Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (9)

Search Parameters:
Keywords = superior thalamic radiation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 1343 KiB  
Article
Estimated Disease Progression Trajectory of White Matter Disruption in Unilateral Temporal Lobe Epilepsy: A Data-Driven Machine Learning Approach
by Daichi Sone, Noriko Sato, Yoko Shigemoto, Iman Beheshti, Yukio Kimura and Hiroshi Matsuda
Brain Sci. 2024, 14(10), 992; https://doi.org/10.3390/brainsci14100992 - 29 Sep 2024
Viewed by 1594
Abstract
Background/Objectives: Although the involvement of progressive brain alterations in epilepsy was recently suggested, individual patients’ trajectories of white matter (WM) disruption are not known. Methods: We investigated the disease progression patterns of WM damage and its associations with clinical metrics. We examined the [...] Read more.
Background/Objectives: Although the involvement of progressive brain alterations in epilepsy was recently suggested, individual patients’ trajectories of white matter (WM) disruption are not known. Methods: We investigated the disease progression patterns of WM damage and its associations with clinical metrics. We examined the cross-sectional diffusion tensor imaging (DTI) data of 155 patients with unilateral temporal lobe epilepsy (TLE) and 270 age/gender-matched healthy controls, and we then calculated the average fractional anisotropy (FA) values within 20 WM tracts of the whole brain. We used the Subtype and Stage Inference (SuStaIn) program to detect the progression trajectory of FA changes and investigated its association with clinical parameters including onset age, disease duration, drug-responsiveness, and the number of anti-seizure medications (ASMs). Results: The SuStaIn algorithm identified a single subtype model in which the initial damage occurs in the ipsilateral uncinate fasciculus (UF), followed by damage in the forceps, superior longitudinal fasciculus (SLF), and anterior thalamic radiation (ATR). This pattern was replicated when analyzing TLE with hippocampal sclerosis (n = 50) and TLE with no lesions (n = 105) separately. Further-progressed stages were associated with longer disease duration (p < 0.001) and a greater number of ASMs (p = 0.001). Conclusions: the disease progression model based on WM tracts may be useful as a novel individual-level biomarker. Full article
(This article belongs to the Special Issue Advances of AI in Neuroimaging)
Show Figures

Figure 1

13 pages, 3614 KiB  
Article
White Matter Magnetic Resonance Diffusion Measures in Multiple Sclerosis with Overactive Bladder
by Xixi Yang, Martina D. Liechti, Baris Kanber, Carole H. Sudre, Gloria Castellazzi, Jiaying Zhang, Marios C. Yiannakas, Gwen Gonzales, Ferran Prados, Ahmed T. Toosy, Claudia A. M. Gandini Wheeler-Kingshott and Jalesh N. Panicker
Brain Sci. 2024, 14(10), 975; https://doi.org/10.3390/brainsci14100975 - 27 Sep 2024
Viewed by 1525
Abstract
Background: Lower urinary tract (LUT) symptoms are reported in more than 80% of patients with multiple sclerosis (MS), most commonly an overactive bladder (OAB). The relationship between brain white matter (WM) changes in MS and OAB symptoms is poorly understood. Objectives: We aim [...] Read more.
Background: Lower urinary tract (LUT) symptoms are reported in more than 80% of patients with multiple sclerosis (MS), most commonly an overactive bladder (OAB). The relationship between brain white matter (WM) changes in MS and OAB symptoms is poorly understood. Objectives: We aim to evaluate (i) microstructural WM differences across MS patients (pwMS) with OAB symptoms, patients without LUT symptoms, and healthy subjects using diffusion tensor imaging (DTI), and (ii) associations between clinical OAB symptom scores and DTI indices. Methods: Twenty-nine female pwMS [mean age (SD) 43.3 years (9.4)], including seventeen with OAB [mean age (SD) 46.1 years (8.6)] and nine without LUT symptoms [mean age (SD) 37.5 years (8.9)], and fourteen healthy controls (HCs) [mean age (SD) 48.5 years (20)] were scanned in a 3T MRI with a DTI protocol. Additionally, clinical scans were performed for WM lesion segmentation. Group differences in fractional anisotropy (FA) were evaluated using tract-based spatial statistics. The Urinary Symptom Profile questionnaire assessed OAB severity. Results: A statistically significant reduction in FA (p = 0.004) was identified in microstructural WM in pwMS, compared with HCs. An inverse correlation was found between FA in frontal and parietal WM lobes and OAB scores (p = 0.021) in pwMS. Areas of lower FA, although this did not reach statistical significance, were found in both frontal lobes and the rest of the non-dominant hemisphere in pwMS with OAB compared with pwMS without LUT symptoms (p = 0.072). Conclusions: This study identified that lesions affecting different WM tracts in MS can result in OAB symptoms and demonstrated the role of the WM in the neural control of LUT functions. By using DTI, the association between OAB symptom severity and WM changes were identified, adding knowledge to the current LUT working model. As MS is predominantly a WM disease, these findings suggest that regional WM involvement, including of the anterior corona radiata, anterior thalamic radiation, superior longitudinal fasciculus, and superior frontal-occipital fasciculus and a non-dominant prevalence in WM, can result in OAB symptoms. OAB symptoms in MS correlate with anisotropy changes in different white matter tracts as demonstrated by DTI. Structural impairment in WM tracts plays an important role in LUT symptoms in MS. Full article
(This article belongs to the Section Molecular and Cellular Neuroscience)
Show Figures

