Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (14)

Search Parameters:
Keywords = surgically-induced immune dysfunction

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 2337 KiB  
Review
Narrative Review on the Management of Neck of Femur Fractures in People Living with HIV: Challenges, Complications, and Long-Term Outcomes
by Yashar Mashayekhi, Chibuchi Amadi-Livingstone, Abdulmalik Timamy, Mohammed Eish, Ahmed Attia, Maria Panourgia, Dushyant Mital, Oliver Pearce and Mohamed H. Ahmed
Microorganisms 2025, 13(7), 1530; https://doi.org/10.3390/microorganisms13071530 - 30 Jun 2025
Viewed by 502
Abstract
Neck of femur (NOF) fractures are a critical orthopaedic emergency with a high morbidity and mortality prevalence, particularly in people living with Human Immunodeficiency Virus (PLWHIV). A combination of HIV infection, combined antiretroviral therapy (cART), and compromised bone health further increases the risk [...] Read more.
Neck of femur (NOF) fractures are a critical orthopaedic emergency with a high morbidity and mortality prevalence, particularly in people living with Human Immunodeficiency Virus (PLWHIV). A combination of HIV infection, combined antiretroviral therapy (cART), and compromised bone health further increases the risk of fragility fractures. Additionally, HIV-related immune dysfunction, cART-induced osteoporosis, and perioperative infection risks further pose challenges in ongoing surgical management. Despite the rising global prevalence of PLWHIV, no specific guidelines exist for the perioperative and post-operative care of PLWHIV undergoing NOF fracture surgery. This narrative review synthesises the current literature on the surgical management of NOF fractures in PLWHIV, focusing on pre-operative considerations, intraoperative strategies, post-operative complications, and long-term outcomes. It also explores infection control, fracture healing dynamics, and ART’s impact on surgical outcomes while identifying key research gaps. A systematic database search (PubMed, Embase, Cochrane Library) identified relevant studies published up to February 2025. Inclusion criteria encompassed studies on incidence, risk factors, ART impact, and NOF fracture outcomes in PLWHIV. Data were analysed to summarise findings and highlight knowledge gaps. Pre-operative care: Optimisation involves assessing immune status (namely, CD4 counts and HIV-1 viral loads), bone health, and cART to minimise surgical risk. Immunodeficiency increases surgical site and periprosthetic infection risks, necessitating potential enhanced antibiotic prophylaxis and close monitoring of potential start/switch/stopping of such therapies. Surgical management of neck of femur (NOF) fractures in PLWHIV should be individualised based on fracture type (intracapsular or extracapsular), age, immune status, bone quality, and functional status. Extracapsular fractures are generally managed with internal fixation using dynamic hip screws or intramedullary nails. For intracapsular fractures, internal fixation may be appropriate for younger patients with good bone quality, though there is an increased risk of non-union in this group. Hemiarthroplasty is typically favoured in older or frailer individuals, offering reduced surgical stress and lower operative time. Total hip arthroplasty (THA) is considered for active patients or those with pre-existing hip joint disease but carries a higher infection risk in immunocompromised individuals. Multidisciplinary evaluation is critical in guiding the most suitable surgical approach for PLWHIV. Importantly, post-operative care carries the risk of higher infection rates, requiring prolonged antibiotic use and wound surveillance. Antiretroviral therapy (ART) contributes to bone demineralisation and chronic inflammation, increasing delayed union healing and non-union risk. HIV-related frailty, neurocognitive impairment, and socioeconomic barriers hinder rehabilitation, affecting recovery. The management of NOF fractures in PLWHIV requires a multidisciplinary, patient-centred approach ideally comprising a team of Orthopaedic surgeon, HIV Physician, Orthogeriatric care, Physiotherapy, Occupational Health, Dietitian, Pharmacist, Psychologist, and related Social Care. Optimising cART, tailoring surgical strategies, and enforcing strict infection control can improve outcomes. Further high-quality studies and randomised controlled trials (RCTs) are essential to develop evidence-based guidelines. Full article
(This article belongs to the Section Virology)
Show Figures

