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Abstract: Traumatic brain injury (TBI) is highly prevalent in adults. TBI-related functional brain
alterations have been linked with common post-TBI neurobehavioral sequelae, with unknown neural
substrates. This study examined the systems-level functional brain alterations in white matter
(WM) and gray matter (GM) for visual sustained-attention processing, and their interactions and
contributions to post-TBI attention deficits. Task-based functional MRI data were collected from
42 adults with TBI and 43 group-matched normal controls (NCs), and analyzed using the graph
theoretic technique. Global and nodal topological properties were calculated and compared between
the two groups. Correlation analyses were conducted between the neuroimaging measures that
showed significant between-group differences and the behavioral symptom measures in attention
domain in the groups of TBI and NCs, respectively. Significantly altered nodal efficiencies and/or
degrees in several WM and GM nodes were reported in the TBI group, including the posterior corona
radiata (PCR), posterior thalamic radiation (PTR), postcentral gyrus (PoG), and superior temporal
sulcus (STS). Subjects with TBI also demonstrated abnormal systems-level functional synchronization
between the PTR and STS in the right hemisphere, hypo-interaction between the PCR and PoG in
the left hemisphere, as well as the involvement of systems-level functional aberrances in the PCR in
TBI-related behavioral impairments in the attention domain. The findings of the current study suggest
that TBI-related systems-level functional alterations associated with these two major-association WM
tracts, and their anatomically connected GM regions may play critical role in TBI-related behavioral
deficits in attention domains.

Keywords: traumatic brain injury (TBI); post-TBI attention deficits; visual sustained-attention task
(VSAT); graph theoretic technique (GTT); white matter tracts

1. Introduction

Traumatic brain injury (TBI) is one of the major public health concerns that occurs
primarily in young adults [1]. TBI-related functional brain alterations, such as disruptive
functional connectivity (FC) among distributed neural networks that support cognitive
processes and behavioral control, have been frequently reported and suggested to likely
link with severe post-TBI neurobehavioral sequelae [2–5]. Among the severe post-TBI
neurobehavioral consequences, attention deficits have been found to be most commonly
reported and can persist and create lifelong challenges to the affected individuals [6–8].
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However, brain mechanisms associated with post-TBI attention deficits have not yet been
sufficiently investigated.

Although TBI-induced tissue damages in both gray matter (GM) and white matter
(WM) have been widely reported, WM tracts are suggested to be particularly vulnerable to
mechanical shearing and the stretch forces of TBI [9,10]. Diffusion-MRI (dMRI) studies in
adults with chronical TBI have reported microstructural anomalies in various WM regions
and their association with post-TBI attention deficits. Specifically, Raj et al. reported
increased mean diffusivity (MD) and radial diffusivity (RD) values in the genu of corpus
callosum (CC) in adult patients with chronic TBI, and their associations with altered
behavioral performance in an attention task [11]. Similarly, Jun et al. demonstrated that
TBI subjects with chronic post-concussive syndrome had significantly reduced fractional
anisotropy (FA) in the genu of CC, relative to healthy controls, and the poorer CC alignment
was significantly correlated with longer reaction times in response to the Attention Network
Test (ANT) [12]. Relative to matched controls, adult patients with TBI have also been found
to have significantly decreased FA in the posterior corona radiata (PCR), which strongly
contributes to lower neuropsychological test scores in the attention domain [13] and poorer
attentional control performance quantified using the ANT [14]. In addition, adult patients
with TBI have also shown significantly lower MD in the superior longitudinal fasciculus,
anterior midbody of CC, and cerebral isthmus, which were all suggested to link to post-TBI
attention problems [15].

The vast majority of functional neuroimaging studies in TBI have focused on the
GM regions, and only a handful of these existing GM-based functional brain studies have
attempted to address the neural substrates of TBI-related attention deficits. Specifically,
an early task-based functional MRI (fMRI) study reported decreased brain activation in
the anterior cingulate cortex in a small sample of adult patients with moderate-to-severe
TBI patients, as compared to healthy controls, during a block-designed modified stroop
task [16]. Another early fMRI study reported significantly reduced neural activations in
the posterior parietal cortex, frontal eye fields, and ventrolateral prefrontal cortex during
attentional disengagement in adults with mild TBI, relative to group-matched controls [17].
In addition, increased fMRI activation in bilateral middle-frontal and supplementary motor
cortices during visual sustained-attention processing was reported in adults with moderate
to severe TBI [18]. By utilizing the functional near-infrared spectroscopy (fNIRS) technique,
Hibino et al. reported significantly increased medial frontal activation and decreased
lateral frontal activation in a small sample of young adult patients with severe TBI, as
compared to healthy controls, during the performance of an attention task [19]. During the
magnetoencephalography (MEG) recording, Petley et al. showed reduced global activation
and delayed reaction times when performing a visual attention task in patients with mild
TBI compared to controls [20].

