Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (20)

Search Parameters:
Keywords = supramolecular photocatalyst

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 1737 KB  
Article
Comparative Thermal and Supramolecular Hydrothermal Synthesis of g-C3N4 Toward Efficient Photocatalytic Degradation of Gallic Acid
by Fernando Cantor Pérez, Julia Liliana Rodríguez Santillán, Ricardo Santillán Peréz, Iliana Fuentes Camargo, Issis C. Romero Ibarra, Jesús I. Guzmán Castañeda, Jorge L. Vazquez-Arce, Hugo Tiznado and Hugo Martínez Gutiérrez
Catalysts 2025, 15(9), 858; https://doi.org/10.3390/catal15090858 - 5 Sep 2025
Viewed by 1182
Abstract
Gallic acid (GA), a polyphenol extensively used in the food, wine, and pharmaceutical industries, is known for its inhibitory effects on soil microbial activity. Photocatalytic degradation offers an environmentally friendly solution for GA removal from water. In this work, graphitic carbon nitride (g-C [...] Read more.
Gallic acid (GA), a polyphenol extensively used in the food, wine, and pharmaceutical industries, is known for its inhibitory effects on soil microbial activity. Photocatalytic degradation offers an environmentally friendly solution for GA removal from water. In this work, graphitic carbon nitride (g-C3N4) photocatalysts were synthesized by two methods: thermal exfoliation (CN-E) and supramolecular assembly via hydrothermal processing (HCN-II). Structural analyses by XRD, FTIR, and XPS confirmed the formation of the g-C3N4 framework, while SEM revealed that CN-E consisted of folded and curled nanosheets, whereas HCN-II displayed a polyhedral–nanosheet hybrid architecture with internal channels. Both materials achieved approximately 80% GA degradation within 180 min under visible-light irradiation, yet HCN-II exhibited a superior apparent rate constant (k = 0.01156 min−1) compared with CN-E. Radical trapping experiments demonstrated that O2 and h+ were the primary reactive oxygen species involved, with OH• making a minor contribution. The enhanced performance of HCN-II is attributed to its higher surface area, improved light harvesting, and efficient charge separation derived from supramolecular assembly. These findings highlight the potential of engineered g-C3N4 nanostructures as efficient, metal-free photocatalysts for the degradation of recalcitrant organic pollutants in water treatment applications. Full article
Show Figures

Figure 1

17 pages, 11377 KB  
Article
A New [PMo12O40]3−-Based NiII Compound: Electrochemical and Photocatalytic Properties for Water Pollutant Removal
by Guoqing Lin, Shufeng Liu, Dai Shi, Ying Yang, Fangle Yu, Tong Lu, Xiao-Yang Yu and Yuguang Zhao
Molecules 2025, 30(10), 2172; https://doi.org/10.3390/molecules30102172 - 15 May 2025
Cited by 2 | Viewed by 768
Abstract
A polyoxometalate-based metal–organic complex with the ability to treat pollutants in water was obtained under hydrothermal conditions, namely [Ni(H2L)(HL)2](PMo12O40)·3H3O·4H2O (1) (H2L = 4,4′-(1H,1′H-[2,2′-biimidazole]-1,1′-diyl)dibenzoicacid). Structural analysis reveals that [...] Read more.
A polyoxometalate-based metal–organic complex with the ability to treat pollutants in water was obtained under hydrothermal conditions, namely [Ni(H2L)(HL)2](PMo12O40)·3H3O·4H2O (1) (H2L = 4,4′-(1H,1′H-[2,2′-biimidazole]-1,1′-diyl)dibenzoicacid). Structural analysis reveals that the [Ni(H2L)(HL)2] units are interconnected into a 2D layer via hydrogen bonds between adjacent carboxyl groups and water molecules of crystallization. [PMo12O40]3− anions are embedded within the larger pores of the layer and are connected to the adjacent layers through hydrogen bonds, ultimately expanding the structure into a 3D supramolecular architecture. The intermolecular interactions were studied via Hirshfeld surface (HS) analysis. Electrochemical performance tests reveal that 1 exhibits electrocatalytic activity toward the oxidation and reduction of diverse pollutants in water, including NO2, Cr(VI), BrO3, Fe(III), and ascorbic acid (AA). Additionally, it can also serve as an amperometric sensor for the detection of BrO3 and Cr(VI). Photocatalytic studies reveal that compound 1 functions as a bifunctional photocatalyst, which not only achieves efficient degradation of organic dyes but also demonstrates remarkable reduction efficiency for toxic Cr(VI). Compound 1 demonstrates significant potential for practical water remediation applications. Full article
(This article belongs to the Section Inorganic Chemistry)
Show Figures

