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Abstract: Oil pollution caused by a large number of industrial activities and oil spill accidents has
posed serious harm to the environment and human health. However, some challenges remain with
the existing separation materials, such as poor stability and fouling resistance. Herein, a TiO2/SiO2

fiber membrane (TSFM) was prepared by a one-step hydrothermal method for oil-water separa-
tion in acid, alkali, and salt environments. The TiO2 nanoparticles were successfully grown on
the fiber surface, endowing the membrane with superhydrophilicity/underwater superoleophobic-
ity. The as-prepared TSFM exhibits high separation efficiency (above 98%) and separation fluxes
(3016.38–3263.45 L·m−2·h−1) for various oil-water mixtures. Importantly, the membrane shows
good corrosion resistance in acid, alkaline, and salt solutions and still maintains underwater su-
peroleophobicity and high separation performance. The TSFM displays good performance after
repeated separation, demonstrating its excellent antifouling ability. Importantly, the pollutants on
the membrane surface can be effectively degraded under light radiation to restore its underwater
superoleophobicity, showing the unique self-cleaning ability of the membrane. In view of its good self-
cleaning ability and environmental stability, the membrane can be used for wastewater treatment and
oil spill recovery and has a broad application prospect in water treatment in complex environments.

Keywords: superhydrophilicity/underwater superoleophobicity; fiber membrane; TiO2; oil-water
separation; self-cleaning

1. Introduction

With the improvement of industrialization, a large number of industrial activities and
oil spill accidents have caused serious oil pollution. Large amounts of oily wastewater
cause serious damage to our aquatic ecosystems and indirectly affect human health and
well-being [1–4]. Traditional oil-water separation methods such as gravity separation [5],
centrifugation [6], flotation [7], the electric field method [8], and so forth, have been used to
solve the treatment of oil-containing wastewater. However, there are still some deficiencies,
such as low separation efficiency, high energy consumption, and secondary pollution [9].
Therefore, it is urgent to develop an efficient treatment method to solve the problem of
oil-water separation, especially for oily wastewater in complex environments.

Recently, membrane technology has made great progress in the field of oil-water
separation [10–14]. Compared with the traditional oil-water separation methods, the
membrane separation process has the following advantages: low energy consumption,
a small footprint, low pollution, and efficient separation [15–19]. Oil-water separation
membranes, such as super-hydrophobic/super-lipophilic membranes, can effectively sep-
arate oily wastewater, but the pores of lipophilic membranes are easily blocked by oil
during the separation process, leading to a reduction in flux and service life. In contrast,

Membranes 2023, 13, 514. https://doi.org/10.3390/membranes13050514 https://www.mdpi.com/journal/membranes

https://doi.org/10.3390/membranes13050514
https://doi.org/10.3390/membranes13050514
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/membranes
https://www.mdpi.com
https://doi.org/10.3390/membranes13050514
https://www.mdpi.com/journal/membranes
https://www.mdpi.com/article/10.3390/membranes13050514?type=check_update&version=1