By utilizing the FC technique in fMRI, Bonnelle et al. reported significant associa-
tions between altered within-default mode network FC (specifically, interactions between
precuneus and other brain regions including the ventromedial prefrontal cortices, infe-
rior parietal cortices, middle temporal and frontal gyri, thalami, and parahippocampal
gyri in the bilateral hemispheres) and behavioral impairments when performing a choice
reaction-time task in adult subjects with TBI [21]. Significantly increased resting-state fMRI
FC within the sensorimotor network and its association with impairments in the attention
domain have also been reported in a relatively larger sample of adults with moderate
and severe TBI, relative to controls [22]. Similarly, an MEG study reported significantly
elevated resting-state FC among frontal, parietal, and temporal areas, and their linkage
with inattentive behaviors in male TBI patients, relative to a matched control group [23].
Our recent fNIRS study found that young adults with mild and moderate TBI showed
significantly higher inferior frontal-occipital FC for sustained-attention processing, and the
abnormally increased FC were significantly correlated with more hyperactive/impulsive
symptoms in the TBI group [24].
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Recently, accumulating evidence has highlighted the existence and reliability of blood
oxygen level-dependent (BOLD) signal fluctuations in WM [25–30], enabling the iden-
tification of functional communications across large distances among distributed WM
networks. The development of a graph theoretic technique has enabled us to assess the
complex and interactive patterns of multiple remote brain regions that are affected by
the diffuse axonal injury nature of TBI, which has the potential to provide informative
findings in uncovering network abnormalities in TBI [31–34]. To the best of our knowledge,
only one recent study has explored alterations of WM network topology in a cohort of
patients with TBI, which reported enhanced FC among large-scale WM networks involving
inferior fronto-occipital fasciculus, primary sensorimotor, occipital, and pre/postcentral
WM networks [35]. Nevertheless, systems-level TBI-related functional brain alterations in
both GM and WM, and their interactions and contributions to post-TBI attention deficits,
have not yet been fully addressed.

The present study has enrolled 42 young adults with TBI and 43 group-matched
controls to examine the systems-level TBI-related functional brain characteristics in both
GM and WM and their interactions during visual sustained-attention processing, and their
contribution to post-TBI behavioral impairments in attention domain. On the bases of
findings from our and other research teams [36–38], we hypothesize that (a) relative to
the matched controls, adults with TBI would show significant and interactive topological
alterations in the WM and GM functional organizations involving attention processing,
particularly in the major WM tracts that play critical role in attentional deployment (in-
cluding parts of the corona radiata [14,39], thalamocortical radiation [40], and superior
longitudinal fasciculus [41,42]), as well as the frontal and parietal GM regions that are
subserved by these proposed WM tracts for the bottom-up and top-down attentional and
cognitive control processes; and (b) the regional topological aberrances, especially those in
the WM network that also significantly interact with regional GM topological anomalies,
significantly contribute to elevated inattentive and/or hyperactive/impulsive behaviors in
adults with TBI.

2. Materials and Methods
2.1. Participants

A total of 85 young adults (18 to 27 years of age) were involved in this study. A total
of 42 (including 21 males and 21 females) had a history of TBI, and 43 (including 23 males
and 20 females) were group-matched normal controls (NCs). The specific inclusion criteria
for the TBI group were: having a history of one or multiple sports- or recreation-related
(i.e., tobogganing/sledding, amusement attractions) TBIs clinically confirmed at least
6 months prior to the study appointment, having a non-penetrating head injury which
caused diffuse brain damage (according to medical records), and having no history of
diagnosis with any sub-presentation of attention-deficit/hyperactivity disorder (ADHD)
prior to the first onset TBI. Specific inclusion criteria for NCs were: having no history of TBI,
having no history of diagnosed ADHD (any sub-presentation), and having T-scores < 60 for
inattentive, hyperactive/impulsive, and combined symptoms in Conner’s Adult ADHD
Self-Reporting Rating Scales (CAARS) [43], which were administered during the study
assessments. The general inclusion criteria for both subject groups were: native or fluent
speakers of English, and strongly right-handed, measured using the Edinburgh Handedness
Inventory [44]. None of the involved participants reported a history or current diagnosis
of any neurological disorder (such as Epilepsy), severe psychiatric disorder (including
Schizophrenia, Autism Spectrum Disorders, Major Depression, Anxiety, Conduct Disorder,
etc.), received treatment with any stimulant or non-stimulant psychotropic medication
within the month prior to testing, or having MRI constraints, such as metal implants,
claustrophobia, etc.