Figure 1

15 pages, 525 KiB  
Review
The Oncogenic Burden of Obesity: Mechanistic Links Between Adiposity and Gastrointestinal Cancers—A Comprehensive Narrative Review
by Felicia Lee, Jessica Moore, Mariam Markouli and Wissam Ghusn
Biomedicines 2025, 13(7), 1571; https://doi.org/10.3390/biomedicines13071571 - 26 Jun 2025
Viewed by 790
Abstract
Obesity is a global health crisis with profound implications for cancer risk, particularly within the gastrointestinal (GI) tract. Mounting evidence demonstrates that excess adiposity contributes to the initiation, progression, and poor outcomes of GI malignancies through a constellation of interrelated mechanisms. This review [...] Read more.
Obesity is a global health crisis with profound implications for cancer risk, particularly within the gastrointestinal (GI) tract. Mounting evidence demonstrates that excess adiposity contributes to the initiation, progression, and poor outcomes of GI malignancies through a constellation of interrelated mechanisms. This review comprehensively examines the biologic pathways linking obesity to cancers of the esophagus, stomach, colon, liver, pancreas, and gallbladder. Chronic low-grade inflammation, driven by adipose tissue-derived cytokines and immune cell infiltration, plays a central role in tumorigenesis via the activation of NF-κB, STAT3, and other pro-oncogenic signaling cascades. Hyperinsulinemia and insulin resistance increase mitogenic IGF-1 signaling, while dysregulated adipokines, particularly elevated leptin and reduced adiponectin, promote cellular proliferation and impair tumor suppression. Dysbiosis of the gut microbiome and alterations in bile acid metabolism generate carcinogenic metabolites that contribute to DNA damage and immune evasion. Additionally, obesity-induced tissue hypoxia fosters tumor growth through HIF-1α-mediated pathways. We further highlight organ-specific associations, such as visceral adiposity’s role in Barrett’s esophagus and hepatocellular carcinoma emerging from metabolic dysfunction-associated steatotic liver disease (MASLD). Importantly, emerging data suggest that weight loss, achieved via lifestyle, pharmacologic, or surgical interventions, may mitigate these carcinogenic pathways and improve tumor biology. As obesity prevalence continues to rise globally, elucidating its mechanistic ties to GI malignancies is essential for risk stratification, prevention strategies, and personalized care. By integrating epidemiologic and molecular insights, this review underscores the need for multidisciplinary approaches to curb the oncogenic burden of obesity and improve outcomes in GI oncology. Full article
Show Figures

Figure 1

23 pages, 1111 KiB  
Article
HCC in MASLD and ALD: Biochemical Pathways, Epidemiology, Diagnosis, and Treatment
by Sheel Patel, Fares Kasem, Dylan Flaherty and Ashutosh Barve
BioChem 2025, 5(3), 19; https://doi.org/10.3390/biochem5030019 - 25 Jun 2025
Viewed by 549
Abstract
Hepatocellular carcinoma (HCC) is a leading cause of cancer-related mortality globally, with metabolic-dysfunction-associated steatohepatitis (MASH) and alcohol-related liver disease (ALD) emerging as major etiologies. This review explores the epidemiological trends, pathogenesis, and clinical management of HCC arising from MASH and ALD, highlighting both [...] Read more.
Hepatocellular carcinoma (HCC) is a leading cause of cancer-related mortality globally, with metabolic-dysfunction-associated steatohepatitis (MASH) and alcohol-related liver disease (ALD) emerging as major etiologies. This review explores the epidemiological trends, pathogenesis, and clinical management of HCC arising from MASH and ALD, highlighting both the shared and distinct mechanisms. MASH-HCC is driven by metabolic dysregulation, including obesity, insulin resistance, and lipotoxicity, with genetic polymorphisms such as PNPLA3 and TM6SF2 playing critical roles in disease progression. ALD-HCC, in contrast, is propelled by the toxic byproducts of ethanol metabolism, including acetaldehyde and reactive oxygen species, which induce chronic inflammation, and fibrosis. Both conditions also involve immune dysregulation, gut dysbiosis, and increased intestinal permeability, contributing to hepatic carcinogenesis. The review emphasizes that, while there is consensus regarding the screening of HCC in cirrhosis patients, there is lack of consensus on screening strategies for non-cirrhotic MASH patients who are also at risk for HCC. This underscores the importance of the early detection of cirrhosis using advanced diagnostic tools such as transient elastography and fibrosis scores. Current therapeutic approaches, ranging from surgical resection, liver transplantation, and locoregional therapies to systemic therapies like immune checkpoint inhibitors, are discussed, with an emphasis on the need for personalized treatment strategies. Finally, the review highlights future research priorities, including the development of novel biomarkers, exploration of the gut–liver axis, and deeper investigation of the interplay between genetic predisposition and environmental factors. By synthesizing these insights, the review aims to inform multidisciplinary approaches to reduce the global burden of MASH- and ALD-related HCC and improve patient outcomes. Full article
(This article belongs to the Special Issue Feature Papers in BioChem, 2nd Edition)
Show Figures