Graphical abstract

31 pages, 8102 KB  
Review
Porphyrin-Based Supramolecular Self-Assemblies: Construction, Charge Separation and Transfer, Stability, and Application in Photocatalysis
by Yingxu Hu, Jingfeng Peng, Rui Liu, Jing Gao, Guancheng Hua, Xiangjiang Fan and Shengjie Wang
Molecules 2024, 29(24), 6063; https://doi.org/10.3390/molecules29246063 - 23 Dec 2024
Cited by 7 | Viewed by 4173
Abstract
As a key means to solve energy and environmental problems, photocatalytic technology has made remarkable progress in recent years. Organic semiconductor materials offer structural diversity and tunable energy levels and thus attracted great attention. Among them, porphyrin and its derivatives show great potential [...] Read more.
As a key means to solve energy and environmental problems, photocatalytic technology has made remarkable progress in recent years. Organic semiconductor materials offer structural diversity and tunable energy levels and thus attracted great attention. Among them, porphyrin and its derivatives show great potential in photocatalytic reactions and light therapy due to their unique large-π conjugation structure, high apparent quantum efficiency, tailorable functionality, and excellent biocompatibility. Compared to unassembled porphyrin molecules, supramolecular porphyrin assemblies facilitate the solar light absorption and improve the charge transfer and thus exhibit enhanced photocatalytic performance. Herein, the research progress of porphyrin-based supramolecular assemblies, including the construction, the regulation of charge separation and transfer, stability, and application in photocatalysis, was systematically reviewed. The construction strategy of porphyrin supramolecules, the mechanism of charge separation, and the intrinsic relationship of assembling structure-charge transfer-photocatalytic performance received special attention. Surfactants, peptide molecules, polymers, and metal ions were introduced to improve the stability of the porphyrin assemblies. Donor-acceptor structure and co-catalysts were incorporated to inhibit the recombination of the photoinduced charges. These increase the understanding of the porphyrin supramolecules and provide ideas for the design of high-performance porphyrin-based photocatalysts. Full article
(This article belongs to the Special Issue Chemical Research on Photosensitive Materials)
Show Figures

Figure 1

13 pages, 3773 KB  
Article
Self-Assembled PDI-COOH/PDINH Supramolecular Composite Photocatalysts for Highly Efficient Photodegradation of Organic Pollutants
by Guodong Zhou, Zetian He, Zeyu Jia, Shiqing Ma, Daimei Chen and Yilei Li
Catalysts 2024, 14(10), 696; https://doi.org/10.3390/catal14100696 - 7 Oct 2024
Viewed by 1761
Abstract
Photocatalytic degradation of organic pollutants is one of the green ways to solve environmental problems. In this study, the PDI-COOH/PDINH composite photocatalysts were successfully synthesized by electrostatic self-assembly. Under visible light irradiation, the degradation efficiency of the optimal PDI-COOH/PDINH sample reached 67%, which [...] Read more.
Photocatalytic degradation of organic pollutants is one of the green ways to solve environmental problems. In this study, the PDI-COOH/PDINH composite photocatalysts were successfully synthesized by electrostatic self-assembly. Under visible light irradiation, the degradation efficiency of the optimal PDI-COOH/PDINH sample reached 67%, which was 1.7 and 1.6 times higher than that of the self-assembled PDINH supramolecule and PDI-COOH supramolecule, respectively. The excellent photocatalytic performance of PDI-COOH/PDINH can be attributed to the enhancement of the separation and transport efficiency of photogenerated carriers by the construction of a heterojunction and the expanded electronic conjugated structure by the combination of organic–organic semiconductors. This study offers a new idea for the preparation of organic–organic composite photocatalysts. Full article
(This article belongs to the Special Issue Exclusive Papers in Green Photocatalysis from China)
Show Figures