Participants in both groups were recruited from the New Jersey Institute of Technology
(NJIT) through on-campus study flyers. The demographic and clinical characteristics of the
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involved participants are summarized in Table 1. The study received Institutional Reviewed
Board Approvals at NJIT. Written informed consents were provided by all participants.

Table 1. Demographic, clinical/behavioral, and task-performance measures of the study sample.

NC
(N = 43)

TBI
(N = 42)

Mean (SD) Mean (SD) p Value

Age 22.36 (2.74) 21.63 (2.00) 0.167
Education year 14.98 (1.95) 14.26 (1.56) 0.066

Mother’s education year 15.35 (2.20) 15.55 (2.70) 0.710
Father’s education year 15.77 (2.81) 15.50 (2.78) 0.660

CAARS scores
Inattentive raw scores 4.67 (2.81) 9.31 (6.28) <0.001

Inattentive T-scores 45.88 (6.48) 57.02 (15.18) <0.001
Hyperactive/impulsive raw scores 5.07 (2.76) 9.19 (5.80) <0.001

Hyperactive/impulsive T-scores 42.58 (5.93) 52.52 (14.66) <0.001

N (%) N (%) p Value

Male 23 (53.49) 21 (50.00) 0.917
Right-handed 43 (100) 42 (100) 1.000

Race/Ethnicity 0.094
Caucasian 12 (27.91) 21 (50.00)

Black or African American 4 (9.30) 7 (2.38)
Asian 20 (46.51) 9 (21.43)

Hispanic/Latino 2 (4.65) 2 (4.76)
More than one race 5 (11.63) 3 (7.14)

Functional MRI task performance
measures Mean (SD) Mean (SD) p Value

Accuracy rate 0.99 (0.04) 0.99 (0.01) 0.344
Omission error rate 0.009 (0.03) 0.001 (0.005) 0.131

Commission error rate 0.003 (0.01) 0.005 (0.01) 0.464
Overall response reaction time (ms) 607.09 (134.73) 604.45 (132.83) 0.928
Correct response reaction time(ms) 606.72 (135.02) 603.83 (132.47) 0.921

NC: normal control; TBI: traumatic brain injury; N: number of subjects; SD: standard deviation; p: level of
significance; CAARS: Conner’s Adult ADHD Self-Reporting Rating Scales; ms: milliseconds.

2.2. Experimental Task for fMRI Acquisition

During fMRI acquisition, each subject performed a block-designed visual sustained-
attention task (VSAT). The VSAT has been validated for its feasibility of measuring behav-
ioral and functional capacity of sustained attention in both children and adults [24,45–49].
The detailed design of the task was described in our previous studies [24,48,49]. Briefly, it
consists of five task blocks interleaved by five rest blocks (Supplementary Figure S1). Each
block lasts for 30 s. During the rest blocks, the participant was instructed to keep their eyes
open and to remain as relaxed and motionless as possible. In each of the five task blocks,
a red cross appeared in the center of the computer screen and lasted for 800 milliseconds.
Then, a target sequence of three-digit sets (1-3-5, 2-5-8, 3-7-9, 5-2-7, and 6-1-8, respectively)
were shown in red at the rate of one digit per 400 milliseconds. After a 1.0-s break, nine
sequences of three digits, ranging from 1 to 9, appeared in black in a pseudo-random order
at the rate of 400 milliseconds per digit. A 1.8-s response period ensued after each sequence.
In this response period, the subject was asked to press the left button of a response box with
the forefinger of their right hand when the stimulus sequence (black ones) matched the
target sequence (red ones), and to press the right button with the middle finger otherwise.
The total duration of the entire task was 5 min.

Prior to fMRI acquisition, a short training version of the task was provided to each
participant to ensure that they understood the requirements of the task. Task performances,
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including response accuracy rate, omission error rate, commission error rate, and over-
all/correct response reaction time, were examined in each subject (as shown in Table 1).

