Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (26)

Search Parameters:
Keywords = superhydrophilic/underwater-superoleophobic membranes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 7568 KiB  
Article
Developing a Superhydrophilic/Underwater Superoleophobic Plasma-Modified PVDF Microfiltration Membrane with Copolymer Hydrogels for Oily Water Separation
by Hasan Ali Hayder, Peng Shi and Sama M. Al-Jubouri
Appl. Sci. 2025, 15(12), 6654; https://doi.org/10.3390/app15126654 - 13 Jun 2025
Viewed by 559
Abstract
Polymer membranes often face challenges of oil fouling and rapid water flux decline during the separation of oil-in-water emulsions, making them a focal point of ongoing research and development efforts. Coating PVDF membranes with a hydrogel layer equips the developed membranes with robust [...] Read more.
Polymer membranes often face challenges of oil fouling and rapid water flux decline during the separation of oil-in-water emulsions, making them a focal point of ongoing research and development efforts. Coating PVDF membranes with a hydrogel layer equips the developed membranes with robust potential to mitigate oil fouling. However, developing a controllable thickness of a stable hydrogel layer to prevent the blocking of membrane pores remains a critical issue. In this work, atmospheric pressure low-temperature plasma was used to prepare the surface of a PVDF membrane to improve its wettability and adhesion properties for coating with a thin hydrophilic film of an AM-NaA copolymer hydrogel. The AM-NaA/PVDF membrane exhibited superhydrophilic and underwater superoleophobic properties, along with exceptional anti-crude oil-fouling characteristics and a self-cleaning function. The AM-NaA/PVDF membrane achieved high separation efficiency, exceeding 99% for various oil-in-water emulsions, with residual oil content in the permeate of less than 10 mg/L after a single-step separation. Additionally, it showed a high-water flux of 5874 L/m2·h for crude oil-in-water emulsions. The AM-NaA/PVDF membrane showed good stability and easy cleaning by water washing over multiple crude oil-in-water emulsion separation and regeneration cycles. Adding CaCl2 destabilized emulsions by promoting oil droplet coalescence, further boosting flux. This strategy provides a practical pathway for the development of highly reusable and oil-fouling-resistant membranes for the efficient separation of emulsified oily water. Full article
Show Figures

Figure 1

19 pages, 6017 KiB  
Article
Construction of a Covalent Crosslinked Membrane Exhibiting Superhydrophilicity and Underwater Superoleophobicity for the Efficient Separation of High-Viscosity Oil–Water Emulsion Under Gravity
by Mengxi Zhou, Peiqing Yuan, Xinru Xu and Jingyi Yang
Molecules 2025, 30(8), 1840; https://doi.org/10.3390/molecules30081840 - 19 Apr 2025
Cited by 1 | Viewed by 471
Abstract
The separation of high-viscosity oil–water emulsions remains a global challenge due to ultra-stable interfaces and severe membrane fouling. In this paper, SiO2 micro–nanoparticles coated with polyethyleneimine (PEI) were initially loaded onto a stainless steel substrate. This dual-functional design simultaneously modifies surface roughness [...] Read more.
The separation of high-viscosity oil–water emulsions remains a global challenge due to ultra-stable interfaces and severe membrane fouling. In this paper, SiO2 micro–nanoparticles coated with polyethyleneimine (PEI) were initially loaded onto a stainless steel substrate. This dual-functional design simultaneously modifies surface roughness and wettability. Furthermore, a covalent crosslinking network was created through the Schiff base reaction between PEI and glutaraldehyde (GA) to enhance the stability of the membrane. The membrane exhibits extreme wettability, superhydrophilicity (WCA = 0°), and underwater superoleophobicity (UWOCA = 156.9°), enabling a gravity-driven separation of pump oil emulsions with 99.9% efficiency and a flux of 1006 L·m−2·h−1. Moreover, molecular dynamics (MD) simulations demonstrate that the SiO2-PEI-GA-modified membrane promotes the formation of a stable hydration layer, reduces the oil–layer interaction energy by 85.54%, and exhibits superior underwater oleophobicity compared to the unmodified SSM. Efficiency is maintained at 99.8% after 10 cycles. This study provides a scalable strategy that combines covalent crosslinking with hydrophilic particle modification, effectively addressing the trade-off between separation performance and membrane longevity in the treatment of viscous emulsions. Full article
Show Figures