Membranes 2023, 13, 514 2 of 14

super-hydrophilic/underwater super oleophobic membranes can adsorb water to form a
hydrated layer and simultaneously repel oil, showing more advantages in oil-water separa-
tion, so the super-hydrophilic/underwater super-oleophobic membranes have attracted
much attention and research from many researchers. For instance, Helali et al. [20] synthe-
sized polyamide-imide microfiltration (PAI MF) membranes by non-solvent-induced phase
separation techniques. This work has achieved effective results in the separation of oil-
water emulsions and provided a new paradigm for the application of PAI MF membranes
in oily wastewater treatment in a broad range of commercial processes. Fan et al. [21]
prepared hydrogel-coated filter paper using glutaraldehyde as a crosslinking agent through
a simple aldol condensation reaction, and the hydrogel-coated filter paper not only can
separate oil-water mixtures in highly acidic, alkaline, and salty environments but also
separate surfactant-stabilized emulsions. Wei et al. [22] prepared an underwater oleopho-
bic PTFE membrane by UV-initiated reaction, which achieved high efficiency, high flux,
and long-term stability in the separation process of oil-in-water emulsion. Cui et al. [23]
prepared a crosslinking modified PVDF/GO membrane by a simple crosslinking process
between acrylic acid and ethylene glycol dimethacrylate for oil-water emulsion separa-
tion. Kallem et al. [24] fabricated a composite membrane substrate by adding PDA@TiO2
to polyether sulfone through a non-solvent-induced phase separation process. The as-
prepared membrane shows enhanced permeability and fouling resistance in the treatment
of oily wastewater. Peng et al. [25] prepared a novel super-hydrophilic/underwater super-
oleophobic polyacrylonitrile ultrafiltration membrane by a hydroxylamine-induced phase
inversion process, exhibiting superior antifouling properties and oil-water separation prop-
erties for various oil-in-water emulsions. Various super-hydrophilic membranes have
been successively reported for oil-water separation, showing excellent water permeability,
selectivity, and good mechanical properties. Compared with organic-modified hydrophilic
membranes, inorganic-modified hydrophilic membranes show more prominent advan-
tages in terms of physico-chemical performances and mechanical stability. Such inorganic
compounds (SiO2 [26,27], ZrO2 [28], ZnO [29], and so on.) have been successively applied
in oil-water separation, and they have shown excellent performance and mechanical sta-
bility. However, the treatment of oily sewage in a complex environment is undoubtedly a
great test for the conventional inorganic-modified membrane. On the other hand, in the
long-term process of oil-water separation, a small amount of oil will inevitably attach to
the surface of the membrane, resulting in the loss of the original special wettability of the
membrane and affecting its separation performance. For membrane pollution issues, some
inorganic materials with catalytic activity (such as TiO2 [30], WO3 [31], Bi2WO6@CuO [32],
etc.) have been gradually applied to the oil-water separation membrane modification.
Among them, TiO2 has been widely studied in modifying membranes because of its hy-
drophilicity, economic, non-toxic, and catalytic self-cleaning properties [33–36]. Zhang
et al. [37], who prepared an electrospun stereocomplex polylactide membrane using a
GA-modified TiO2 coating, which showed superhydrophilicity and underwater superoleo-
phobicity in various harsh working conditions and exhibited efficient separation properties
for a wide range of oil/water mixtures and oil-in-water emulsions. Nakamoto et al. [38]
prepared a self-cleaning TiO2 coating-modified PAPS/PBE membrane, which showed
excellent photocatalytic performance and provided a new idea for a self-cleaning mem-
brane. Salehian et al. [39] synthesized photocatalytic TiO2@MIL-88A(Fe)/polyacrylonitrile
mixed matrix membranes, which effectively improved the anti-pollution performance of
the membrane in the process of oil-water separation. The above membranes show excel-
lent super-hydrophilic/underwater super-oleophobic performance and good oil-water
separation performance. However, the existing preparation methods for TiO2-modified
membranes have the disadvantages of a complex operation process, low coating coverage,
and high instrument requirements, which severely limit their wide application. In addi-
tion, the organic matrix is still greatly hindered in complex environments because of its
unstable physicochemical properties, whereas most of the inorganic matrix will have no
such obstacles. High silicoxy cloth is a kind of high-temperature-resistant inorganic fiber
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with a silicon dioxide (SiO2) content higher than 96% that has the characteristics of high
strength and easy processing. It is often used as a high-temperature and ablation-resistant
material and has excellent corrosion resistance. Therefore, using high-silica fiber cloth
(recorded as SiO2 fiber membrane) as the substrate is not only suitable for the treatment of
oily wastewater in a complex environment but also conducive to the construction of the
hierarchical structure. As far as we know, there is no research on TiO2-modified SiO2 fiber
membranes for oil-water separation in acid, alkali, and salt environments.