2.3. Experimental Setup and MRI Data Acquisition

Before the MRI scan, a pre-metal check was completed for ensuring the safety of
the experiment. Each participant was then positioned on a moveable examination table.
Earplugs were offered to attenuate the scanner noise. Head motion was restrained with
positioning pads. A bolster was set under the participants’ knees to help them remain still
and maintain the correct position during imaging. A head coil capable of sending and
receiving radio waves was placed above the participant’s head. A mirror was positioned
on the head coil, allowing the participant to see the visual stimuli that were performed
by screen of a computer-guided projector. A two-button response box was provided for
responding to the task stimuli. In addition, a squeeze ball was provided, in case the
participant wanted to alert the technologist or terminate the scan.

MRI data were collected using a 3-Tesla 32 channel Siemens TRIO (Siemens Medical
System, Erlangen, Germany) scanner at the Rutgers University Brain Imaging Center.
The fMRI data were obtained using a gradient echo-planar sequence with the following
parameters: repetition time (TR) = 1000 ms; echo time (TE) = 28.8 ms; flip angle = 30◦;
field of view = 208 mm; voxel size = 1.5 × 1.5 × 2.0 mm3 with no gap; slice number = 55.
High-resolution 3D T1-weighted structural images were collected using a magnetization-
prepared rapid gradient echo sequence with the following parameters: TR = 1900 ms;
TE = 2.52 ms; flip angle = 9◦; field of view = 250 mm; voxel size = 1.0 × 1.0 × 1.0 mm3; slice
number = 176.

2.4. Individual-Level fMRI Data Preprocessing

The fMRI data were preprocessed using the FMRIB Software Library v6.0 FEAT Tool-
box (Oxford, UK, https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSL/ accessed on 7 October 2021).
An initial visual check was first applied to each set of fMRI data for any missing volumes
or severe head motions. Motion artifacts were then corrected by applying the rigid-body
transformations [50], with the motion parameters, including the displacement (translation
along the x-, y-, and z-axes) and rotation around these axes, were estimated using the
first volume as reference. No participant was excluded for excessive head motion, with a
strict cutoff threshold of displacement = 1.0 mm. Next, the acquisition time between slices
was corrected, and non-brain structures were extracted. To improve the signal-to-noise
ratio, images were further smoothed with a 4-mm full-width-at-half-maximum Gaussian
kernel. A high-pass temporal filter of 1/75 Hz was implemented for low-frequency noise
removal. Then, each fMRI data was co-registered to the structural MRI data of the same
subject and normalized into the ICBM152_T1_2mm Montreal Neurological Institute (MNI)
template [50,51]. The task-based whole-brain activation map was then generated using
the FMRIB’s Improved Linear Model tool [52]. Motion parameters were regressed out
from each fMRI datum for residual effects removal. Finally, each Z-statistic map was
cluster-thresholded with the value of Z > 2.3 and at the significance level of p < 0.05 [53].

2.5. WM Functional Network Node Selection

In order to select the nodes for the WM functional network construction, a combined
power spectrum map was first generated (Figure 1A). Power spectrum, which measures the
signal’s power contained in a time signal at specific oscillatory frequencies [54,55], has been
identified as a unique and repeatable feature for quantifying synchronous BOLD signals
in WM [56]. To generate the study cohort-specific power spectrum map, a weighted-WM
mask was first created (in the MNI space) in each subject, using the segmentation tool
in FreeSurfer v.6.0 (Charlestown, MA, https://surfer.nmr.mgh.harvard.edu/ accessed on
17 September 2021). Then, each weighted-WM mask was binarized using a threshold of
0.5 (a default thresholding value for mask binarization, meaning that the current voxel had
a >50% possibility of being classified into WM). Next, a weighted-group-WM mask was

https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSL/
https://surfer.nmr.mgh.harvard.edu/
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generated by combining the binarized WM masks from all the individuals. It was then
binarized using a threshold of 0.8, i.e., the current voxel had a >80% possibility of being
included in the individual WM masks. Furthermore, this binarized-group-WM mask was
parcellated into 48 WM tracts in the MNI space, using the Johns Hopkins University (JHU)
ICBM-DTI-81 WM labels atlas [57].
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Figure 1. White matter and gray matter functional networks construction. (A) White matter net-
work construction flowchart, including power spectrum map generation, node selection, functional
connectivity matrices generation, and brain network small-world properties validation; (B) Gray
matter network construction flowchart, including brain activation map generation, node selection,
functional connectivity matrices generation, and brain network small-world properties validation. (L:
left hemisphere; R: right hemisphere; NC: normal control; TBI: traumatic brain injury).