Figure 1

11 pages, 2904 KiB  
Article
Superhydrophilic and Underwater Superoleophobic Copper Mesh Coated with Bamboo Cellulose Hydrogel for Efficient Oil/Water Separation
by Yun Peng, Shuang Zhao, Chuanlin Huang, Feifei Deng, Jie Liu, Chunhua Liu and Yibao Li
Polymers 2024, 16(1), 14; https://doi.org/10.3390/polym16010014 - 19 Dec 2023
Cited by 7 | Viewed by 2303
Abstract
Super-wetting interface materials have shown great potential for applications in oil–water separation. Hydrogel-based materials, in particular, have been extensively studied for separating water from oily wastewater due to their unique hydrophilicity and excellent anti-oil effect. In this study, a superhydrophilic and underwater superoleophobic [...] Read more.
Super-wetting interface materials have shown great potential for applications in oil–water separation. Hydrogel-based materials, in particular, have been extensively studied for separating water from oily wastewater due to their unique hydrophilicity and excellent anti-oil effect. In this study, a superhydrophilic and underwater superoleophobic bamboo cellulose hydrogel-coated mesh was fabricated using a feasible and eco-friendly dip-coating method. The process involved dissolving bamboo cellulose in a green alkaline/urea aqueous solvent system, followed by regeneration in ethanol solvent, without the addition of surface modifiers. The resulting membrane exhibited excellent special wettability, with superhydrophilicity and underwater superoleophobicity, enabling oil–water separation through a gravity-driven “water-removing” mode. The super-wetting composite membrane demonstrated a high separation efficiency of higher than 98% and a permeate flux of up to 9168 L·m−2·h−1 for numerous oil/water mixtures. It also maintained a separation efficiency of >95% even after 10 cycles of separation, indicating its long-term stability. This study presents a green, simple, cost-effective, and environmentally friendly approach for fabricating superhydrophilic surfaces to achieve oil–water separation. It also highlights the potential of bamboo-based materials in the field of oil–water separation. Full article
(This article belongs to the Special Issue Advanced Composite Materials for Water Contaminant Removal)
Show Figures

Figure 1

16 pages, 1807 KiB  
Article
Facile Coaxial Electrospinning Synthesis of Polyacrylonitrile/Cellulose Acetate Nanofiber Membrane for Oil–Water Separations
by Maha Mohammad AL-Rajabi, Ismail W. Almanassra, Abdelrahman K. A. Khalil, Muataz Ali Atieh, Tahar Laoui and Khalil Abdelrazek Khalil
Polymers 2023, 15(23), 4594; https://doi.org/10.3390/polym15234594 - 30 Nov 2023
Cited by 15 | Viewed by 2492
Abstract
Oil-contaminated water and industrial oily wastewater discharges have adversely affected aquatic ecosystems and human safety. Membrane separation technology offers a promising solution for effective oil–water separation. Thus, a membrane with high surface area, hydrophilic–oleophobic properties, and stability is a promising candidate. Electrospinning, a [...] Read more.
Oil-contaminated water and industrial oily wastewater discharges have adversely affected aquatic ecosystems and human safety. Membrane separation technology offers a promising solution for effective oil–water separation. Thus, a membrane with high surface area, hydrophilic–oleophobic properties, and stability is a promising candidate. Electrospinning, a straightforward and efficient process, produces highly porous polymer-based membranes with a vast surface area and stability. The main objective of this study is to produce hydrophilic–oleophobic polyacrylonitrile (PAN) and cellulose acetate (CA) nanofibers using core–shell electrospinning. Incorporating CA into the shell of the nanofibers enhances the wettability. The core PAN polymer improves the electrospinning process and contributes to the hydrophilicity–oleophobicity of the produced nanofibers. The PAN/CA nanofibers were characterized by Fourier transform infrared spectroscopy, field emission scanning electron microscopy, X-ray diffraction, and surface-wetting behavior. The resulting PAN/cellulose nanofibers exhibited significantly improved surface-wetting properties, demonstrating super-hydrophilicity and underwater superoleophobicity, making them a promising choice for oil–water separation. Various oils, including gasoline, diesel, toluene, xylene, and benzene, were employed in the preparation of oil–water mixture solutions. The utilization of PAN/CA nanofibers as a substrate proved to be highly efficient, confirming exceptional separation efficiency, remarkable stability, and prolonged durability. The current work introduces an innovative single-step fabrication method of composite nanofibers, specially designed for efficient oil–water separation. This technology exhibits significant promise for deployment in challenging situations, offering excellent reusability and a remarkable separation efficiency of nearly 99.9%. Full article
(This article belongs to the Special Issue Polymeric Membranes: Fabrication, Characterization, and Applications)
Show Figures