Figure 1

25 pages, 1148 KiB  
Review
Immune Microenvironment Dysregulation: A Contributing Factor to Obesity-Associated Male Infertility
by Rui Feng, Dexin Cheng, Wei Zhang, Jiayun Zhang, Sixiang Chen and Yan Xia
Biomedicines 2025, 13(6), 1314; https://doi.org/10.3390/biomedicines13061314 - 27 May 2025
Viewed by 744
Abstract
Obesity is a major contributor to male infertility, not only exacerbating infertility but also impairing the effectiveness of both surgical interventions and medical treatments. This review examines the complex relationship between obesity, the immune microenvironment, and male infertility, highlighting how obesity-induced changes in [...] Read more.
Obesity is a major contributor to male infertility, not only exacerbating infertility but also impairing the effectiveness of both surgical interventions and medical treatments. This review examines the complex relationship between obesity, the immune microenvironment, and male infertility, highlighting how obesity-induced changes in immune function lead to testicular dysfunction and impaired spermatogenesis. Key mechanisms include chronic low-grade inflammation, immune cell infiltration, and dysregulated adipokines such as leptin and adiponectin. We also explore current therapeutic strategies aimed at alleviating these effects, including lifestyle interventions, anti-inflammatory treatments, metabolic therapies, and regenerative medicine approaches, such as exosome-based therapies. Despite promising results, substantial research gaps remain, particularly in understanding the molecular mechanisms and identifying novel biomarkers for early diagnosis. Future studies should focus on multi-omics approaches, large-scale cohort studies, the gut–testis axis, and the psychological and social factors influencing male infertility. A deeper understanding of these processes is crucial for developing more effective, targeted therapies for obesity-related male infertility. Full article
(This article belongs to the Section Endocrinology and Metabolism Research)
Show Figures

Figure 1

15 pages, 1387 KiB  
Review
Transplant Immunology in Liver Transplant, Rejection, and Tolerance
by Masaya Yokoyama, Daisuke Imai, Samuel Wolfe, Ligee George, Yuzuru Sambommatsu, Aamir A. Khan, Seung Duk Lee, Muhammad I. Saeed, Amit Sharma, Vinay Kumaran, Adrian H. Cotterell, Marlon F. Levy and David A. Bruno
Livers 2024, 4(3), 420-434; https://doi.org/10.3390/livers4030031 - 9 Sep 2024
Viewed by 3404
Abstract
Liver transplantation is the most effective treatment for end-stage liver disease. Despite improvements in surgical techniques, transplant rejection remains a significant concern. The liver is considered an immune-privileged organ due to its unique microenvironment and complex interactions among various cell types. Alloimmune responses [...] Read more.
Liver transplantation is the most effective treatment for end-stage liver disease. Despite improvements in surgical techniques, transplant rejection remains a significant concern. The liver is considered an immune-privileged organ due to its unique microenvironment and complex interactions among various cell types. Alloimmune responses mediated by T cells and antigen-presenting cells (APCs) play crucial roles in transplant rejection. The liver’s dual blood supply and unique composition of its sinusoidal endothelial cells (LSECs), Kupffer cells (KCs), hepatocytes, and hepatic stellate cells (HSCs) contribute to its immune privilege. Alloantigen recognition by T cells occurs through direct, indirect, and semidirect pathways, leading to acute cellular rejection (ACR) and chronic rejection. ACR is a T cell-mediated process that typically occurs within the first few weeks to months after transplantation. Chronic rejection, on the other hand, is a gradual process characterized by progressive fibrosis and graft dysfunction, often leading to graft loss. Acute antibody-mediated rejection (AMR) is less common following surgery compared to other solid organ transplants due to the liver’s unique anatomy and immune privilege. However, when it does occur, AMR can be aggressive and lead to rapid graft dysfunction. Despite improvements in immunosuppression, rejection remains a challenge, particularly chronic rejection. Understanding the mechanisms of rejection and immune tolerance, including the roles of regulatory T cells (Tregs) and hepatic dendritic cells (DCs), is crucial for improving transplant outcomes. Strategies to induce immune tolerance, such as modulating DC function or promoting Treg activity, hold promise for reducing rejection and improving long-term graft survival. This review focuses on the liver’s unique predisposition to rejection and tolerance, highlighting the roles of individual cell types in these processes. Continued research into the mechanisms of alloimmune responses and immune tolerance in liver transplantation is essential for developing more effective therapies and improving long-term outcomes for patients with end-stage liver disease. Full article
(This article belongs to the Special Issue The Liver as the Center of the Internal Defence System of the Body)
Show Figures