For each individual, time series of the preprocessed fMRI data were extracted using
the 48 parcellated WM masks, and then normalized by converting an individual’s raw
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score into the standard z scores to avoid outlier issues. The power spectrum value of each
voxel was estimated using the fast Fourier transform under the frequency of 0.017 Hz,
which has been validated by previous fMRI studies in WM [26,58]. A total of 41 WM nodes
(spheres with radii = 2 mm) were then placed at the identified activation peaks (local power
spectrum maximum). Considering that the myelinated axon caliber varied in different WM
tracts [59], we, additionally, validated these WM nodes by overlapping each of the spherical
node with its associated JHU WM tract mask. Detailed information of the 41 nodes is listed
in the Supplementary Table S1.

2.6. WM Functional Network Construction and Topological Property Estimations

In each subject, the BOLD time series of the voxels in each of the 41 WM nodes were
extracted from the preprocessed fMRI data. Then, a wavelet-based approach was applied
to the signals of the 41 nodes for denoising [60]. This technique provides multi-frequency
information about signals, and is known to be effective for identifying non-stationary events
caused by motion and for detecting transient phenomena, such as spikes [60]. Specifically,
the time series of each voxel were decomposed in the wavelet domain, using the Maximal
Overlap Discrete Wavelet Transform. Wavelet scales 3, 4, and 5, which provided information
on the frequency band in the 0.015–0.125 Hz range, being denoted to contain the majority
of the task-related hemodynamic information [61–64]), were then reconstructed to the time
series signal in each voxel and averaged within each node.

Next, a 41 × 41 FC matrix was generated for each fMRI datum using the absolute
values of the Pearson’s correlation coefficients. Furthermore, an averaged FC matrix
was generated among participants belonging to the groups of NC and TBI, respectively
(Figure 1A), and further converted into a binary graph by using the network cost, C, as the
threshold value. The network cost was defined as:

C = K/(N(N − 1)/2), (1)

where K is the total number of possible edges and N the total number of nodes in the
network [65]. In order to identify the small-world regime [66] in both groups, we calculated
two global metrics, including global-efficiency and local-efficiency, for the two groups and
their node- and degree-matched regular and random networks over a wide range of the
cost values from 0.1 to 0.5 using increments of 0.01. The selected cost value range was
commonly suggested in previous studies, allowing for a proper estimation of the small-
world properties [49,67,68]. The network global-efficiency, Enetwork−glob(G), was defined
as the inverse of the average characteristic path length between all nodes in the network,
using the following equation [65]:

Enetwork−glob(G) =
1

n(n− 1) ∑i,j∈G,j 6=i
1

dij
, (2)

where n is the number of network nodes, and dij is the inverse of the shortest path length
between nodes i and j. The network local efficiency, Enetwork−loc, quantifies the inverse of
the shortest average path length of all neighbors of a given node among themselves, which
can be calculated using the following formula [65,67,69]:

Enetwork−loc(G) =
1
n ∑i∈G Enetwork−glob(Gi), (3)

where, Gi represents the subnetwork that contains all neighbor nodes of node i, and Enetwork−glob(Gi)
the subnetwork global-efficiency calculated using Equation (2). A network is considered as “small-
world” if it meets the criteria: Enetwork−glob

(
Gregular

)
< Enetwork−glob(G) < Enetwork−glob(Grandom)

and Enetwork−loc(Grandom) < Enetwork−loc(G) < Enetwork−loc

(
Gregular

)
, where Enetwork−glob

(
Gregular

)
,

Enetwork−glob(Grandom), Enetwork−loc

(
Gregular

)
, and Enetwork−loc(Grandom) represent the network global-
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efficiency and network local-efficiency of the node- and degree-matched regular and random net-
works, respectively [66]. As shown in Figure 1A, we observed that the locations of the global- and
local-efficiency curves of both groups were between the corresponding curves of the random and
regular graphs within the range of 0.1 to 0.4.