Figure 1

17 pages, 1284 KiB  
Article
Macrostructural and Microstructural White Matter Alterations Are Associated with Apathy across the Clinical Alzheimer’s Disease Spectrum
by Riccardo Manca, Sarah A. Jones and Annalena Venneri
Brain Sci. 2022, 12(10), 1383; https://doi.org/10.3390/brainsci12101383 - 13 Oct 2022
Cited by 6 | Viewed by 2574
Abstract
Apathy is the commonest neuropsychiatric symptom in Alzheimer’s disease (AD). Previous findings suggest that apathy is caused by a communication breakdown between functional neural networks involved in motivational–affective processing. This study investigated the relationship between white matter (WM) damage and apathy in AD. [...] Read more.
Apathy is the commonest neuropsychiatric symptom in Alzheimer’s disease (AD). Previous findings suggest that apathy is caused by a communication breakdown between functional neural networks involved in motivational–affective processing. This study investigated the relationship between white matter (WM) damage and apathy in AD. Sixty-one patients with apathy (AP-PT) and 61 without apathy (NA-PT) were identified from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database and matched for cognitive status, age and education. Sixty-one cognitively unimpaired (CU) participants were also included as controls. Data on cognitive performance, cerebrospinal fluid biomarkers, brain/WM hyperintensity volumes and diffusion tensor imaging indices were compared across groups. No neurocognitive differences were found between patient groups, but the AP-PT group had more severe neuropsychiatric symptoms. Compared with CU participants, only apathetic patients had deficits on the Clock Drawing Test. AP-PT had increased WM damage, both macrostructurally, i.e., larger WM hyperintensity volume, and microstructurally, i.e., increased radial/axial diffusivity and reduced fractional anisotropy in the fornix, cingulum, anterior thalamic radiations and superior longitudinal and uncinate fasciculi. AP-PT showed signs of extensive WM damage, especially in associative tracts in the frontal lobes, fornix and cingulum. Disruption in structural connectivity might affect crucial functional inter-network communication, resulting in motivational deficits and worse cognitive decline. Full article
(This article belongs to the Special Issue New Frontiers in Aging Psychiatry)
Show Figures