Figure 1

9 pages, 1737 KiB  
Communication
Superwetting Stainless Steel Mesh Used for Both Immiscible Oil/Water and Surfactant-Stabilized Emulsion Separation
by Yu-Ping Zhang, Ya-Ning Wang, Li Wan, Xin-Xin Chen and Chang-Hua Zhao
Membranes 2023, 13(10), 808; https://doi.org/10.3390/membranes13100808 - 24 Sep 2023
Cited by 3 | Viewed by 2094
Abstract
The design and fabrication of advanced membrane materials for versatile oil/water separation are major challenges. In this work, a superwetting stainless steel mesh (SSM) modified with in situ-grown TiO2 was successfully prepared via one-pot hydrothermal synthesis at 180 °C for 24 h. [...] Read more.
The design and fabrication of advanced membrane materials for versatile oil/water separation are major challenges. In this work, a superwetting stainless steel mesh (SSM) modified with in situ-grown TiO2 was successfully prepared via one-pot hydrothermal synthesis at 180 °C for 24 h. The modified SSM was characterized by means of scanning electron microscopy, energy spectroscopy, and X-ray photoelectron spectroscopy analysis. The resultant SSM membrane was superhydrophilic/superoleophilic in air, superoleophobic underwater, with an oil contact angle (OCA) underwater of over 150°, and superhydrophobic under oil, with a water contact angle (WCA) as high as 158°. Facile separation of immiscible light oil/water and heavy oil/water was carried out using the prewetting method with water and oil, respectively. For both “oil-blocking” and “water-blocking” membranes, the separation efficiency was greater than 98%. Also, these SSMs wrapped in TiO2 nanoparticles broke emulsions well, separating oil-in-water and oil-in-water emulsions with an efficiency greater than 99.0%. The as-prepared superwetting materials provided a satisfactory solution for the complicated or versatile oil/water separation. Full article
Show Figures