Finally, network topological properties in each subject, including 4 global-level proper-
ties (network global-efficiency, network local-efficiency, network CC, and network degree),
and 5 nodal-level properties, including nodal global- and nodal local-efficiency, nodal CC,
nodal degree, and betweenness centrality (BC), were estimated and averaged over the
range of the cost values from 0.1 to 0.4. Definitions regarding the network properties have
been detailed in previous studies [65,67,69,70]. Briefly, the nodal-efficiency, Enodal(G, i),
was a local measurement which evaluated the communication efficiency between a node i
and all other nodes in the network G, by using the following equation [65]:

Enodal(G, i) =
1

n− 1 ∑j∈G,j 6=i
1

dij
, (4)

where dij was the shortest path length between nodes i and j. The nodal CC, CC(G),
estimates the likelihood of whether the neighboring nodes of a node i were interconnected
with each other, which was defined as [70]:

CC(G) =
1
n ∑i∈G

1
ki(ki − 1)

×∑j,h∈Gi

(
aijaihajh

)1/3
, (5)

where aij was the connection between nodes i and j, with the value 1 for connected and
0 for not connected, and ki the number of neighbors of node i. The nodal degree was
defined as the number of edges connected to a node i, and the BC of a node i estimated
the proportion of all the shortest paths between pairs of other nodes in the network that
include that node [69].

2.7. GM Functional Network Node Selection

In order to select the nodes for GM functional network construction, a combined
activation map was first generated based on the combination (union) of the brain clusters
in the average activation maps of the groups of NC and TBI (Figure 1B). This combined
activation map was then parcellated according to the FC-based Brainnetome atlas [71],
which divides the whole brain GM into 210 cortical and 36 subcortical subregions. Among
the 246 parcellated cortical and subcortical GM regions in the combined activation map,
a total of 114 regions contained more than 100 contiguous voxels that were significantly
activated during the task performance. Therefore, 114 GM nodes were placed as spheres
(radius = 4 mm) at the identified activation peaks (local activation maximum). The size
of the node was determined based on the estimation of the average cortical thickness
of an adult human brain [72,73]. Detailed information for the 114 nodes is listed in the
Supplementary Table S2.

2.8. GM Functional Network Construction and Topological Properties Calculation

The time series of the 114 GM nodes were first extracted from each fMRI datum. The
wavelet-based approach, which has been described in Section 2.6, was applied to denoise
the signals in the 114 GM nodes. Then, a 114 × 114 FC matrix for each fMRI datum
was generated through averaged time series within each pair of the GM node, and the
group-averaged FC matrices were constructed in the groups of NC and TBI, respectively
(Figure 1B). The average FC matrix in each group was converted into a binary graph
by using the network cost as the threshold value (defined in Equation (1)). The small-
world regime [66] was also identified in a GM functional network analysis. As shown in
Figure 1B, locations of the global- and local-efficiency curves of both groups were between
the corresponding curves of the random and regular graphs within the range of 0.1 to
0.4. Thus, the GM network properties, including the 4 global-level topological properties
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(network global-efficiency, network local-efficiency, network CC, and network degree), and
5 nodal-level topological properties (nodal global- and nodal local-efficiency, nodal CC,
nodal degree, and BC), were then estimated and averaged over the range of the cost values
from 0.1 to 0.4.

2.9. Group-Level Analyses
2.9.1. Demographic, Clinical/Behavioral, and Task-Performance Measures

The demographic, clinical/behavioral, and task-performance measures were com-
pared between the groups of NC and TBI by using a Chi-square test for discrete variables
(i.e., gender and race/ethnicity) and an independent samples t-test for continuous variables.

2.9.2. Topological Properties of WM and GM Functional Networks

Group comparisons of the WM and GM network topological measures (including
both global- and nodal-level measures) were first carried out using a one-way analysis of
covariance, with gender as a fixed-effect covariate, and age, participant’s education level,
and participant’s parents’ education level as random-effect covariates. For topological
measures that showed significant between-group differences, post hoc t-tests were further
compared between the NC and TBI groups. Multiple comparisons were controlled for the
results in both steps using a Bonferroni correction [74] at α = 0.05.

2.9.3. WM and GM Functional Network Interaction Analysis

For all the WM and GM nodes that reported significant between-group differences in
any of the 5 nodal-level topological properties, pair-wise Pearson’s correlation analysis of
each nodal-level topological measure was conducted in each diagnostic group, respectively.
Multiple comparisons were controlled using Bonferroni correction [74] at α = 0.05.

2.9.4. Brain–Behavior Relationship Analysis

Brain–behavior relationships were investigated in each diagnostic group using partial
correlation, between the neuroimaging measures that had significant between-group differ-
ences and the raw-scores of the CAARS inattentive and hyperactive symptoms subscale
scores, by controlling age, participant’s education level, and participant’s parents’ educa-
tion level. Again, multiple comparisons were controlled using a Bonferroni correction [74]
at α = 0.05.