Figure 1

12 pages, 1182 KiB  
Article
Neurological Music Therapy Rebuilds Structural Connectome after Traumatic Brain Injury: Secondary Analysis from a Randomized Controlled Trial
by Aleksi J. Sihvonen, Sini-Tuuli Siponkoski, Noelia Martínez-Molina, Sari Laitinen, Milla Holma, Mirja Ahlfors, Linda Kuusela, Johanna Pekkola, Sanna Koskinen and Teppo Särkämö
J. Clin. Med. 2022, 11(8), 2184; https://doi.org/10.3390/jcm11082184 - 14 Apr 2022
Cited by 12 | Viewed by 6398
Abstract
Background: Traumatic brain injury (TBI) is a common and devastating neurological condition, associated often with poor functional outcome and deficits in executive function. Due to the neuropathology of TBI, neuroimaging plays a crucial role in its assessment, and while diffusion MRI has been [...] Read more.
Background: Traumatic brain injury (TBI) is a common and devastating neurological condition, associated often with poor functional outcome and deficits in executive function. Due to the neuropathology of TBI, neuroimaging plays a crucial role in its assessment, and while diffusion MRI has been proposed as a sensitive biomarker, longitudinal studies evaluating treatment-related diffusion MRI changes are scarce. Recent evidence suggests that neurological music therapy can improve executive functions in patients with TBI and that these effects are underpinned by neuroplasticity changes in the brain. However, studies evaluating music therapy induced structural connectome changes in patients with TBI are lacking. Design: Single-blind crossover (AB/BA) randomized controlled trial (NCT01956136). Objective: Here, we report secondary outcomes of the trial and set out to assess the effect of neurological music therapy on structural white matter connectome changes and their association with improved execute function in patients with TBI. Methods: Using an AB/BA design, 25 patients with moderate or severe TBI were randomized to receive a 3-month neurological music therapy intervention either during the first (AB, n = 16) or second (BA, n = 9) half of a 6-month follow-up period. Neuropsychological testing and diffusion MRI scans were performed at baseline and at the 3-month and 6-month stage. Findings: Compared to the control group, the music therapy group increased quantitative anisotropy (QA) in the right dorsal pathways (arcuate fasciculus, superior longitudinal fasciculus) and in the corpus callosum and the right frontal aslant tract, thalamic radiation and corticostriatal tracts. The mean increased QA in this network of results correlated with improved executive function. Conclusions: This study shows that music therapy can induce structural white matter neuroplasticity in the post-TBI brain that underpins improved executive function. Full article
(This article belongs to the Special Issue New Perspectives in Rehabilitation after Traumatic Brain Injury)
Show Figures

Figure 1

14 pages, 3125 KiB  
Article
Association between Changes in White Matter Microstructure and Cognitive Impairment in White Matter Lesions
by An-Ming Hu, Yan-Ling Ma, Yue-Xiu Li, Zai-Zhu Han, Nan Yan and Yu-Mei Zhang
Brain Sci. 2022, 12(4), 482; https://doi.org/10.3390/brainsci12040482 - 7 Apr 2022
Cited by 12 | Viewed by 3241
Abstract
This study investigated the characteristics of cognitive impairment in patients with white matter lesions (WMLs) caused by cerebral small vessel disease and the corresponding changes in WM microstructures. Diffusion tensor imaging (DTI) data of 50 patients with WMLs and 37 healthy controls were [...] Read more.
This study investigated the characteristics of cognitive impairment in patients with white matter lesions (WMLs) caused by cerebral small vessel disease and the corresponding changes in WM microstructures. Diffusion tensor imaging (DTI) data of 50 patients with WMLs and 37 healthy controls were collected. Patients were divided into vascular cognitive impairment non-dementia and vascular dementia groups. Tract-based spatial statistics showed that patients with WMLs had significantly lower fractional anisotropy (FA) and higher mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD) values throughout the WM areas but predominately in the forceps minor, forceps major (FMA), bilateral corticospinal tract, inferior fronto-occipital fasciculus, superior longitudinal fasciculus, inferior longitudinal fasciculus (ILF), and anterior thalamic radiation, compared to the control group. These fiber bundles were selected as regions of interest. There were significant differences in the FA, MD, AD, and RD values (p < 0.05) between groups. The DTI metrics of all fiber bundles significantly correlated with the Montreal Cognitive Assessment (p < 0.05), with the exception of the AD values of the FMA and ILF. Patients with WMLs showed changes in diffusion parameters in the main WM fiber bundles. Quantifiable changes in WM microstructure are the main pathological basis of cognitive impairment, and may serve as a biomarker of WMLs. Full article
(This article belongs to the Section Neurosurgery and Neuroanatomy)
Show Figures