Figure 1

15 pages, 9888 KiB  
Article
Hierarchical Ni-Mn LDHs@CuC2O4 Nanosheet Arrays-Modified Copper Mesh: A Dual-Functional Material for Enhancing Oil/Water Separation and Supercapacitors
by Yue Wu, Guangyuan Lu, Ping Xu, Tian C. Zhang, Huaqiang He and Shaojun Yuan
Int. J. Mol. Sci. 2023, 24(18), 14085; https://doi.org/10.3390/ijms241814085 - 14 Sep 2023
Cited by 1 | Viewed by 1959
Abstract
The pursuit of superhydrophilic materials with hierarchical structures has garnered significant attention across diverse application domains. In this study, we have successfully crafted Ni-Mn LDHs@CuC2O4 nanosheet arrays on a copper mesh (CM) through a synergistic process involving chemical oxidation and [...] Read more.
The pursuit of superhydrophilic materials with hierarchical structures has garnered significant attention across diverse application domains. In this study, we have successfully crafted Ni-Mn LDHs@CuC2O4 nanosheet arrays on a copper mesh (CM) through a synergistic process involving chemical oxidation and hydrothermal deposition. Initially, CuC2O4 nanosheets were synthesized on the copper mesh, closely followed by the growth of Ni-Mn LDHs nanosheets, culminating in the establishment of a multi-tiered surface architecture with exceptional superhydrophilicity and remarkable underwater superoleophobicity. The resultant Ni-Mn LDHs@CuC2O4 CM membrane showcased an unparalleled amalgamation of traits, including superhydrophilicity, underwater superoleophobicity, and the ability to harness photocatalytic forces for self-cleaning actions, making it an advanced oil-water separation membrane. The membrane’s performance was impressive, manifesting in a remarkable water flux range (70 kL·m−2·h−1) and an efficient oil separation capability for both oil/water mixture and surfactant-stabilized emulsions (below 60 ppm). Moreover, the innate superhydrophilic characteristics of the membrane rendered it a prime candidate for deployment as a supercapacitor cathode material. Evidenced by a capacitance of 5080 mF·cm−2 at a current density of 6 mA cm−2 in a 6 M KOH electrolyte, the membrane’s potential extended beyond oil-water separation. This work not only introduces a cutting-edge oil-water separation membrane and supercapacitor electrode but also offers a promising blueprint for the deliberate engineering of hierarchical structure arrays to cater to a spectrum of related applications. Full article
Show Figures

Figure 1

10 pages, 4922 KiB  
Article
Preparation of Superhydrophilic/Underwater Superoleophobic and Superhydrophobic Stainless Steel Meshes Used for Oil/Water Separation
by Yu-Ping Zhang, Ya-Ning Wang, Hong-Li Du, Ling-Bo Qv and Jun Chen
Polymers 2023, 15(14), 3042; https://doi.org/10.3390/polym15143042 - 14 Jul 2023
Cited by 5 | Viewed by 2358
Abstract
Robust membrane materials with high efficiency have attracted extensive attention in oil/water separation. In this work, carbon particles via candle combustion were firstly adsorbed on the surface of stainless steel meshes (SSMs), which formed a thin hydrophobic coating, and a rough structure was [...] Read more.
Robust membrane materials with high efficiency have attracted extensive attention in oil/water separation. In this work, carbon particles via candle combustion were firstly adsorbed on the surface of stainless steel meshes (SSMs), which formed a thin hydrophobic coating, and a rough structure was then constructed through chemical vapor deposition and high temperature calcination, with the resultant SSM surface wrapped with uniform silica coating possessing the characteristic of superoleophobicity underwater. Scanning electron microscope (SEM), energy dispersive spectroscopy (EDS), and X-ray powder diffraction (XRD) were used to characterize the modified SSMs. The prepared SSMs were superhydrophilic in air, and they had superoleophobicity underwater (157.4°). The separation efficiency of five oil/water mixtures was above 98.8%, and the separation flux was 46,300 L·m−2·h−1. After it was immersed in 1 mol/L NaOH, 1 mol/L HCl and 3.5 wt% NaCl for 24 h, respectively, the efficiency was still above 97.3%. Further immersion in the solution of dopamine and octadecylamine resulted in the transformation of superhydrophililc/superoleophobicity-underwater SSMs to superhydrophobic SSMs, and the resultant SSMs with reverse surface wettability was also used for the oil/water separation with good separation efficiency and separation flux. Full article
(This article belongs to the Special Issue Superhydrophobic Polymer Coatings and Films)
Show Figures