Figure 1

18 pages, 7158 KB  
Article
Novel PDI-NH/PDI-COOH Supramolecular Junction for Enhanced Visible-Light Photocatalytic Phenol Degradation
by Yongzhang Xu, Xingrui Luo, Fulin Wang, Wentao Xiang, Chensheng Zhou, Weiya Huang, Kangqiang Lu, Shaoyu Li, Man Zhou and Kai Yang
Molecules 2024, 29(17), 4196; https://doi.org/10.3390/molecules29174196 - 4 Sep 2024
Cited by 3 | Viewed by 1814
Abstract
The development of efficient and environmentally friendly photocatalysts is crucial for addressing global energy and environmental challenges. Perylene diimide, an organic supramolecular material, holds great potential for applications in mineralized phenol. In this study, through the integration of different mass ratios of unmodified [...] Read more.
The development of efficient and environmentally friendly photocatalysts is crucial for addressing global energy and environmental challenges. Perylene diimide, an organic supramolecular material, holds great potential for applications in mineralized phenol. In this study, through the integration of different mass ratios of unmodified perylenimide (PDI-NH) into the self-assembly of amino acid-substituted perylenimide (PDI-COOH), a novel supramolecular organic heterojunction (PDICOOH/PDINH) was fabricated. The ensuing investigation focuses on its visible-light mineralized phenol properties. The results show that the optimal performance is observed with a composite mass fraction of 10%, leading to complete mineralization of 5 mg/L phenol within 5 h. The reaction exhibits one-stage kinetics with rate constants 13.80 and 1.30 times higher than those of PDI-NH and PDI-COOH, respectively. SEM and TEM reveal a heterogeneous interface between PDI-NH and PDI-COOH. Photoelectrochemical and Kelvin probe characterization confirm the generation of a built-in electric field at the interface, which is 1.73 times stronger than that of PDI-COOH. The introduction of PDI-NH promotes π-π stacking of PDI-COOH, while the built-in electric field facilitates efficient charge transfer at the interface, thereby enhancing phenol decomposition. The finding demonstrates that supramolecular heterojunctions have great potential as highly effective photocatalysts for environmental remediation applications. Full article
(This article belongs to the Special Issue Green Catalysis Technology for Sustainable Energy Conversion)
Show Figures

Figure 1

18 pages, 4728 KB  
Article
2D/2D Heterojunctions of Layered TiO2 and (NH4)2V3O8 for Sunlight-Driven Methylene Blue Degradation
by Juan Aliaga, Matías Alegria, J. Pedro Donoso, Claudio J. Magon, Igor D. A. Silva, Harold Lozano, Elies Molins, Eglantina Benavente and Guillermo González
Ceramics 2024, 7(3), 926-943; https://doi.org/10.3390/ceramics7030060 - 2 Jul 2024
Cited by 1 | Viewed by 1893
Abstract
Photocatalysis based on titanium dioxide (TiO2) has become a promising method to remediate industrial and municipal effluents in an environmentally friendly manner. However, the efficiency of TiO2 is hampered by problems such as rapid electron–hole recombination and limited solar spectrum [...] Read more.
Photocatalysis based on titanium dioxide (TiO2) has become a promising method to remediate industrial and municipal effluents in an environmentally friendly manner. However, the efficiency of TiO2 is hampered by problems such as rapid electron–hole recombination and limited solar spectrum absorption. Furthermore, the sensitization of TiO2 through heterojunctions with other materials has gained attention. Vanadium, specifically in the form of ammonium vanadate ((NH4)2V3O8), has shown promise as a photocatalyst due to its ability to effectively absorb visible light. However, its use in photocatalysis remains limited. Herein, we present a novel synthesis method to produce lamellar (NH4)2V3O8 as a sensitizer in a supramolecular hybrid photocatalyst of TiO2–stearic acid (SA), contributing to a deeper understanding of its structural and magnetic characteristics, expanding the range of visible light absorption, and improving the efficiency of photogenerated electron–hole separation. Materials, such as TiO2–SA and (NH4)2V3O8, were synthesized and characterized. EPR studies of (NH4)2V3O8 demonstrated their orientation-dependent magnetic properties and, from measurements of the angular variation of g-values, suggest that the VO2+ complexes are in axially distorted octahedral sites. The photocatalytic results indicate that the 2D/2D heterojunction layered TiO2/vanadate at a ratio (1:0.050) removed 100% of the methylene blue, used as a model contaminant in this study. The study of the degradation mechanism of methylene blue emphasizes the role of reactive species such as hydroxyl radicals (OH) and superoxide ions (O2•−). These species are crucial for breaking down contaminant molecules, leading to their degradation. The band alignment between ammonium vanadate ((NH4)2V3O8) and TiO2–SA, shows effective separation and charge transfer processes at their interface. Furthermore, the study confirms the chemical stability and recyclability of the TiO2–SA/(NH4)2V3O8 photocatalyst, demonstrated that it could be used for multiple photocatalytic cycles without a significant loss of activity. This stability, combined with its ability to degrade organic pollutants under solar irradiation, means that the TiO2–SA/(NH4)2V3O8 photocatalyst is a promising candidate for practical environmental remediation applications. Full article
(This article belongs to the Special Issue Advances in Ceramics, 2nd Edition)
Show Figures