3. Results
3.1. Demographic, Clinical/Behavioral, and Task-Performance Measures

Demographic characteristics and task-performance measurements showed no signif-
icant between-group differences. All participants achieved >95% responding accuracy
when performing the experimental task during fMRI. Relative to NCs, individuals with
TBI showed significantly higher inattentive and hyperactive symptom scores (Table 1).

3.2. Topological Properties of WM and GM Networks

The WM and GM network global- and local-efficiency measures did not significantly
differ between the two groups. Group comparisons of the WM network nodal properties
showed that, relative to NCs, individuals with TBI had a significantly higher nodal local-
efficiency (t = 2.143, p = 0.035 after Bonferroni correction) in the left PCR, and a significantly
lower nodal global-efficiency (t = −2.072, p = 0.042 after Bonferroni correction) in the right
posterior thalamic radiation (PTR). Group comparisons of GM network nodal properties
showed that, relative to controls, the TBI group had a significantly higher nodal degree
(t = 2.246, p = 0.027 after Bonferroni correction) and nodal global-efficiency (t = 2.426,
p = 0.036 after Bonferroni correction) in the left postcentral gyrus (PoG), and a significantly
higher nodal local-efficiency (t = 2.016, p = 0.047 after Bonferroni correction) in the right
superior temporal sulcus (STS).
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3.3. Interactions of WM vs. GM Network Topological Properties

In the group of controls, nodal local-efficiency of the left PCR in WM was significantly
positively correlated with the nodal global-efficiency (r = 0.330, p = 0.031 after Bonferroni
correction) of the left PoG in GM, whereas, in the group of TBI, the nodal local-efficiency
of the left PCR in WM showed a trend of significantly negative correlation with the nodal
global-efficiency of the left PoG (r =−0.277, p = 0.075 after Bonferroni correction) in GM; the
nodal global-efficiency of the right PTR in WM was significantly positively correlated with
the nodal local-efficiency of the right STS (r = 0.353, p = 0.022 after Bonferroni correction) in
GM (Figure 2).
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Figure 2. Interactions of white matter (marked in green) vs. gray matter (marked in yellow) network
topological properties in the groups of NC and TBI. (NC: normal control; TBI: traumatic brain injury;
r: correlation coefficient; p: level of significance; L.: left hemisphere; R.: right hemisphere; PoG:
postcentral gyrus; PCR: posterior corona radiata; STS: superior temporal sulcus; PTR: posterior
thalamic radiation; Nod_Loc_Eff: nodal local-efficiency; Nod_Glo_Eff: nodal global-efficiency.)

3.4. Brain–Behavior Relationships

The BC of the left PCR in WM demonstrated a trend of significant negative correlation
with the raw-scores of the CAARS hyperactive symptoms (r = −0.292, p = 0.075) in the
group of TBI, however, such a pattern was not found in controls (Figure 3). No significant
(or trend of significant) correlations were found in the TBI or NC groups between the
CAARS inattentive symptom raw-score and the neuroimaging measures.
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p: level of significance).

4. Discussion

The current study, for the first time in the field, investigated the functional network
organizations in both WM and GM during sustained-attention processing and their interac-
tions with post-TBI behavioral attention deficits in adults with TBI. Relative to the matched
controls, individuals with TBI demonstrated an abnormally higher ability of information
propagation (represented by a significantly increased nodal local-efficiency [66]) of the left
PCR, as well as a lower functional integration (represented by significantly decreased nodal
global-efficiency [75]) of the right PTR in WM. The TBI group also showed significantly
higher functional integration and connectivity strength (represented by a significantly
increased nodal global/nodal-efficiency and degree) of the left PoG and the right STS in
GM, when compared with the group of controls. In the systems-level, subjects with TBI
also demonstrated an abnormally strong functional synchronization between the PTR and
STS in the right hemisphere, as well as a hypo-interaction between the PCR and PoG in the
left hemisphere.