Figure 1

14 pages, 12890 KiB  
Article
One-Step Hydrothermal Strategy for Preparation of a Self-Cleaning TiO2/SiO2 Fiber Membrane toward Oil-Water Separation in a Complex Environment
by Yinghao Lin, Atian Xie, Jian Xu, Changguo Xue, Jiuyun Cui and Jianming Pan
Membranes 2023, 13(5), 514; https://doi.org/10.3390/membranes13050514 - 15 May 2023
Cited by 7 | Viewed by 2370
Abstract
Oil pollution caused by a large number of industrial activities and oil spill accidents has posed serious harm to the environment and human health. However, some challenges remain with the existing separation materials, such as poor stability and fouling resistance. Herein, a TiO [...] Read more.
Oil pollution caused by a large number of industrial activities and oil spill accidents has posed serious harm to the environment and human health. However, some challenges remain with the existing separation materials, such as poor stability and fouling resistance. Herein, a TiO2/SiO2 fiber membrane (TSFM) was prepared by a one-step hydrothermal method for oil-water separation in acid, alkali, and salt environments. The TiO2 nanoparticles were successfully grown on the fiber surface, endowing the membrane with superhydrophilicity/underwater superoleophobicity. The as-prepared TSFM exhibits high separation efficiency (above 98%) and separation fluxes (3016.38–3263.45 L·m−2·h−1) for various oil-water mixtures. Importantly, the membrane shows good corrosion resistance in acid, alkaline, and salt solutions and still maintains underwater superoleophobicity and high separation performance. The TSFM displays good performance after repeated separation, demonstrating its excellent antifouling ability. Importantly, the pollutants on the membrane surface can be effectively degraded under light radiation to restore its underwater superoleophobicity, showing the unique self-cleaning ability of the membrane. In view of its good self-cleaning ability and environmental stability, the membrane can be used for wastewater treatment and oil spill recovery and has a broad application prospect in water treatment in complex environments. Full article
Show Figures

Graphical abstract

13 pages, 4079 KiB  
Article
A Self-Cleaning TiO2 Bacterial Cellulose Super-Hydrophilic Underwater Super-Oleophobic Composite Membrane for Efficient Oil–Water Separation
by Yawen Cui, Xudong Zheng, Tongtong Xu, Biao Ji, Jinfeng Mei and Zhongyu Li
Molecules 2023, 28(8), 3396; https://doi.org/10.3390/molecules28083396 - 12 Apr 2023
Cited by 11 | Viewed by 3098
Abstract
Due to the increasingly serious problem of offshore oil spills, research related to oil–water separation has attracted more and more attention. Here, we prepared a super-hydrophilic/underwater super-oleophobic membrane (hereinafter referred to as BTA) using poly-dopamine (PDA) to adhesive TiO2 nanoparticles on the [...] Read more.
Due to the increasingly serious problem of offshore oil spills, research related to oil–water separation has attracted more and more attention. Here, we prepared a super-hydrophilic/underwater super-oleophobic membrane (hereinafter referred to as BTA) using poly-dopamine (PDA) to adhesive TiO2 nanoparticles on the surface of bacterial cellulose, coated with sodium alienate by vacuum-assisted filtration technique. This demonstrates its excellent underwater super-oleophobic property. Its contact angle is about 153°. Remarkably, BTA has 99% separation efficiency. More importantly, BTA still showed excellent anti-pollution property under ultraviolet light after 20 cycles. BTA has the advantages of low cost, environmentally friendliness and good anti-fouling performance. We believe it can play an important role in dealing with problems related to oily wastewater. Full article
(This article belongs to the Special Issue Wastewater Treatment: Functional Materials and Advanced Technology)
Show Figures