Figure 1

12 pages, 1724 KB  
Article
Regulating the Monomer Symmetry of Poly-Perylene-Diimides for Photocatalytic H2O2 Production
by Meiwanqin Zhou, Yukun Yan, Jinsong Zhang and Jun Xiao
Catalysts 2024, 14(6), 358; https://doi.org/10.3390/catal14060358 - 31 May 2024
Cited by 1 | Viewed by 1583
Abstract
Photocatalysis technology is an economical and effective new energy technology which depends on the conversion and storage of light energy through an energy transfer process or charge transfer process. Recently, organic semiconductor photocatalytic materials with the advantages of controllable structure, broad spectral response, [...] Read more.
Photocatalysis technology is an economical and effective new energy technology which depends on the conversion and storage of light energy through an energy transfer process or charge transfer process. Recently, organic semiconductor photocatalytic materials with the advantages of controllable structure, broad spectral response, designability, and flexibility have received wide attention. In particular, the organic polymeric materials containing poly-perylene diimides (PDI) show significant promise in the realm of photocatalysis due to their impressive catalytic capabilities and wide spectral reactivity. However, a poor charge separation and transportation (CST) process undermines their photocatalytic efficiency in most polymer photocatalysts, as well as in PDI photocatalysts. In this context, we propose a new strategy through regulating the monomer symmetry to construct highly efficient PDI photocatalysts. As proof-of-concept, a series of new PDI-based organic supramolecular photocatalytic materials with full visible spectral response from the perspectives of both the π-π conjugated structure and the symmetry of chain structure are successfully synthesized. Meanwhile, the structural compositions, morphology features, electrical properties, and photocatalytic performances of those obtained PDI photocatalysts were systematically studied. The results shown that the as-prepared PDI-1,5NDA exhibits 1.6-fold and 3.7-fold higher levels of photosynthesis of H2O2 activity than those of PDI-1,4NDA and PDI-PDA, respectively, which could be ascribe to its lower symmetry and large π-conjugate systems greatly enhances the separation of charge carriers. Full article
(This article belongs to the Section Photocatalysis)
Show Figures