Figure 1

15 pages, 1312 KiB  
Article
Elevated Systemic Inflammation Is Associated with Reduced Corticolimbic White Matter Integrity in Depression
by MacGregor Thomas, Jonathan Savitz, Ye Zhang, Kaiping Burrows, Ryan Smith, Leandra Figueroa-Hall, Rayus Kuplicki, Sahib S. Khalsa, Yasuyuki Taki, Tracy Kent Teague, Michael R. Irwin, Fang-Cheng Yeh, Martin P. Paulus, Haixia Zheng and on behalf of Tulsa 1000 Investigators
Life 2022, 12(1), 43; https://doi.org/10.3390/life12010043 - 28 Dec 2021
Cited by 12 | Viewed by 4288
Abstract
(1) Background: Growing evidence indicates that inflammation can induce neural circuit dysfunction and plays a vital role in the pathogenesis of major depressive disorder (MDD). Nevertheless, whether inflammation affects the integrity of white matter pathways is only beginning to be explored. (2) Methods: [...] Read more.
(1) Background: Growing evidence indicates that inflammation can induce neural circuit dysfunction and plays a vital role in the pathogenesis of major depressive disorder (MDD). Nevertheless, whether inflammation affects the integrity of white matter pathways is only beginning to be explored. (2) Methods: We computed quantitative anisotropy (QA) from diffusion magnetic resonance imaging as an index of white matter integrity and regressed QA on C-reactive protein (CRP), controlling for age, sex, and BMI, in 176 participants with MDD. (3) Results: The QA values of several white matter tracts were negatively correlated with CRP concentration (standardized beta coefficient = −0.22, 95%CI = −0.38–−0.06, FDR < 0.05). These tracts included the bilateral cortico-striatal tracts, thalamic radiations, inferior longitudinal fasciculi, corpus callosum (the forceps minor portion and the tapetum portion), cingulum bundles, and the left superior longitudinal fasciculus III. Importantly, the association remained robust after regressing up to twelve potential confounders. The bilateral fornix and a small portion of the thalamic radiation showed a positive association with CRP levels, but these associations did not remain significant after adjusting for confounders. (4) Conclusions: Peripheral inflammation may contribute to the etiology of MDD by impacting the microstructural integrity of brain corticolimbic white matter pathways. Full article
Show Figures

Figure 1

17 pages, 2109 KiB  
Article
Regional Topological Aberrances of White Matter- and Gray Matter-Based Functional Networks for Attention Processing May Foster Traumatic Brain Injury-Related Attention Deficits in Adults
by Ziyan Wu, Meng Cao, Xin Di, Kai Wu, Yu Gao and Xiaobo Li
Brain Sci. 2022, 12(1), 16; https://doi.org/10.3390/brainsci12010016 - 24 Dec 2021
Cited by 3 | Viewed by 3455
Abstract
Traumatic brain injury (TBI) is highly prevalent in adults. TBI-related functional brain alterations have been linked with common post-TBI neurobehavioral sequelae, with unknown neural substrates. This study examined the systems-level functional brain alterations in white matter (WM) and gray matter (GM) for visual [...] Read more.
Traumatic brain injury (TBI) is highly prevalent in adults. TBI-related functional brain alterations have been linked with common post-TBI neurobehavioral sequelae, with unknown neural substrates. This study examined the systems-level functional brain alterations in white matter (WM) and gray matter (GM) for visual sustained-attention processing, and their interactions and contributions to post-TBI attention deficits. Task-based functional MRI data were collected from 42 adults with TBI and 43 group-matched normal controls (NCs), and analyzed using the graph theoretic technique. Global and nodal topological properties were calculated and compared between the two groups. Correlation analyses were conducted between the neuroimaging measures that showed significant between-group differences and the behavioral symptom measures in attention domain in the groups of TBI and NCs, respectively. Significantly altered nodal efficiencies and/or degrees in several WM and GM nodes were reported in the TBI group, including the posterior corona radiata (PCR), posterior thalamic radiation (PTR), postcentral gyrus (PoG), and superior temporal sulcus (STS). Subjects with TBI also demonstrated abnormal systems-level functional synchronization between the PTR and STS in the right hemisphere, hypo-interaction between the PCR and PoG in the left hemisphere, as well as the involvement of systems-level functional aberrances in the PCR in TBI-related behavioral impairments in the attention domain. The findings of the current study suggest that TBI-related systems-level functional alterations associated with these two major-association WM tracts, and their anatomically connected GM regions may play critical role in TBI-related behavioral deficits in attention domains. Full article
(This article belongs to the Special Issue Brain Dynamics and Connectivity from Birth through Adulthood)
Show Figures