Figure 1

20 pages, 3214 KiB  
Review
Review of Artificial Nacre for Oil–Water Separation
by Apriliana Cahya Khayrani, Nonni Soraya Sambudi, Hans Wijaya, Yose Fachmi Buys, Fitri Ayu Radini, Norwahyu Jusoh, Norashikin Ahmad Kamal and Hazwani Suhaimi
Separations 2023, 10(3), 205; https://doi.org/10.3390/separations10030205 - 15 Mar 2023
Cited by 2 | Viewed by 3511
Abstract
Due to their extraordinary prospective uses, particularly in the areas of oil–water separation, underwater superoleophobic materials have gained increasing attention. Thus, artificial nacre has become an attractive candidate for oil–water separation due to its superhydrophilicity and underwater superoleophobicity properties. Synthesized artificial nacre has [...] Read more.
Due to their extraordinary prospective uses, particularly in the areas of oil–water separation, underwater superoleophobic materials have gained increasing attention. Thus, artificial nacre has become an attractive candidate for oil–water separation due to its superhydrophilicity and underwater superoleophobicity properties. Synthesized artificial nacre has successfully achieved a high mechanical strength that is close to or even surpasses the mechanical strength of natural nacre. This can be attributed to suitable synthesis methods, the selection of inorganic fillers and polymer matrices, and the enhancement of the mechanical properties through cross-linking, covalent group modification, or mineralization. The utilization of nacre-inspired composite membranes for emerging applications, i.e., is oily wastewater treatment, is highlighted in this review. The membranes show that full separation of oil and water can be achieved, which enables their applications in seawater environments. The self-cleaning mechanism’s basic functioning and antifouling tips are also concluded in this review. Full article
(This article belongs to the Special Issue Removal of Emerging Pollutants and Environmental Analysis)
Show Figures

Figure 1

7 pages, 10818 KiB  
Communication
Zero-Material Cost Production of Soil-Coated Fabrics with Underwater Superoleophobicity for Antifouling Oil/Water Separation
by Maohui Li, Fangfang Li, Cheng Zhen, Panpan Fu, Shaolin Yang and Youjun Lu
Membranes 2023, 13(3), 276; https://doi.org/10.3390/membranes13030276 - 26 Feb 2023
Cited by 1 | Viewed by 1818
Abstract
Soil-coated fabrics were fabricated by scrape-coating of soil slurry onto cotton fabrics. The raw materials, soil, and cotton fabrics were, respectively, obtained from farmland and waste bed sheets, making the method a zero-material cost way to produce superwetting membrane. The superhydrophilic/underwater superoleophobic soil-coated [...] Read more.
Soil-coated fabrics were fabricated by scrape-coating of soil slurry onto cotton fabrics. The raw materials, soil, and cotton fabrics were, respectively, obtained from farmland and waste bed sheets, making the method a zero-material cost way to produce superwetting membrane. The superhydrophilic/underwater superoleophobic soil-coated fabrics exhibit high efficiency (>99%), ultra-high flux (~45,000 L m−2 h−1), and excellent antifouling behavior for separating water from various oils driven by gravity. The simple fabrication and superior performance suggest that the soil-coated fabric could be a promising candidate as a filtration membrane for practical applications in industrial oily wastewater and oil spill treatments. Full article
(This article belongs to the Special Issue Green Membrane Technology)
Show Figures