In this work, we prepared a self-cleaning TiO2/SiO2 fiber membrane (TSFM) by the
hydrothermal method for oil-water separation in acid, alkali, and salt environments. The
effect of TiO2 nanoparticle attachment on the surface wettability and separation properties
of TSFM was studied. The TSFM displays excellent superhydrophilicity/underwater
superoleophobicity and self-cleaning ability and shows excellent selective separation for
various oil-water mixtures in different environments. In addition, contaminated TSFM after
long-term oil-water separation can restore its wetting performance and excellent selective
separation capacity when the membrane surface is exposed to light. In view of its good
self-cleaning ability and environmental stability, the TSFM has broad application prospects
in water treatment in complex environments.

2. Experimental Methods
2.1. Materials

SiO2 fiber membrane (SFM, thickness: about 260 µm) was provided by Jinhe New
Materials Co., Ltd. (Ningbo, China), tetrabutyl titanate (TBOT), anhydrous ethanol, con-
centrated hydrochloric acid (HCl, 36–38%), petroleum ether, n-hexane, dichloroethane,
liquid paraffin, sodium chloride, sodium hydroxide, and Sudan red were bought from the
Shanghai Aladdin Biochemical Technology Co. Ltd. (Shanghai, China). Deionized (DI)
water was used in this work.

2.2. Preparation of TSFM

The SiO2 fiber membranes (3 cm × 3 cm) were placed in an ethanol solution with
ultrasonic treatment for 30 min to remove residual impurities on the surface, then washed
three times with deionized water and dried at 50 ◦C.

Based on pioneering research, for instance, Yuan et al. [40] studied the effect of hy-
drothermal temperature on the morphology of TiO2, and the results showed that TiO2
nanotubes were generated when the temperature was between 100 and 180 ◦C. Beyond
this range, the number of nanotubes decreased. Seo et al. [41] found that the length and
quantity of TiO2 increased as the temperature increased. Moreover, the prepared nanotubes
exhibit superior properties at 150 ◦C. Here, 150 ◦C was chosen as the hydrothermal reaction
temperature. The TSFM was prepared by a hydrothermal method, as shown in Figure 1.
Tetrattyl titanate of 1 mL was added to a HCl solution (6 mol/L) of 30 mL with magnetic
stirring for 10 min, and the mixed solution was transferred to a stainless-steel autoclave
lined with polytetrafluoroethylene to soak a SiO2 fiber membrane, sealed, and maintained
for different reaction times (1 h, 3 h, 5 h, and 9 h) at 150 ◦C. After the hydrothermal reaction
was finished and cooled to room temperature, the TSFM-x (x represents hydrothermal
time) was removed from the stainless-steel autoclave, washed with deionized water, and
dried naturally.

2.3. Oil-Water Separation Tests

The water pre-infiltrated TSFM was fixed between two glass devices. The mixture of
oil and water (dichloroethane, n-hexane, petroleum ether, and liquid paraffin) (V:V = 1:1)
was slowly poured into the glass tube. The permeated liquid was collected in a beaker.
During separation, water rapidly passed through the membrane, and the oil was blocked
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by the membrane. Then, the separation efficiency (E) of the oil-water mixture is calculated
according to the following formula:

E = m0/m1×100% (1)

where m0 (g) and m1 (g) are the weights of water before and after separation, respectively.
Permeation flux (F) is calculated by the following formula:

F = V/(A×∆ t) (2)

where V stands for the liquid filtration volume (L), A represents the effective filtration
membrane area (m2), and ∆t is the filtration time (h).
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2.4. Mechanical Stability Tests

The effects of the fluid shear force and impact force on the membrane properties were
tested experimentally. Specifically, as follows: (1) A TSFM was putted in water and stirred
at 1000 rpm for 12 h; (2) A TSFM was fixed on a glass sheet, and water was impacted on the
TSFM surface at a height of 50 cm for 2 h. The surface wettability and separation properties
were measured after treatment.