Figure 1

23 pages, 5504 KiB  
Article
Hesperidin Methyl Chalcone Reduces the Arthritis Caused by TiO2 in Mice: Targeting Inflammation, Oxidative Stress, Cytokine Production, and Nociceptor Sensory Neuron Activation
by Nayara A. Artero, Marília F. Manchope, Thacyana T. Carvalho, Telma Saraiva-Santos, Mariana M. Bertozzi, Jessica A. Carneiro, Anelise Franciosi, Amanda M. Dionisio, Tiago H. Zaninelli, Victor Fattori, Camila R. Ferraz, Maiara Piva, Sandra S. Mizokami, Doumit Camilios-Neto, Rubia Casagrande and Waldiceu A. Verri
Molecules 2023, 28(2), 872; https://doi.org/10.3390/molecules28020872 - 15 Jan 2023
Cited by 7 | Viewed by 3218
Abstract
Arthroplasty is an orthopedic surgical procedure that replaces a dysfunctional joint by an orthopedic prosthesis, thereby restoring joint function. Upon the use of the joint prosthesis, a wearing process begins, which releases components such as titanium dioxide (TiO2) that trigger an [...] Read more.
Arthroplasty is an orthopedic surgical procedure that replaces a dysfunctional joint by an orthopedic prosthesis, thereby restoring joint function. Upon the use of the joint prosthesis, a wearing process begins, which releases components such as titanium dioxide (TiO2) that trigger an immune response in the periprosthetic tissue, leading to arthritis, arthroplasty failure, and the need for revision. Flavonoids belong to a class of natural polyphenolic compounds that possess antioxidant and anti-inflammatory activities. Hesperidin methyl chalcone’s (HMC) analgesic, anti-inflammatory, and antioxidant effects have been investigated in some models, but its activity against the arthritis caused by prosthesis-wearing molecules, such as TiO2, has not been investigated. Mice were treated with HMC (100 mg/kg, intraperitoneally (i.p.)) 24 h after intra-articular injection of 3 mg/joint of TiO2, which was used to induce chronic arthritis. HMC inhibited mechanical hyperalgesia, thermal hyperalgesia, joint edema, leukocyte recruitment, and oxidative stress in the knee joint (alterations in gp91phox, GSH, superoxide anion, and lipid peroxidation) and in recruited leukocytes (total reactive oxygen species and GSH); reduced patellar proteoglycan degradation; and decreased pro-inflammatory cytokine production. HMC also reduced the activation of nociceptor-sensory TRPV1+ and TRPA1+ neurons. These effects occurred without renal, hepatic, or gastric damage. Thus, HMC reduces arthritis triggered by TiO2, a component released upon wearing of prosthesis. Full article
(This article belongs to the Special Issue Natural Product-Inspired Molecules: From Weed to Remedy)
Show Figures