Figure 1

14 pages, 6286 KiB  
Article
Constructing a Hierarchical Hydrophilic Crosslink Network on the Surface of a Polyvinylidene Fluoride Membrane for Efficient Oil/Water Emulsion Separation
by Ruixian Zhang, Yuanbin Mo, Yanfei Gao, Zeguang Zhou, Xueyi Hou, Xiuxiu Ren, Junzhong Wang, Xiaokun Chu and Yanyue Lu
Membranes 2023, 13(3), 255; https://doi.org/10.3390/membranes13030255 - 21 Feb 2023
Cited by 4 | Viewed by 2267
Abstract
Oil/water mixtures from industrial and domestic wastewater adversely affect the environment and human beings. In this context, the development of a facile and improved separation method is crucial. Herein, dopamine was used as a bioadhesive to bind tea polyphenol (TP) onto the surface [...] Read more.
Oil/water mixtures from industrial and domestic wastewater adversely affect the environment and human beings. In this context, the development of a facile and improved separation method is crucial. Herein, dopamine was used as a bioadhesive to bind tea polyphenol (TP) onto the surface of a polyvinylidene fluoride (PVDF) membrane to form the first hydrophilic polymer network. Sodium periodate (NaIO4) is considered an oxidising agent for triggering self-polymerisation and can be used to introduce hydrophilic groups via surface manipulation to form the second hydrophilic network. In contrast to the individual polydopamine (PDA) and TP/NaIO4 composite coatings for a hydrophobic PVDF microfiltration membrane, a combination of PDA, TP, and NaIO4 has achieved the most facile treatment process for transforming the hydrophobic membrane into the hydrophilic state. The hierarchical superhydrophilic network structure with a simultaneous underwater superoleophobic membrane exhibited excellent performance in separating various oil-in-water emulsions, with a high water flux (1530 L.m−2 h−1.bar) and improved rejection (98%). The water contact angle of the modified membrane was 0° in 1 s. Moreover, the steady polyphenol coating was applied onto the surface, which endowed the membrane with an adequate antifouling and recovery capability and a robust durability against immersion in an acid, alkali, or salt solution. This facile scale-up method depends on in situ plant-inspired chemistry and has remarkable potential for practical applications. Full article
Show Figures

Figure 1

13 pages, 3088 KiB  
Article
Hydrogel/β-FeOOH-Coated Poly(vinylidene fluoride) Membranes with Superhydrophilicity/Underwater Superoleophobicity Facilely Fabricated via an Aqueous Approach for Multifunctional Applications
by Yin Tang, Tang Zhu, Huichao Liu, Zheng Tang, Xingwen Kuang, Yongna Qiao, Hao Zhang and Caizhen Zhu
Polymers 2023, 15(4), 839; https://doi.org/10.3390/polym15040839 - 8 Feb 2023
Cited by 8 | Viewed by 2370
Abstract
Hydrogel coatings that can endow various substrates with superior properties (e.g., biocompatibility, hydrophilicity, and lubricity) have wide applications in the fields of oil/water separation, antifouling, anti-bioadhesion, etc. Currently, the engineering of multifunctional hydrogel-coated materials with superwettability and water purification property using a simple [...] Read more.
Hydrogel coatings that can endow various substrates with superior properties (e.g., biocompatibility, hydrophilicity, and lubricity) have wide applications in the fields of oil/water separation, antifouling, anti-bioadhesion, etc. Currently, the engineering of multifunctional hydrogel-coated materials with superwettability and water purification property using a simple and sustainable strategy is still largely uninvestigated but has a beneficial effect on the world. Herein, we successfully prepared poly(2-acrylamido-2-methyl-1-propanesulfonic acid) hydrogel/β-FeOOH-coated poly(vinylidene fluoride) (PVDF/PAMPS/β-FeOOH) membrane through free-radical polymerization and the in situ mineralization process. In this work, owing to the combination of hydrophilic PAMPS hydrogel coating and β-FeOOH nanorods anchored onto PVDF membrane, the resultant PVDF/PAMPS/β-FeOOH membrane achieved outstanding superhydrophilicity/underwater superoleophobicity. Moreover, the membrane not only effectively separated surfactant-stabilized oil/water emulsions, but also possessed a long-term use capacity. In addition, excellent photocatalytic activity against organic pollutants was demonstrated so that the PVDF/PAMPS/β-FeOOH membrane could be utilized to deal with wastewater. It is envisioned that these hydrogel/β-FeOOH-coated PVDF membranes have versatile applications in the fields of oil/water separation and wastewater purification. Full article
Show Figures