As the most prominent projection fiber, the PCR contains both ascending and descend-
ing fibers that connect subcortical nuclei and the primary sensory cortex, including the PoG
in the parietal lobe [76,77]. The PTR, also referred to as thalamocortical radiations, connects
fibers extending from subcortical regions to visual and sensorimotor cortices [78]. However,
there is no evidence showing any major branches of the PTR anatomically connecting the
STS. The PCR, PTR, and the cortical and subcortical GM regions anatomically connected
with these two major-association WM tracts have been widely validated to play critical role
in normal attentional deployment [79–89]. Previous dMRI studies in adults with TBI have
frequently reported microstructural abnormalities, including reduced FA and increased
MD and RD in the PCR and PTR [13,90,91]. Structural MRI studies have also reported
regional cortical abnormalities in the PoG and STS [92–94]. Together with the functional
aberrances (e.g., between regional or within-network FC) of these brain regions or in GM
areas associated with the WM fibers that were reported in existing literatures [23,95,96], our
findings suggest that TBI-related abnormal topological properties associated with the PCR
and PTR in WM, the PoG and STS in GM, and their abnormal functional interactions in
the WM/GM functional networks for attentional information processing, may be partially
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underlined by the structural anomalies in these critical WM and GM regions subserving
attention and higher order cognitive information processing.

Our analyses of brain–behavior relationships showed a trend of significant contri-
bution of decreased BC of the left PCR to elevated hyperactive/impulsive symptoms in
subjects with TBI. TBI-related functional and structural alterations in cortical and subcorti-
cal regions, which are structurally connected by the PCR, and their significant involvement
in altered attentional control, have been demonstrated in existing neuroimaging studies.
For instance, enhanced brain activations during executive control processing were observed
in multiple subregions within the frontal lobe, a key component of the ascending fibers of
the PCR [76,77], in male TBI patients [84]. GM tissue integrity reduction of thalamic nuclei,
which are involved in the PCR descending pathways [76,77], were found to be associated
with poorer performance for attention processing in adult TBI patients [86]. Taken together,
our results suggest that a reduced ability for functional information flow control (which
can be measured using the BC property) in the PCR and its anatomically connected GM
regions may significantly contribute to post-TBI attention problems, including behavioral
hyperactivity, in adults with TBI.

There are some issues associated with this study that need to be further discussed.
First, our study sample included both male and female subjects. Clinical studies have
reported sex-specific patterns of post-TBI cognitive and behavioral impairments [97–100].
However, findings from neuroimaging studies on sex-related brain mechanisms associated
with TBI are far from converging, with some reported differentiated values of functional or
structural neuroimaging measures between males and females with TBI [101,102], while
others observed no significant between-sex differences [103]. Our supplementary analyses
in the clinical, behavioral, and topological measures in both WM and GM networks did
not report any significant between-sex differences in the TBI or control groups. Second,
among the 42 subjects in the TBI group, 24 had one TBI, and 18 had multiple TBIs. Clinical
studies have examined the impact of repetitive TBI on neuropsychological and behavioral
impairments and demonstrated contradictory results [104–109]. As another supplementary
test, we conducted Pearson’s correlation between the behavioral scores of the CAARS inat-
tentive and hyperactive/impulsive symptoms and the number of TBIs in the patient group
and did not find any significant results. In addition, the locations of brain injury varied
in our TBI subjects. All the subjects in our TBI group have been recruited from the NJIT
sports teams. Most of them received a rapid forward or backward force and several had the
violent blow occur to the left or right side of the brain during sports-related or recreative
activities. There exists a concern in the field that different cognitive and/or behavioral
problems may be caused by injuries to specific locations of the head (https://msktc.org/
tbi/factsheets/Understanding-TBI/Brain-Injury-Impact-On-Individuals-Functioning, ac-
cessed on 7 October 2021). Although there is no evidence yet to suggest the direct impact
of injury location on cognitive and behavioral impairments, its potential influence should
be investigated in the future with a much larger study sample. Third, our study utilized
FreeSurfer for brain segmentation. Though it has been identified as a powerful and robust
tool for whole-brain automated segmentation, possible distortion or failure of surface
segmentation and registration caused by brain lesions may still occur [110]. To guarantee a
proper surface tessellation, we thus conducted an additional visual inspection on each par-
ticipant’s segmentation result. Future work can concentrate on validating and comparing
segmentation efficiency by using multiple pipelines (e.g., SPM12-CAT, MAPER).

5. Conclusions

In summary, the current study reported systems-level functional aberrances associated
with the PCR and PTR in WM, as well as the PoG and STS in GM during sustained-attention
processing in young adults with TBI. The functional alteration in the PCR was linked to
elevated behavioral hyperactivity/impulsivity in with the group of TBI. The findings of this
study may provide new insights into the understanding of neurophysiological mechanisms
associated with post-TBI attention deficits.

https://msktc.org/tbi/factsheets/Understanding-TBI/Brain-Injury-Impact-On-Individuals-Functioning
https://msktc.org/tbi/factsheets/Understanding-TBI/Brain-Injury-Impact-On-Individuals-Functioning
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