Graphical abstract

17 pages, 10306 KB  
Article
New Transition Metal Coordination Polymers Derived from 2-(3,5-Dicarboxyphenyl)-6-carboxybenzimidazole as Photocatalysts for Dye and Antibiotic Decomposition
by Yu Wu, Wenxu Zhong, Xin Wang, Weiping Wu, Mohd. Muddassir, Omoding Daniel, Madhav Raj Jayswal, Om Prakash, Zhong Dai, Aiqing Ma and Ying Pan
Molecules 2023, 28(21), 7318; https://doi.org/10.3390/molecules28217318 - 28 Oct 2023
Cited by 10 | Viewed by 2443
Abstract
Coordination polymers (CPs) are an assorted class of coordination complexes that are gaining attention for the safe and sustainable removal of organic dyes from wastewater discharge by either adsorption or photocatalytic degradation. Herein, three different coordination polymers with compositions [Ni(HL)(H2O)2 [...] Read more.
Coordination polymers (CPs) are an assorted class of coordination complexes that are gaining attention for the safe and sustainable removal of organic dyes from wastewater discharge by either adsorption or photocatalytic degradation. Herein, three different coordination polymers with compositions [Ni(HL)(H2O)2·1.9H2O] (1), [Mn3(HL)(L)(μ3-OH)(H2O)(phen)2·2H2O] (2), and [Cd(HL)4(H2O)]·H2O (3) (H3L = 2-(3,5-dicarboxyphenyl)-6-carboxybenzimidazole; phen = 1,10-phenanthroline) have been synthesized and characterized spectroscopically and by single crystal X-ray diffraction. Single crystal X-ray diffraction results indicated that 1 forms a 2D layer-like framework, while 2 exhibits a 3-connected net with the Schläfli symbol of (44.6), and 3 displays a 3D supramolecular network in which two adjacent 2D layers are held by π···π interactions. All three compounds have been used as photocatalysts to catalyze the photodegradation of antibiotic dinitrozole (DTZ) and rhodamine B (RhB). The photocatalytic results suggested that the Mn-based CP 2 exhibited better photodecomposition of DTZ (91.1%) and RhB (95.0%) than the other two CPs in the time span of 45 min. The observed photocatalytic mechanisms have been addressed using Hirshfeld surface analyses. Full article
Show Figures

Graphical abstract

18 pages, 3138 KB  
Review
Recent Advances in g-C3N4 Photocatalysts: A Review of Reaction Parameters, Structure Design and Exfoliation Methods
by Junxiang Pei, Haofeng Li, Songlin Zhuang, Dawei Zhang and Dechao Yu
Catalysts 2023, 13(11), 1402; https://doi.org/10.3390/catal13111402 - 28 Oct 2023
Cited by 37 | Viewed by 9614
Abstract
Graphitized carbon nitride (g-C3N4), as a metal-free, visible-light-responsive photocatalyst, has a very broad application prospect in the fields of solar energy conversion and environmental remediation. The g-C3N4 photocatalyst owns a series of conspicuous characteristics, such as [...] Read more.
Graphitized carbon nitride (g-C3N4), as a metal-free, visible-light-responsive photocatalyst, has a very broad application prospect in the fields of solar energy conversion and environmental remediation. The g-C3N4 photocatalyst owns a series of conspicuous characteristics, such as very suitable band structure, strong physicochemical stability, abundant reserves, low cost, etc. Research on the g-C3N4 or g-C3N4-based photocatalysts for real applications has become a competitive hot topic and a frontier area with thousands of publications over the past 17 years. In this paper, we carefully reviewed the recent advances in the synthesis and structural design of g-C3N4 materials for efficient photocatalysts. First, the crucial synthesis parameters of g-C3N4 were fully discussed, including the categories of g-C3N4 precursors, reaction temperature, reaction atmosphere and reaction duration. Second, the construction approaches of various nanostructures were surveyed in detail, such as hard and soft template, supramolecular preorganization and template-free approaches. Third, the characteristics of different exfoliation methods were compared and summarized. At the end, the problems of g-C3N4 materials in photocatalysis and the prospect of further development were disclosed and proposed to provide some key guidance for designing more efficient and applicable g-C3N4 or g-C3N4-based photocatalysts. Full article
Show Figures