2.5. Environmental Stability Tests

The membrane was immersed in sodium chloride (1 mol/L), sodium hydroxide
(1 mol/L), and hydrochloric acid (1 mol/L) for 12 h, and then the environmental stability
of the membrane was evaluated by testing the underwater oil contact angle and oil-water
separation performance.

2.6. Anti-Fouling and Self-Cleaning Performance Tests

The oil-water separation was repeatedly conducted for 20 times, and the underwater
oil contact angle of the used membrane was determined. The TSFM was immersed in
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appropriate water and exposed to a xenon lamp for 1 h to study the changes in underwater
oil contact angle before and after irradiation.

2.7. Characterizations

The surface morphology and EDS mapping of the membranes were studied by scan-
ning electron microscopy (SEM, 400FEG, FEI, Hillsboro, OR, USA). The chemical composi-
tion of the membrane was analyzed by X-ray photoelectron spectroscopy (XPS, Thermo
ESCALAB 250XI, USA). The phase structure of samples was analyzed by X-ray diffraction
(XRD, XRD-7000, Shimadzu, Kyoto, Japan). The water contact angle and underwater
oil contact angle (UOCA) were tested by a contact angle measurement system (OSA60,
LAUDA Scientific, Baden-Württemberg, Germany).

3. Results and Discussion
3.1. Characterization of the Membranes

The phase structure of the samples was analyzed by XRD. Figure 2 shows the XRD
diffraction patterns of the SiO2 fiber membranes, TSFM-1, TSFM-3, TSFM-5, and TSFM-9.
The diffraction pattern of the SiO2 fiber membrane appears as a broad diffraction peak at
2θ = 22◦, corresponding to the crystal face of silica (222). The distinct diffraction peaks
appear at 2θ = 27.1◦, 35.8◦, 54.0◦, 56.3◦ in the diffraction pattern of all modified membranes,
corresponding to the (110), (101), (211), and (220) crystal planes of the rutile phase. [42,43]
As the hydrothermal time increases, the diffraction peak intensity of the TSFM gradually
increases. The diffraction peak of the (110) crystal plane is significantly enhanced, indicating
the growth of the nanorods on the (110) speed is greater than in other directions. The XRD
analysis showed that TiO2 nanoparticles in the rutile phase were successfully grown on the
surface of TSFM.
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and TSFM-9.

Photographs of the SiO2 fiber membranes TSFM-1, TSFM-3, TSFM-5, and TSFM-9
are shown in Figure 3(a1–e1). It can be observed that the white matter growing on the
surface of the fiber membrane gradually increased with the increase in hydrothermal time.
The SEM images of the SiO2 fiber membranes TSFM-1, TSFM-3, TSFM-5, and TSFM-9 are
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shown in Figure 3(a2,a3–e2,e3). As can be observed, the SiO2 fiber membrane has a porous
network structure composed of fibers, and the fibers show a relatively smooth surface with
an average diameter of 6–7 µm. As shown in Figure 3(b2,b3), a layer of nano-sized TiO2
seeds was obviously grown on the surface of TSFM-1. With the extended hydrothermal
time, a flower-like hierarchical structure assembled by TiO2 nanorods was successfully
constructed on the fiber’s surface, and the diameter and length of TiO2 nanorods increased
slightly with the increase in hydrothermal time. The observed results indicated that a
layer of a flower-like hierarchical structure was successfully constructed on the surface of
the SiO2 fiber membrane by in situ hydrothermal growth. This flower-like hierarchical
structure is very beneficial for the construction of super-hydrophilic surfaces.
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Energy dispersive X-ray spectroscopy (EDS) was used to study the surface elemental
composition and distribution of TSFM. The results are shown in Figure 4. We can see the
existence of the elements Si, O, and B in images, which are consistent with the composition
of the information (Na2O-B2O3-SiO2) provided by the manufacturer. These basic elements
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are evenly distributed on the surface of fibers. In addition to the elements from the SiO2
fiber membrane itself, the Ti element was also detected on the surface of the fibers. The
distribution of the Ti element matches the observed TiO2, which preliminarily proved that
the TiO2 nanorod was successfully grown on the fiber surface.
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To further investigate the chemical composition of the membrane surface, the surface
element bonding states were analyzed by XPS. The XPS spectra of the SiO2 fiber membrane
and TSFM are shown in Figure 5. As seen, C 1s, O 1s, Si 2p, and B 1s signals were observed
in the survey spectrum of the SiO2 fiber membrane (Figure 5a), and the atomic percentages
are 62.20%, 27.22%, 8.58%, and 2.0% (Table 1), respectively. In addition to the C, O, Si, and B
elements, new Ti 2p peaks also appear in the survey spectrum of the TSFM membrane, and
the atomic percentages are 42.28%, 35.82%, 4.80%, 1.55%, and 15.55% (Table 1), respectively.
The core-level spectrum of Ti 2p (Figure 5b) can be fitted by two peaks at 458.8 eV and
464.6 eV, which are attributed to Ti 2p3/2 and Ti 2p1/2 [44], respectively. The results of the
XPS analysis confirmed the successful growth of TiO2 on the surface of the fiber membrane,
which was consistent with the results of the XRD and EDS analyses.
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Table 1. Surface chemical composition (at.%) of membranes examined by XPS.

