geng
Drones 2024, 8(3), 110; https://doi.org/10.3390/drones8030110 - 21 Mar 2024
Cited by 10 | Viewed by 3037
Abstract
Collaborative exploration in environments involving multiple unmanned aerial vehicles (UAVs) and unmanned ground vehicles (UGVs) represents a crucial research direction in multi-agent systems. However, there is still a lack of research in the areas of multi-target detection task assignment and swarm path planning, [...] Read more.
Collaborative exploration in environments involving multiple unmanned aerial vehicles (UAVs) and unmanned ground vehicles (UGVs) represents a crucial research direction in multi-agent systems. However, there is still a lack of research in the areas of multi-target detection task assignment and swarm path planning, both of which play a vital role in enhancing the efficiency of environment exploration and reducing energy consumption. In this paper, we propose an air–ground collaborative multi-target detection task model based on Mixed Integer Linear Programming (MILP). In order to make the model more suitable for real situations, kinematic constraints of the UAVs and UGVs, dynamic collision avoidance constraints, task allocation constraints, and obstacle avoidance constraints are added to the model. We also establish an objective function that comprehensively considers time consumption, energy consumption, and trajectory smoothness to improve the authenticity of the model and achieve a more realistic purpose. Meanwhile, a Branch-and-Bound method combined with the Improved Genetic Algorithm (IGA-B&B) is proposed to solve the objective function, and the optimal task assignment and optimal path of air–ground collaborative multi-target detection can be obtained. A simulation environment with multi-agents, multi-obstacles, and multi-task points is established. The simulation results show that the proposed IGA-B&B algorithm can reduce the computation time cost by 30% compared to the traditional Branch-and-Bound (B&B) method. In addition, an experiment is carried out in an outdoor environment, which further validates the effectiveness and feasibility of the proposed method. Full article
Show Figures

Figure 1

21 pages, 9209 KB  
Article
UAV Cluster Mission Planning Strategy for Area Coverage Tasks
by Xiaohong Yan, Renwen Chen and Zihao Jiang
Sensors 2023, 23(22), 9122; https://doi.org/10.3390/s23229122 - 11 Nov 2023
Cited by 16 | Viewed by 3756
Abstract
In the context of area coverage tasks in three-dimensional space, unmanned aerial vehicle (UAV) clusters face challenges such as uneven task assignment, low task efficiency, and high energy consumption. This paper proposes an efficient mission planning strategy for UAV clusters in area coverage [...] Read more.
In the context of area coverage tasks in three-dimensional space, unmanned aerial vehicle (UAV) clusters face challenges such as uneven task assignment, low task efficiency, and high energy consumption. This paper proposes an efficient mission planning strategy for UAV clusters in area coverage tasks. First, the area coverage search task is analyzed, and the coverage scheme of the task area is determined. Based on this, the cluster task area is divided into subareas. Then, for the UAV cluster task allocation problem, a step-by-step solution is proposed. Afterward, an improved fuzzy C-clustering algorithm is used to determine the UAV task area. Furthermore, an optimized particle swarm hybrid ant colony (PSOHAC) algorithm is proposed to plan the UAV cluster task path. Finally, the feasibility and superiority of the proposed scheme and improved algorithm are verified by simulation experiments. The simulation results show that the proposed method achieves full coverage of the task area and efficiently completes the task allocation of the UAV cluster. Compared with related comparison algorithms, the method proposed in this paper can achieve a maximum improvement of 21.9% in balanced energy consumption efficiency for UAV cluster task search planning, and the energy efficiency of the UAV cluster can be improved by up to 7.9%. Full article
(This article belongs to the Section Vehicular Sensing)
Show Figures

Figure 1

19 pages, 623 KB  
Article
Joint Task Allocation and Resource Optimization Based on an Integrated Radar and Communication Multi-UAV System
by Xun Zhang, Kehao Wang, Xiaobai Li, Kezhong Liu and Yirui Cong
Drones 2023, 7(8), 523; https://doi.org/10.3390/drones7080523 - 10 Aug 2023
Cited by 3 | Viewed by 2167
Abstract
This paper investigates the joint task allocation and resource optimization problem in an integrated radar and communication multi-UAV (IRCU) system. Specifically, we assign reconnaissance UAVs and communication UAVs to perform the detection, tracking and communication tasks under the resource, priority and timing constraints [...] Read more.
This paper investigates the joint task allocation and resource optimization problem in an integrated radar and communication multi-UAV (IRCU) system. Specifically, we assign reconnaissance UAVs and communication UAVs to perform the detection, tracking and communication tasks under the resource, priority and timing constraints by optimizing task allocation, power as well as channel bandwidth. Due to complex coupling among task allocation and resource optimization, the considered problem is proved to be non-convex. To solve the considered problem, we present a loop iterative optimization (LIO) algorithm to obtain the optimal solution. In fact, the mentioned problem is decomposed into three sub-problems, such as task allocation, power optimization and channel bandwidth optimization. At the same time, these three problems are solved by the divide-and-conquer algorithm, the successive convex approximation (SCA) algorithm and the improved particle swarm optimization (PSO) algorithm, respectively. Finally, numerical simulations demonstrate that the proposed LIO algorithm consumes fewer iterations or achieves higher maximum joint performance than other baseline schemes for solving the considered problem. Full article
Show Figures

Figure 1

21 pages, 1043 KB  
Article
Task Assignment of UAV Swarms Based on Deep Reinforcement Learning
by Bo Liu, Shulei Wang, Qinghua Li, Xinyang Zhao, Yunqing Pan and Changhong Wang
Drones 2023, 7(5), 297; https://doi.org/10.3390/drones7050297 - 29 Apr 2023
Cited by 18 | Viewed by 6908
Abstract
UAV swarm applications are critical for the future, and their mission-planning and decision-making capabilities have a direct impact on their performance. However, creating a dynamic and scalable assignment algorithm that can be applied to various groups and tasks is a significant challenge. To [...] Read more.
UAV swarm applications are critical for the future, and their mission-planning and decision-making capabilities have a direct impact on their performance. However, creating a dynamic and scalable assignment algorithm that can be applied to various groups and tasks is a significant challenge. To address this issue, we propose the Extensible Multi-Agent Deep Deterministic Policy Gradient (Ex-MADDPG) algorithm, which builds on the MADDPG framework. The Ex-MADDPG algorithm improves the robustness and scalability of the assignment algorithm by incorporating local communication, mean simulation observation, a synchronous parameter-training mechanism, and a scalable multiple-decision mechanism. Our approach has been validated for effectiveness and scalability through both simulation experiments in the Multi-Agent Particle Environment (MPE) and a real-world experiment. Overall, our results demonstrate that the Ex-MADDPG algorithm is effective in handling various groups and tasks and can scale well as the swarm size increases. Therefore, our algorithm holds great promise for mission planning and decision-making in UAV swarm applications. Full article
Show Figures

Figure 1

Back to TopTop