Figure 1

17 pages, 2922 KB  
Article
Self-Assembled Synthesis of Porous Iron-Doped Graphitic Carbon Nitride Nanostructures for Efficient Photocatalytic Hydrogen Evolution and Nitrogen Fixation
by Valmiki B. Koli, Gavaskar Murugan and Shyue-Chu Ke
Nanomaterials 2023, 13(2), 275; https://doi.org/10.3390/nano13020275 - 9 Jan 2023
Cited by 13 | Viewed by 5201
Abstract
In this study, Fe-doped graphitic carbon nitride (Fe-MCNC) with varying Fe contents was synthesized via a supramolecular approach, followed by thermal exfoliation, and was then used for accelerated photocatalytic hydrogen evolution and nitrogen fixation. Various techniques were used to study the physicochemical properties [...] Read more.
In this study, Fe-doped graphitic carbon nitride (Fe-MCNC) with varying Fe contents was synthesized via a supramolecular approach, followed by thermal exfoliation, and was then used for accelerated photocatalytic hydrogen evolution and nitrogen fixation. Various techniques were used to study the physicochemical properties of the MCN (g-C3N4 from melamine) and Fe-MCNC (MCN for g-C3N4 and C for cyanuric acid) catalysts. The field emission scanning electron microscopy (FE-SEM) images clearly demonstrate that the morphology of Fe-MCNC changes from planar sheets to porous, partially twisted (partially developed nanotube and nanorod) nanostructures. The elemental mapping study confirms the uniform distribution of Fe on the MCNC surface. The X-ray photoelectron spectroscopy (XPS) and UV-visible diffuse reflectance spectroscopy (UV-DRS) results suggest that the Fe species might exist in the Fe3+ state and form Fe-N bonds with N atoms, thereby extending the visible light absorption areas and decreasing the band gap of MCN. Furthermore, doping with precise amounts of Fe might induce exfoliation and increase the specific surface area, but excessive Fe could destroy the MCN structure. The optimized Fe-MCNC nanostructure had a specific surface area of 23.6 m2 g−1, which was 8.1 times greater than that of MCN (2.89 m2 g−1). To study its photocatalytic properties, the nanostructure was tested for photocatalytic hydrogen evolution and nitrogen fixation; 2Fe-MCNC shows the highest photocatalytic activity, which is approximately 13.3 times and 2.4 times better, respectively, than MCN-1H. Due to its high efficiency and stability, the Fe-MCNC nanostructure is a promising and ideal photocatalyst for a wide range of applications. Full article
(This article belongs to the Special Issue Nanoscience and Nanotechnology for Electronics)
Show Figures

Figure 1

15 pages, 12175 KB  
Article
Design and Architecture of P-O Co-Doped Porous g-C3N4 by Supramolecular Self-Assembly for Enhanced Hydrogen Evolution
by Ximiao Zhu, Fan Yang, Jinhua Liu, Guangying Zhou, Dongdong Chen, Zhang Liu and Jianzhang Fang
Catalysts 2022, 12(12), 1583; https://doi.org/10.3390/catal12121583 - 5 Dec 2022
Cited by 9 | Viewed by 2547
Abstract
A novel phosphorus and oxygen co-doped graphitic carbon nitride (sheetP-O-CNSSA) photocatalyst was successfully synthesized and applied for H2 evolution under visible light. In the synthesis process of sheetP-O-CNSSA, the supramolecular complex was developed by the [...] Read more.
A novel phosphorus and oxygen co-doped graphitic carbon nitride (sheetP-O-CNSSA) photocatalyst was successfully synthesized and applied for H2 evolution under visible light. In the synthesis process of sheetP-O-CNSSA, the supramolecular complex was developed by the self-assembly and copolymerization reaction among melamine, cyanuric acid (CA) and trithiocyanuric acid (TCA) to act as g-C3N4 precursors, while (NH4)2HPO4 was applied as P and O precursors for element doping. The chemical structures, morphologies, and optical properties of the sheetP-O-CNSSA were characterized by a series of measurements, i.e., XRD, FT-IR, SEM, TEM, UV-vis DRS, and PL. The results suggested that the introduction of P and O elements could enhance the separation and migration efficiency of photogenerated electrons and holes in the energy band of g-C3N4. The photocatalytic tests over Erythrosin B (EB) sensitized sheetP-O-CNSSA indicated that the hydrogen evolution was greatly enhanced compared with other catalysts and non-sensitized sheetP-O-CNSSA under visible light irradiation. Finally, a possible dye-sensitized photocatalysis mechanism was also proposed on the basis of the as-obtained results. Full article
Show Figures