Figure 1

17 pages, 784 KiB  
Review
Mast Cell Cytokines in Acute and Chronic Gingival Tissue Inflammation: Role of IL-33 and IL-37
by Matteo Trimarchi, Dorina Lauritano, Gianpaolo Ronconi, Alessandro Caraffa, Carla E. Gallenga, Ilias Frydas, Spyros K. Kritas, Vittorio Calvisi and Pio Conti
Int. J. Mol. Sci. 2022, 23(21), 13242; https://doi.org/10.3390/ijms232113242 - 31 Oct 2022
Cited by 12 | Viewed by 5293
Abstract
Much evidence suggests autoimmunity in the etiopathogenesis of periodontal disease. In fact, in periodontitis, there is antibody production against collagen, DNA, and IgG, as well as increased IgA expression, T cell dysfunction, high expression of class II MHC molecules on the surface of [...] Read more.
Much evidence suggests autoimmunity in the etiopathogenesis of periodontal disease. In fact, in periodontitis, there is antibody production against collagen, DNA, and IgG, as well as increased IgA expression, T cell dysfunction, high expression of class II MHC molecules on the surface of gingival epithelial cells in inflamed tissues, activation of NK cells, and the generation of antibodies against the azurophil granules of polymorphonuclear leukocytes. In general, direct activation of autoreactive immune cells and production of TNF can activate neutrophils to release pro-inflammatory enzymes with tissue damage in the gingiva. Gingival inflammation and, in the most serious cases, periodontitis, are mainly due to the dysbiosis of the commensal oral microbiota that triggers the immune system. This inflammatory pathological state can affect the periodontal ligament, bone, and the entire gingival tissue. Oral tolerance can be abrogated by some cytokines produced by epithelial cells and activated immune cells, including mast cells (MCs). Periodontal cells and inflammatory–immune cells, including mast cells (MCs), produce cytokines and chemokines, mediating local inflammation of the gingival, along with destruction of the periodontal ligament and alveolar bone. Immune-cell activation and recruitment can be induced by inflammatory cytokines, such as IL-1, TNF, IL-33, and bacterial products, including lipopolysaccharide (LPS). IL-1 and IL-33 are pleiotropic cytokines from members of the IL-1 family, which mediate inflammation of MCs and contribute to many key features of periodontitis and other inflammatory disorders. IL-33 activates several immune cells, including lymphocytes, Th2 cells, and MCs in both innate and acquired immunological diseases. The classic therapies for periodontitis include non-surgical periodontal treatment, surgery, antibiotics, anti-inflammatory drugs, and surgery, which have been only partially effective. Recently, a natural cytokine, IL-37, a member of the IL-1 family and a suppressor of IL-1b, has received considerable attention for the treatment of inflammatory diseases. In this article, we report that IL-37 may be an important and effective therapeutic cytokine that may inhibit periodontal inflammation. The purpose of this paper is to study the relationship between MCs, IL-1, IL-33, and IL-37 inhibition in acute and chronic inflamed gingival tissue. Full article
Show Figures

Figure 1

21 pages, 7165 KiB  
Review
Activation of Nrf2 to Optimise Immune Responses to Intracerebral Haemorrhage
by James J. M. Loan, Rustam Al-Shahi Salman, Barry W. McColl and Giles E. Hardingham
Biomolecules 2022, 12(10), 1438; https://doi.org/10.3390/biom12101438 - 7 Oct 2022
Cited by 12 | Viewed by 4642
Abstract
Haemorrhage into the brain parenchyma can be devastating. This manifests as spontaneous intracerebral haemorrhage (ICH) after head trauma, and in the context of vascular dementia. Randomised controlled trials have not reliably shown that haemostatic treatments aimed at limiting ICH haematoma expansion and surgical [...] Read more.
Haemorrhage into the brain parenchyma can be devastating. This manifests as spontaneous intracerebral haemorrhage (ICH) after head trauma, and in the context of vascular dementia. Randomised controlled trials have not reliably shown that haemostatic treatments aimed at limiting ICH haematoma expansion and surgical approaches to reducing haematoma volume are effective. Consequently, treatments to modulate the pathophysiological responses to ICH, which may cause secondary brain injury, are appealing. Following ICH, microglia and monocyte derived cells are recruited to the peri-haematomal environment where they phagocytose haematoma breakdown products and secrete inflammatory cytokines, which may trigger both protective and harmful responses. The transcription factor Nrf2, is activated by oxidative stress, is highly expressed by central nervous system microglia and macroglia. When active, Nrf2 induces a transcriptional programme characterised by increased expression of antioxidant, haem and heavy metal detoxification and proteostasis genes, as well as suppression of proinflammatory factors. Therefore, Nrf2 activation may facilitate adaptive-protective immune cell responses to ICH by boosting resistance to oxidative stress and heavy metal toxicity, whilst limiting harmful inflammatory signalling, which can contribute to further blood brain barrier dysfunction and cerebral oedema. In this review, we consider the responses of immune cells to ICH and how these might be modulated by Nrf2 activation. Finally, we propose potential therapeutic strategies to harness Nrf2 to improve the outcomes of patients with ICH. Full article
Show Figures