Graphical abstract

8 pages, 3676 KiB  
Article
Alteration of White Matter in Patients with Central Post-Stroke Pain
by Jung Geun Park, Bo Young Hong, Hae-Yeon Park, Yeun Jie Yoo, Mi-Jeong Yoon, Joon-Sung Kim and Seong Hoon Lim
J. Pers. Med. 2021, 11(5), 417; https://doi.org/10.3390/jpm11050417 - 15 May 2021
Cited by 11 | Viewed by 3017
Abstract
A stroke may be followed by central post-stroke pain (CPSP), which is characterized by chronic neuropathic pain. The exact mechanism has not yet been fully uncovered. We investigated alterations in the white matters in patients with CPSP, compared with stroke patients without CPSP [...] Read more.
A stroke may be followed by central post-stroke pain (CPSP), which is characterized by chronic neuropathic pain. The exact mechanism has not yet been fully uncovered. We investigated alterations in the white matters in patients with CPSP, compared with stroke patients without CPSP and normal controls. Our retrospective cross-sectional, case-control study participants were assigned to three groups: CPSP (stroke patients with CPSP (n = 17)); stroke control (stroke patients without CPSP (n = 26)); and normal control (normal subjects (n = 34)). The investigation of white matter for CPSP was focused on the values of fiber numbers (FN) and fractional anisotrophy (FA) for spinothalamic tract (STT), anterior thalamic radiation (ATR), superior thalamic radiation (STR) and posterior thalamic radiation (PTR), and corticospinal tract (CST) was measured. The FA for the STT and STR of the CPSP group were lower than those for the stroke control and normal control groups. The FA of CST and ATR did not differ between the CPSP and stroke groups, but both differed from the normal control. The FA of PTR in the stroke control group differed from the normal control group, but not from the CPSP group. The FN of CST, STT, ATR, and STR for the CPSP and stroke control groups did not differ from each other, but both differed from those of normal controls. FN of PTR did not differ between the CPSP and normal control groups. The alterations in the spinothalamic tract and superior thalamic radiation after stroke would play a role in the pathogenesis of CPSP. Full article
Show Figures

Figure 1

12 pages, 1104 KiB  
Article
Correlation between Executive Network Integrity and Sarcopenia in Patients with Parkinson’s Disease
by Chih-Ying Lee, Hsiu-Ling Chen, Pei-Chin Chen, Yueh-Sheng Chen, Pi-Ling Chiang, Cheng-Kang Wang, Cheng-Hsien Lu, Meng-Hsiang Chen, Kun-Hsien Chou, Yu-Chi Huang and Wei-Che Lin
Int. J. Environ. Res. Public Health 2019, 16(24), 4884; https://doi.org/10.3390/ijerph16244884 - 4 Dec 2019
Cited by 19 | Viewed by 3948
Abstract
Background: Sarcopenia is critically associated with morbidity and mortality in the progression of Parkinson’s disease (PD). However, analyses of clinical severity and brain changes, such as white matter (WM) alterations in PD patients with sarcopenia are limited. Further understanding of the factors [...] Read more.
Background: Sarcopenia is critically associated with morbidity and mortality in the progression of Parkinson’s disease (PD). However, analyses of clinical severity and brain changes, such as white matter (WM) alterations in PD patients with sarcopenia are limited. Further understanding of the factors associated with sarcopenia may provide a focused screen and potential for early intervention in PD patients. Methods: 52 PD patients and 19 healthy participants accepted dual-energy X-ray absorptiometry to measure the body composition. Using diffusion tensor imaging, the difference of WM integrity was measured between PD patients with sarcopenia (PDSa) and without sarcopenia (PDNSa). Multivariate analysis was performed to explore the relationships between clinical factors, WM integrity, and sarcopenia in PD patients. Results: 21 PD patients (40.4%) had sarcopenia. PDSa had a higher Unified Parkinson’s Disease Rating Scale (UPDRS III) score, lower body mass index (BMI) and lower fat weight compared with the PDNSa. Additionally, PDSa patients exhibited lower fractional anisotropy accompanied by higher radial diffusivity and/or higher mean diffusivity in the fronto-striato-thalamic circuits, including bilateral cingulum, left superior longitudinal fasciculus, left genu of corpus callosum, and right anterior thalamic radiation, which participate in the executive function. In addition, decreased muscle mass was associated with worse WM integrity in these regions. Multiple linear regression analysis revealed that WM integrity in the left cingulum, right anterior thalamic radiation, together with gender (male) significantly predicted muscle mass in PD patients. Conclusions: WM alterations in the executive network, such as the fronto-striato-thalamic circuits, may indicate a risk factor for ongoing sarcopenia in PD patients. The effectiveness of using executive function to serve as a prodromal marker of sarcopenia in PD patients should be evaluated in future studies. Full article
Show Figures

Figure 1

Back to TopTop