Figure 1

14 pages, 2788 KB  
Article
Sn(IV)-Porphyrin-Based Nanostructures Featuring Pd(II)-Mediated Supramolecular Arrays and Their Photocatalytic Degradation of Acid Orange 7 Dye
by Nirmal Kumar Shee and Hee-Joon Kim
Int. J. Mol. Sci. 2022, 23(22), 13702; https://doi.org/10.3390/ijms232213702 - 8 Nov 2022
Cited by 23 | Viewed by 3658
Abstract
Two robust Sn(IV)-porphyrin-based supramolecular arrays (1 and 2) were synthesized via the reaction of trans-Pd(PhCN)2Cl2 with two precursor building blocks (SnP1 and SnP2). The structural patterns in these architectures vary from 2D to [...] Read more.
Two robust Sn(IV)-porphyrin-based supramolecular arrays (1 and 2) were synthesized via the reaction of trans-Pd(PhCN)2Cl2 with two precursor building blocks (SnP1 and SnP2). The structural patterns in these architectures vary from 2D to 3D depending on the axial ligation of Sn(IV)-porphyrin units. A discrete 2D tetrameric supramolecule (1) was constructed by coordination of {(trans-dihydroxo)[5,10-bis(4-pyridyl)-15,20-bis(phenyl) porphyrinato]}tin(IV) (SnP1) with trans-PdCl2 units. In contrast, the coordination between the {(trans-diisonicotinato)[5,10-bis(4-pyridyl)-15,20-bis(phenyl)porphyrinato]}tin(IV) (SnP2) and trans-PdCl2 units formed a divergent 3D array (2). Axial ligation of the Sn(IV)-porphyrin building blocks not only alters the supramolecular arrays but also significantly modifies the nanostructures, including porosity, surface area, stability, and morphology. These structural changes consequently affected the photocatalytic degradation efficiency under visible-light irradiation towards acid orange 7 (AO) dye in an aqueous solution. The degradation efficiency of the AO dye in the aqueous solution was observed to be between 86% to 91% within 90 min by these photocatalysts. Full article
(This article belongs to the Special Issue State-of-the-Art Materials Science in Korea)
Show Figures

Graphical abstract

14 pages, 2272 KB  
Article
Changes in Structural, Morphological and Optical Features of Differently Synthetized C3N4-ZnO Heterostructures: An Experimental Approach
by Arianna Actis, Francesca Sacchi, Christos Takidis, Maria Cristina Paganini and Erik Cerrato
Inorganics 2022, 10(8), 119; https://doi.org/10.3390/inorganics10080119 - 16 Aug 2022
Cited by 5 | Viewed by 2941
Abstract
C3N4 is an innovative material that has had huge success as a photocatalyst in recent years. More recently, it has been coupled to robust metal oxides to obtain more stable materials. This work is focused on the different synthesis techniques [...] Read more.
C3N4 is an innovative material that has had huge success as a photocatalyst in recent years. More recently, it has been coupled to robust metal oxides to obtain more stable materials. This work is focused on the different synthesis techniques used to prepare bare C3N4 and combined C3N4/ZnO mixed systems. Different precursors, such as pure melamine and cyanuric acid-based supramolecular complexes, were employed for the preparation of the C3N4 material. Moreover, different solvents were also used, demonstrating that the use of water leads to the formation of a more stable heterojunction. Structural (XRD), morphological (FESEM) and optical (UV-vis) measurements underlined the role of the precursors used in the preparation of the materials. A clear trend can be extrapolated from this experimental approach involving different intimate contacts between the two C3N4 and ZnO phases, strictly connected to the particular preparation method adopted. The use of the supramolecular complexes for the preparation of C3N4 leads to a tighter association between the two phases at the heterojunction, resulting in much higher visible light harvesting (connected to lower band gap values). Full article
(This article belongs to the Special Issue New Advances into Nanostructured Oxides)
Show Figures