Figure 1

15 pages, 4295 KiB  
Article
Visceral Surgery Profoundly Affects the Cellular and Humoral Components of the Anti-Tumour Immune Response in a Murine Pancreatic Adenocarcinoma Model
by Friederike Loening, Annabel Kleinwort, Lars Ivo Partecke, Tobias Schulze and Pia Menges
Cancers 2022, 14(16), 3850; https://doi.org/10.3390/cancers14163850 - 9 Aug 2022
Cited by 1 | Viewed by 1766
Abstract
(1) Background: Surgery is the most important element of multimodal treatment concepts in oncological patients, especially in the early stages of pancreatic tumours. While the influence of primary tumour resection on the immune status was analysed in several studies, the impact of tumour-unrelated [...] Read more.
(1) Background: Surgery is the most important element of multimodal treatment concepts in oncological patients, especially in the early stages of pancreatic tumours. While the influence of primary tumour resection on the immune status was analysed in several studies, the impact of tumour-unrelated visceral surgery on the tumour-bearing organism and on the primary tumour itself is not yet fully understood. (2) Methods: We combined a murine model of orthotopically implanted adenocarcinoma of the pancreas with the model of surgically-induced immune dysfunction (SID). Mortality and general condition including body weight were observed over a period of 28 days. Tumour growth was analysed by MRI scans on days 8 and 27 following tumour implantation. On day 28, the immune cell populations in the blood and spleen as well as the serum cytokines were quantified. (3) Results: SID results in a significant deterioration of the general condition and a reduced increase in the body weight of tumour-bearing mice compared to the control groups, while mortality and tumour growth rate were not influenced. The numbers of spleen macrophages and neutrophils were increased in tumour-bearing animals following SID. Furthermore, both macrophage and neutrophil levels were increased in the peripheral blood. (4) Conclusions: The presented results might contribute to the basic understanding of the interaction of tumour and immune system and could contribute to new approaches to immunotherapeutic strategies. Full article
(This article belongs to the Special Issue Advanced Research in Pancreatic Ductal Adenocarcinoma)
Show Figures

Figure 1

14 pages, 3270 KiB  
Article
Neuroprotective Effect of Dexmedetomidine against Postoperative Cognitive Decline via NLRP3 Inflammasome Signaling Pathway
by Inja Cho, Bon-Nyeo Koo, So Yeon Kim, Sujung Park, Eun Jung Kim, Eun Hee Kam and Jeongmin Kim
Int. J. Mol. Sci. 2022, 23(15), 8806; https://doi.org/10.3390/ijms23158806 - 8 Aug 2022
Cited by 14 | Viewed by 3024
Abstract
Dexmedetomidine (Dex), widely used as a sedative in surgical procedures and intensive care units, induces sympatholytic, anxiolytic, analgesic, and sedative effects. Postoperative cognitive dysfunction (POCD) is routinely observed in postoperative care following surgery and general anesthesia. The NLRP3 inflammasome complex plays a critical [...] Read more.
Dexmedetomidine (Dex), widely used as a sedative in surgical procedures and intensive care units, induces sympatholytic, anxiolytic, analgesic, and sedative effects. Postoperative cognitive dysfunction (POCD) is routinely observed in postoperative care following surgery and general anesthesia. The NLRP3 inflammasome complex plays a critical role in innate immune response by detecting pathogenic microorganisms and activating pro-inflammatory cytokines. Although there are numerous protective effects of Dex among the neurological diseases, specific mechanisms including NLRP3 inflammasome-mediated neuroinflammation via oxidative stress response in a POCD model are not fully understood. Here, we investigated whether Dex exhibits neurocognitive effects through the NLRP3 inflammasome signaling in a POCD mouse model using a neurobehavioral test and ELISA analysis. We also confirmed the level of oxidative stress-related response in the in vitro system in the POCD model. Furthermore, we evaluated the NLRP3 inflammasome complex by immunoprecipitation analysis. In summary, the results of the present study indicated that Dex showed a neuroprotective effect in the POCD model by reducing oxidative stress response through NLRP3 inflammasome-mediated neuroinflammation. Full article
(This article belongs to the Section Molecular Neurobiology)
Show Figures

Figure 1

32 pages, 1347 KiB  
Review
Postoperative Natural Killer Cell Dysfunction: The Prime Suspect in the Case of Metastasis Following Curative Cancer Surgery
by Marisa Market, Gayashan Tennakoon and Rebecca C. Auer
Int. J. Mol. Sci. 2021, 22(21), 11378; https://doi.org/10.3390/ijms222111378 - 21 Oct 2021
Cited by 27 | Viewed by 5283
Abstract
Surgical resection is the foundation for the curative treatment of solid tumors. However, metastatic recurrence due to the difficulty in eradicating micrometastases remain a feared outcome. Paradoxically, despite the beneficial effects of surgical removal of the primary tumor, the physiological stress resulting from [...] Read more.
Surgical resection is the foundation for the curative treatment of solid tumors. However, metastatic recurrence due to the difficulty in eradicating micrometastases remain a feared outcome. Paradoxically, despite the beneficial effects of surgical removal of the primary tumor, the physiological stress resulting from surgical trauma serves to promote cancer recurrence and metastasis. The postoperative environment suppresses critical anti-tumor immune effector cells, including Natural Killer (NK) cells. The literature suggests that NK cells are critical mediators in the formation of metastases immediately following surgery. The following review will highlight the mechanisms that promote the formation of micrometastases by directly or indirectly inducing NK cell suppression following surgery. These include tissue hypoxia, neuroendocrine activation, hypercoagulation, the pro-inflammatory phase, and the anti-inflammatory phase. Perioperative therapeutic strategies designed to prevent or reverse NK cell dysfunction will also be examined for their potential to improve cancer outcomes by preventing surgery-induced metastases. Full article
(This article belongs to the Special Issue Natural Killer Cells and Immunotherapy)
Show Figures