Graphical abstract

24 pages, 5227 KiB  
Review
Special Wettable Membranes for Oil/Water Separations: A Brief Overview of Properties, Types, and Recent Progress
by Nadeem Baig, Muhammad Sajid, Billel Salhi and Ismail Abdulazeez
Colloids Interfaces 2023, 7(1), 11; https://doi.org/10.3390/colloids7010011 - 28 Jan 2023
Cited by 9 | Viewed by 3861
Abstract
Periodical oil spills and massive production of industrial oil wastewater have impacted the aquatic environment and has put the sustainability of the ecosystem at risk. Oil–water separation has emerged as one of the hot areas of research due to its high environmental and [...] Read more.
Periodical oil spills and massive production of industrial oil wastewater have impacted the aquatic environment and has put the sustainability of the ecosystem at risk. Oil–water separation has emerged as one of the hot areas of research due to its high environmental and societal significance. Special wettable membranes have received significant attention due to their outstanding selectivity, excellent separation efficiency, and high permeation flux. This review briefly discusses the fouling behavior of membranes and various basic wettability models. According to the special wettability, two major classes of membranes are discussed. One is superhydrophobic and superoleophilic; these membranes are selective for oil and reject water and are highly suitable for separating the water-in-oil emulsions. The second class of membranes is superhydrophilic and underwater superoleophobic; these membranes are highly selective for water, reject the oil, and are suitable for separating the oil-in-water emulsions. The properties and recent progress of the special wettable membranes are concisely discussed in each section. Finally, the review is closed with conclusive remarks and future directions. Full article
Show Figures

Graphical abstract

19 pages, 5149 KiB  
Article
Demulsifier-Inspired Superhydrophilic/Underwater Superoleophobic Membrane Modified with Polyoxypropylene Polyoxyethylene Block Polymer for Enhanced Oil/Water Separation Properties
by Mengmeng Zhang, Mingxia Wang, Junwei Chen, Linfang Dong, Yuqin Tian, Zhenyu Cui, Jianxin Li, Benqiao He and Feng Yan
Molecules 2023, 28(3), 1282; https://doi.org/10.3390/molecules28031282 - 28 Jan 2023
Cited by 11 | Viewed by 2454
Abstract
Demulsifiers are considered the key materials for oil/water separation. Various works in recent years have shown that demulsifiers with polyoxypropylen epolyoxyethylene branched structures possess better demulsification effects. In this work, inspired by the chemical structure of demulsifiers, a novel superhydrophilic/underwater superoleophobic membrane modified [...] Read more.
Demulsifiers are considered the key materials for oil/water separation. Various works in recent years have shown that demulsifiers with polyoxypropylen epolyoxyethylene branched structures possess better demulsification effects. In this work, inspired by the chemical structure of demulsifiers, a novel superhydrophilic/underwater superoleophobic membrane modified with a polyoxypropylene polyoxyethylene block polymer was fabricated for enhanced separation of O/W emulsion. First, a typical polyoxypropylene polyoxyethylene triblock polymer (Pluronic F127) was grafted onto the poly styrene-maleic anhydride (SMA). Then, the Pluronic F127-grafted SMA (abbreviated as F127@SMA) was blended with polyvinylidene fluoride (PVDF) for the preparation of the F127@SMA/PVDF ultrafiltration membrane. The obtained F127@SMA/PVDF ultrafiltration membrane displayed superhydrophilic/underwater superoleophobic properties, with a water contact angle of 0° and an underwater oil contact angle (UOCA) higher than 150° for various oils. Moreover, it had excellent separation efficiency for SDS-stabilized emulsions, even when the oil being emulsified was crude oil. The oil removal efficiency was greater than 99.1%, and the flux was up to 272.4 L·m−2·h−1. Most importantly, the proposed F127@SMA/PVDF membrane also exhibited outstanding reusability and long-term stability. Its UOCA remained higher than 150° in harsh acidic, alkaline, and high-salt circumstances. Overall, the present work proposed an environmentally friendly and convenient approach for the development of practical oil/water separation membranes. Full article
(This article belongs to the Special Issue Recent Advances in Polymer Flooding in China)
Show Figures

Figure 1

Back to TopTop