Figure 1

23 pages, 39007 KB  
Article
Two-Dimensional Titanium Dioxide–Surfactant Photoactive Supramolecular Networks: Synthesis, Properties, and Applications for the Conversion of Light Energy
by Harold Lozano, Sindy Devis, Juan Aliaga, Matías Alegría, Hernán Guzmán, Roberto Villarroel, Eglantina Benavente and Guillermo González
Int. J. Mol. Sci. 2022, 23(7), 4006; https://doi.org/10.3390/ijms23074006 - 4 Apr 2022
Cited by 9 | Viewed by 3442
Abstract
The desire to harness solar energy to address current global environmental problems led us to investigate two-dimensional (2D) core–shell hybrid photocatalysts in the form of a 2D-TiO2–surfactant, mainly composed of fatty acids. The bulk products, prepared by two slightly different methods, [...] Read more.
The desire to harness solar energy to address current global environmental problems led us to investigate two-dimensional (2D) core–shell hybrid photocatalysts in the form of a 2D-TiO2–surfactant, mainly composed of fatty acids. The bulk products, prepared by two slightly different methods, consist of stacked host–guest hybrid sheets held together by van der Waals forces between alkyl carboxylate moieties, favoring the synergistic conjugation of the photophysical properties of the core and the hydrophobicity of the self-assembled surfactant monolayer of the shell. X-ray diffraction and the vibrational characteristics of the products revealed the influence of synthesis strategies on two types of supramolecular aggregates that differ in the core chemical structure, guest conformers of alkyl surfactant tails and type, and the bilayer and monolayer of the structure of nanocomposites. The singular ability of the TiO2 core to anchor carboxylate leads to commensurate hybrids, in contrast to both layered clay and layered double-hydroxide-based ion exchangers which have been previously reported, making them potentially interesting for modeling the role of fatty acids and lipids in bio-systems. The optical properties and photocatalytic activity of the products, mainly in composites with smaller bandgap semiconductors, are qualitatively similar to those of nanostructured TiO2 but improve their photoresponse due to bandgap shifts and the extreme aspect-ratio characteristics of two-dimensional TiO2 confinement. These results could be seen as a proof-of-concept of the potential of these materials to create custom-designed 2D-TiO2–surfactant supramolecular photocatalysts. Full article
(This article belongs to the Special Issue Supramolecular Materials)
Show Figures

Figure 1

13 pages, 2483 KB  
Article
Molecular Dye-Sensitized Photocatalysis with Metal-Organic Framework and Metal Oxide Colloids for Fuel Production
by Philip M. Stanley and Julien Warnan
Energies 2021, 14(14), 4260; https://doi.org/10.3390/en14144260 - 14 Jul 2021
Cited by 14 | Viewed by 3402
Abstract
Colloidal dye-sensitized photocatalysis is a promising route toward efficient solar fuel production by merging properties of catalysis, support, light absorption, and electron mediation in one. Metal-organic frameworks (MOFs) are host materials with modular building principles allowing scaffold property tailoring. Herein, we combine these [...] Read more.
Colloidal dye-sensitized photocatalysis is a promising route toward efficient solar fuel production by merging properties of catalysis, support, light absorption, and electron mediation in one. Metal-organic frameworks (MOFs) are host materials with modular building principles allowing scaffold property tailoring. Herein, we combine these two fields and compare porous Zr-based MOFs UiO-66-NH2(Zr) and UiO-66(Zr) to monoclinic ZrO2 as model colloid hosts with co-immobilized molecular carbon dioxide reduction photocatalyst fac-ReBr(CO)3(4,4′-dcbpy) (dcbpy = dicarboxy-2,2′-bipyridine) and photosensitizer Ru(bpy)2(5,5′-dcbpy)Cl2 (bpy = 2,2′-bipyridine). These host-guest systems demonstrate selective CO2-to-CO reduction in acetonitrile in presence of an electron donor under visible light irradiation, with turnover numbers (TONs) increasing from ZrO2, to UiO-66, and to UiO-66-NH2 in turn. This is attributed to MOF hosts facilitating electron hopping and enhanced CO2 uptake due to their innate porosity. Both of these phenomena are pronounced for UiO-66-NH2(Zr), yielding TONs of 450 which are 2.5 times higher than under MOF-free homogeneous conditions, highlighting synergistic effects between supramolecular photosystem components in dye-sensitized MOFs. Full article
(This article belongs to the Special Issue Advances in Molecular Artificial Photosynthesis)
Show Figures

Graphical abstract

Back to TopTop