Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = tail gas reforming

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 2917 KiB  
Article
CO2 Removal in Hydrogen Production Plants
by Stefania Moioli and Laura A. Pellegrini
Energies 2024, 17(13), 3089; https://doi.org/10.3390/en17133089 - 22 Jun 2024
Cited by 2 | Viewed by 1970
Abstract
Hydrogen is an industrial raw material both for the production of chemicals and for oil refining with hydrotreating. It is the subject of increasing attention for its possible use as an energy carrier and as a flexible energy storage medium. Its production is [...] Read more.
Hydrogen is an industrial raw material both for the production of chemicals and for oil refining with hydrotreating. It is the subject of increasing attention for its possible use as an energy carrier and as a flexible energy storage medium. Its production is generally accomplished in Steam Methane Reforming (SMR) plants, where a gaseous mixture of CO and H2, with a limited number of other species, is obtained. The process of production and purification generates relevant amounts of carbon dioxide, which needs to be removed due to downstream process requirements or to limit its emissions to the atmosphere. A work by IEAGHG focused on the study of a state-of-the-art Steam Methane Reforming plant producing 100 kNm3/h of H2 and considered chemical absorption with MethylDiEthanolAmine (MDEA) solvent for removing carbon dioxide from the PSA tail gas in a baseline scheme composed of the absorber, one flash vessel and the regeneration column. This type of process is characterized by high energy consumption, in particular at the reboiler of the regeneration column, usually operated by employing steam, and modifications to the baseline scheme can allow for a reduction of the operating costs, though with an increase in the complexity of the plant. This work analyses three configurations of the treatment section of the off gas obtained after the purification of the hydrogen stream in the Pressure Swing Adsorption unit with the aim of selecting the one which minimizes the overall costs so as to further enhance Carbon Capture and Storage in non-power industries as well. Full article
(This article belongs to the Special Issue Advances in Hydrogen Energy III)
Show Figures

Figure 1

27 pages, 3772 KiB  
Article
CO2 Capture and Enhanced Hydrogen Production Enabled by Low-Temperature Separation of PSA Tail Gas: A Detailed Exergy Analysis
by David Berstad, Julian Straus and Truls Gundersen
Energies 2024, 17(5), 1072; https://doi.org/10.3390/en17051072 - 23 Feb 2024
Cited by 4 | Viewed by 2549
Abstract
Hydrogen from natural gas reforming can be produced efficiently with a high CO2 capture rate. This can be achieved through oxygen-blown autothermal reforming as the core technology, combined with pressure-swing adsorption for hydrogen purification and refrigeration-based tail gas separation for CO2 [...] Read more.
Hydrogen from natural gas reforming can be produced efficiently with a high CO2 capture rate. This can be achieved through oxygen-blown autothermal reforming as the core technology, combined with pressure-swing adsorption for hydrogen purification and refrigeration-based tail gas separation for CO2 capture and recirculation of residual hydrogen, carbon monoxide, and methane. The low-temperature tail gas separation section is presented in detail. The main objective of the paper is to study and quantify the exergy efficiency of this separation process in detail. To achieve this, a detailed exergy analysis is conducted. The irreversibilities in 42 different process components are quantified. In order to provide transparent verification of the consistency of exergy calculations, the total irreversibility rate is calculated by two independent approaches: Through the bottom-up approach, all individual irreversibilities are added to obtain the total irreversibility rate. Through the top-down approach, the total irreversibility rate is calculated solely by the exergy flows crossing the control volume boundaries. The consistency is verified as the comparison of results obtained by the two methods shows a relative deviation of 4·107. The exergy efficiency of the CO2 capture process is calculated, based on two different definitions. Both methods give a baseline exergy efficiency of 58.38%, which indicates a high degree of exergy utilisation in the process. Full article
(This article belongs to the Section J3: Exergy)
Show Figures