Figure 1

18 pages, 1926 KiB  
Review
Dark Side of Cancer Therapy: Cancer Treatment-Induced Cardiopulmonary Inflammation, Fibrosis, and Immune Modulation
by Ettickan Boopathi and Chellappagounder Thangavel
Int. J. Mol. Sci. 2021, 22(18), 10126; https://doi.org/10.3390/ijms221810126 - 19 Sep 2021
Cited by 18 | Viewed by 7422
Abstract
Advancements in cancer therapy increased the cancer free survival rates and reduced the malignant related deaths. Therapeutic options for patients with thoracic cancers include surgical intervention and the application of chemotherapy with ionizing radiation. Despite these advances, cancer therapy-related cardiopulmonary dysfunction (CTRCPD) is [...] Read more.
Advancements in cancer therapy increased the cancer free survival rates and reduced the malignant related deaths. Therapeutic options for patients with thoracic cancers include surgical intervention and the application of chemotherapy with ionizing radiation. Despite these advances, cancer therapy-related cardiopulmonary dysfunction (CTRCPD) is one of the most undesirable side effects of cancer therapy and leads to limitations to cancer treatment. Chemoradiation therapy or immunotherapy promote acute and chronic cardiopulmonary damage by inducing reactive oxygen species, DNA damage, inflammation, fibrosis, deregulation of cellular immunity, cardiopulmonary failure, and non-malignant related deaths among cancer-free patients who received cancer therapy. CTRCPD is a complex entity with multiple factors involved in this pathogenesis. Although the mechanisms of cancer therapy-induced toxicities are multifactorial, damage to the cardiac and pulmonary tissue as well as subsequent fibrosis and organ failure seem to be the underlying events. The available biomarkers and treatment options are not sufficient and efficient to detect cancer therapy-induced early asymptomatic cell fate cardiopulmonary toxicity. Therefore, application of cutting-edge multi-omics technology, such us whole-exome sequencing, DNA methylation, whole-genome sequencing, metabolomics, protein mass spectrometry and single cell transcriptomics, and 10 X spatial genomics, are warranted to identify early and late toxicity, inflammation-induced carcinogenesis response biomarkers, and cancer relapse response biomarkers. In this review, we summarize the current state of knowledge on cancer therapy-induced cardiopulmonary complications and our current understanding of the pathological and molecular consequences of cancer therapy-induced cardiopulmonary fibrosis, inflammation, immune suppression, and tumor recurrence, and possible treatment options for cancer therapy-induced cardiopulmonary toxicity. Full article
Show Figures