Figure 1

22 pages, 6925 KiB  
Article
Simulation of a Pilot Scale Power-to-Liquid Plant Producing Synthetic Fuel and Wax by Combining Fischer–Tropsch Synthesis and SOEC
by Simon Pratschner, Martin Hammerschmid, Florian J. Müller, Stefan Müller and Franz Winter
Energies 2022, 15(11), 4134; https://doi.org/10.3390/en15114134 - 4 Jun 2022
Cited by 16 | Viewed by 5299
Abstract
Power-to-Liquid (PtL) plants can viably implement carbon capture and utilization technologies in Europe. In addition, local CO2 sources can be valorized to substitute oil and gas imports. This work’s aim was to determine the PtL efficiency obtained by combining a solid oxide [...] Read more.
Power-to-Liquid (PtL) plants can viably implement carbon capture and utilization technologies in Europe. In addition, local CO2 sources can be valorized to substitute oil and gas imports. This work’s aim was to determine the PtL efficiency obtained by combining a solid oxide electrolyzer (SOEC) and Fischer–Tropsch synthesis. In addition, a recommended plant configuration to produce synthetic fuel and wax at pilot scale is established. The presented process configurations with and without a tail gas reformer were modeled and analyzed using IPSEpro as simulation software. A maximum mass flow rate of naphtha, middle distillate and wax of 57.8 kg/h can be realized by using a SOEC unit operated in co-electrolysis mode, with a rated power of 1 MWel.. A maximum PtL efficiency of 50.8% was found for the process configuration without a tail gas reformer. Implementing a tail gas reformer resulted in a maximum PtL efficiency of 62.7%. Hence, the reforming of tail gas is highly beneficial for the PtL plant’s productivity and efficiency. Nevertheless, a process configuration based on the recirculation of tail gas without a reformer is recommended as a feasible solution to manage the transition from laboratory scale to industrial applications. Full article
Show Figures

Figure 1

18 pages, 14749 KiB  
Article
Numerical Analysis of VPSA Technology Retrofitted to Steam Reforming Hydrogen Plants to Capture CO2 and Produce Blue H2
by Mauro Luberti, Alexander Brown, Marco Balsamo and Mauro Capocelli
Energies 2022, 15(3), 1091; https://doi.org/10.3390/en15031091 - 1 Feb 2022
Cited by 13 | Viewed by 3645
Abstract
The increasing demand for energy and commodities has led to escalating greenhouse gas emissions, the chief of which is represented by carbon dioxide (CO2). Blue hydrogen (H2), a low-carbon hydrogen produced from natural gas with carbon capture technologies applied, [...] Read more.
The increasing demand for energy and commodities has led to escalating greenhouse gas emissions, the chief of which is represented by carbon dioxide (CO2). Blue hydrogen (H2), a low-carbon hydrogen produced from natural gas with carbon capture technologies applied, has been suggested as a possible alternative to fossil fuels in processes with hard-to-abate emission sources, including refining, chemical, petrochemical and transport sectors. Due to the recent international directives aimed to combat climate change, even existing hydrogen plants should be retrofitted with carbon capture units. To optimize the process economics of such retrofit, it has been proposed to remove CO2 from the pressure swing adsorption (PSA) tail gas to exploit the relatively high CO2 concentration. This study aimed to design and numerically investigate a vacuum pressure swing adsorption (VPSA) process capable of capturing CO2 from the PSA tail gas of an industrial steam methane reforming (SMR)-based hydrogen plant using NaX zeolite adsorbent. The effect of operating conditions, such as purge-to-feed ratio and desorption pressure, were evaluated in relation to CO2 purity, CO2 recovery, bed productivity and specific energy consumption. We found that conventional cycle configurations, namely a 2-bed, 4-step Skarstrom cycle and a 2-bed, 6-step modified Skarstrom cycle with pressure equalization, were able to concentrate CO2 to a purity greater than 95% with a CO2 recovery of around 77% and 90%, respectively. Therefore, the latter configuration could serve as an efficient process to decarbonize existing hydrogen plants and produce blue H2. Full article
Show Figures