Figure 1

23 pages, 3294 KiB  
Article
The Kinetics of Lymphatic Dysfunction and Leukocyte Expansion in the Draining Lymph Node during LTB4 Antagonism in a Mouse Model of Lymphedema
by Matthew T. Cribb, Lauren F. Sestito, Stanley G. Rockson, Mark R. Nicolls, Susan N. Thomas and J. Brandon Dixon
Int. J. Mol. Sci. 2021, 22(9), 4455; https://doi.org/10.3390/ijms22094455 - 24 Apr 2021
Cited by 14 | Viewed by 4092
Abstract
The mechanisms of lymphedema development are not well understood, but emerging evidence highlights the crucial role the immune system plays in driving its progression. It is well known that lymphatic function deteriorates as lymphedema progresses; however, the connection between this progressive loss of [...] Read more.
The mechanisms of lymphedema development are not well understood, but emerging evidence highlights the crucial role the immune system plays in driving its progression. It is well known that lymphatic function deteriorates as lymphedema progresses; however, the connection between this progressive loss of function and the immune-driven changes that characterize the disease has not been well established. In this study, we assess changes in leukocyte populations in lymph nodes within the lymphatic drainage basin of the tissue injury site (draining lymph nodes, dLNs) using a mouse tail model of lymphedema in which a pair of draining collecting vessels are left intact. We additionally quantify lymphatic pump function using established near infrared (NIR) lymphatic imaging methods and lymph-draining nanoparticles (NPs) synthesized and employed by our team for lymphatic tissue drug delivery applications to measure lymphatic transport to and resulting NP accumulation within dLNs associated with swelling following surgery. When applied to assess the effects of the anti-inflammatory drug bestatin, which has been previously shown to be a possible treatment for lymphedema, we find lymph-draining NP accumulation within dLNs and lymphatic function to increase as lymphedema progresses, but no significant effect on leukocyte populations in dLNs or tail swelling. These results suggest that ameliorating this loss of lymphatic function is not sufficient to reverse swelling in this surgically induced disease model that better recapitulates the extent of lymphatic injury seen in human lymphedema. It also suggests that loss of lymphatic function during lymphedema may be driven by immune-mediated mechanisms coordinated in dLNs. Our work indicates that addressing both lymphatic vessel dysfunction and immune cell expansion within dLNs may be required to prevent or reverse lymphedema when partial lymphatic function is sustained. Full article
(This article belongs to the Special Issue Current Mechanistic Understandings of Lymphedema and Lipedema)
Show Figures

Figure 1

15 pages, 3059 KiB  
Article
An Anti-MICA/B Antibody and IL-15 Rescue Altered NKG2D-Dependent NK Cell Responses in Hepatocellular Carcinoma
by Stefania Mantovani, Stefania Varchetta, Dalila Mele, Matteo Donadon, Guido Torzilli, Cristiana Soldani, Barbara Franceschini, Camillo Porta, Silvia Chiellino, Paolo Pedrazzoli, Roberto Santambrogio, Matteo Barabino, Claudia Cigala, Gaetano Piccolo, Enrico Opocher, Marcello Maestri, Angelo Sangiovanni, Stefano Bernuzzi, Florence Lhospice, Manel Kraiem, Mario Umberto Mondelli and Barbara Olivieroadd Show full author list remove Hide full author list
Cancers 2020, 12(12), 3583; https://doi.org/10.3390/cancers12123583 - 30 Nov 2020
Cited by 21 | Viewed by 4589
Abstract
Natural killer (NK) cells play a pivotal role in cancer immune surveillance, and activating the receptor/ligand interaction may contribute to control the development and evolution of hepatocellular carcinoma (HCC). We investigated the role of the natural killer group 2 member D (NKG2D) activating [...] Read more.
Natural killer (NK) cells play a pivotal role in cancer immune surveillance, and activating the receptor/ligand interaction may contribute to control the development and evolution of hepatocellular carcinoma (HCC). We investigated the role of the natural killer group 2 member D (NKG2D) activating receptor and its ligand, the major histocompatibility complex class I chain-related protein A and B (MICA/B) in patients with cirrhosis and HCC subjected to surgical resection, patients with cirrhosis and no HCC, and healthy donors (HD). The NKG2D-mediated function was determined in peripheral blood (PB), in tumor-infiltrating lymphocytes (NK-TIL), and in matched surrounding liver tissue (NK-LIL). A group of patients treated with sorafenib because of clinically advanced HCC was also studied. A humanized anti-MICA/B monoclonal antibody (mAb) was used in in vitro experiments to examine NK cell-mediated antibody-dependent cellular cytotoxicity. Serum concentrations of soluble MICA/B were evaluated by ELISA. IL-15 stimulation increased NKG2D-dependent activity which, however, remained dysfunctional in PB NK cells from HCC patients, in line with the reduced NKG2D expression on NK cells. NK-TIL showed a lower degranulation ability than NK-LIL, which was restored by IL-15 stimulation. Moreover, in vitro IL-15 stimulation enhanced degranulation and interferon-γ production by PB NK from patients at month one of treatment with sorafenib. Anti-MICA/B mAb associated with IL-15 was able to induce PB NK cytotoxicity for primary HCC cells in HD and patients with HCC, who also showed NK-TIL degranulation for autologous primary HCC cells. Our findings highlight the key role of the NKG2D-MICA/B axis in the regulation of NK cell responses in HCC and provide evidence in support of a potentially important role of anti-MICA/B mAb and IL-15 stimulation in HCC immunotherapy. Full article
(This article belongs to the Special Issue Natural Killer Cells in Cancers)
Show Figures

Graphical abstract

Back to TopTop