Figure 1

17 pages, 2864 KiB  
Article
A Dynamic Analysis of the Multi-Stack SOFC-CHP System for Power Modulation
by Cheng-Hao Yang, Shing-Cheng Chang, Yen-Hsin Chan and Wen-Sheng Chang
Energies 2019, 12(19), 3686; https://doi.org/10.3390/en12193686 - 26 Sep 2019
Cited by 13 | Viewed by 4100
Abstract
This paper performs a dynamic analysis of a 10-kW solid oxide fuel cell/combined heat and power (SOFC-CHP) system with a multi-stack module via numerical simulations. The performance of stacks, tail gas burners, heat exchangers, and fuel reformers are modeled by the MATLAB/Simulink module. [...] Read more.
This paper performs a dynamic analysis of a 10-kW solid oxide fuel cell/combined heat and power (SOFC-CHP) system with a multi-stack module via numerical simulations. The performance of stacks, tail gas burners, heat exchangers, and fuel reformers are modeled by the MATLAB/Simulink module. The effects of fuel and air maldistribution on SOFC-CHP systems are addressed in this work. A two-stack module for 10-kW power generation is adopted to represent the multi-stack module with high power modulation. The air flow rate and operating current, which are related to the fuel use rate of an SOFC system, should be optimally regulated to perform with maximum power generation and efficiency. The proposed dynamic analysis shows that the operating temperatures of the two stacks have a difference of 33 K, which results in a reduced total power generation of 9.77 kW, with inconsistent fuel use (FU) rates of 78.3% and 56.8% for the two stacks. With the optimal control strategy, the output power is increased to 10.6 kW, an increment of 8.5%, and the FU rates of the two stacks are improved to 79% and 70%, respectively. As a potential distributed power generator, the long-term effects of the studied SOFC-CHP systems are also investigated. The dynamic analysis of the long-term operating SOFC-CHP system shows that the total daily output power can be increased 7.34% by using the optimal control strategy. Full article
Show Figures

Graphical abstract

13 pages, 3140 KiB  
Article
Experimental Demonstration and Validation of Hydrogen Production Based on Gasification of Lignocellulosic Feedstock
by Jürgen Loipersböck, Markus Luisser, Stefan Müller, Hermann Hofbauer and Reinhard Rauch
ChemEngineering 2018, 2(4), 61; https://doi.org/10.3390/chemengineering2040061 - 11 Dec 2018
Cited by 15 | Viewed by 6727
Abstract
The worldwide production of hydrogen in 2010 was estimated to be approximately 50 Mt/a, mostly based on fossil fuels. By using lignocellulosic feedstock, an environmentally friendly hydrogen production route can be established. A flow sheet simulation for a biomass based hydrogen production plant [...] Read more.
The worldwide production of hydrogen in 2010 was estimated to be approximately 50 Mt/a, mostly based on fossil fuels. By using lignocellulosic feedstock, an environmentally friendly hydrogen production route can be established. A flow sheet simulation for a biomass based hydrogen production plant was published in a previous work. The plant layout consisted of a dual fluidized bed gasifier including a gas cooler and a dust filter. Subsequently, a water gas shift plant was installed to enhance the hydrogen yield and a biodiesel scrubber was used to remove tars and water from the syngas. CO2 was removed and the gas was compressed to separate hydrogen in a pressure swing adsorption. A steam reformer was used to reform the hydrocarbon-rich tail gas of the pressure swing adsorption and increase the hydrogen yield. Based on this work, a research facility was erected and the results were validated. These results were used to upscale the research plant to a 10 MW fuel feed scale. A validation of the system showed a chemical efficiency of the system of 60% and an overall efficiency of 55%, which indicates the high potential of this technology. Full article
Show Figures

Figure 1

Back to TopTop