Elements (at.%) C O B Si Ti

SiO2 fiber membrane 62.20 27.22 2.0 8.58 /
TSFM 42.28 35.82 4.80 1.55 15.55

3.2. Surface Wettability of Membranes

The wettability of membrane is a key factor affecting the oil-water separation process,
which is directly related to the separation capability and antifouling ability of membrane.
The surface wettability of the membrane was assessed by measuring the underwater oil
contact angle (UOCA, using dichloroethane as the testing oil) and water contact angle
(WCA). As shown in Figure 6a, the UOCA value of the original SiO2 fiber membrane was
only 112.4◦, indicating that the original fiber membrane had poor underwater oleophobic
performance. With the increase in hydrothermal time, the UOCA of TSFM gradually
increased from 112◦ to 160◦, but when the hydrothermal time reached 9 h, the UOCA
was slightly reduced. From Figure 6b, a water droplet fully spreads and penetrates onto
the surface of the TSFM with a WCA of about 0◦. In addition, a dichloroethane droplet
on the TSFM surface underwater is spherical with a UOAC of 160 ± 1.7◦ (Figure 6c),
indicating that the TSFM is super hydrophilic/underwater super oleophobic. The dynamic
oil adhesion process of underwater oil droplets on the membrane surface was measured to
evaluate the adhesion force between the oil droplet and the membrane surface (Figure 6d).
An oil droplet was gradually pressed on the surface of TSFM, and then the oil drop was
removed from the membrane surface. The oil droplet did not deform due to the small
adhesion force at the moment when it left the membrane surface. The results indicated that
the TSFM surface has low oil adhesion, which is beneficial for reducing the adhesion of oil
droplets on the membrane surface during the oil-water separation process.
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3.3. Oil-Water Separation Performance

The pre-infiltrated TSFM with water was fixed between the two glass devices. Take the
separation of a petroleum ether-water mixture (petroleum ether was stained with Sudan
red) as an example. The mixture was slowly poured into the glass tube, and the penetrating
liquid was collected with a beaker. During the separation process, water quickly passed
through the membrane, while oil was blocked by the membrane. As shown in Figure 7,
there is no visible petroleum ether stained with Sudan red in the filtrate after separation.
These results showed that TSFM can effectively separate the oil-water mixture.
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Figure 7. Photographs the separation process of petroleum ether-water mixture.

Figure 8a shows the separation efficiency and permeation flux of TSFM-1, TSFM-3,
TSFM-5, and TSFM-9 for the petroleum ether-water mixture (due to the poor underwater
hydrophobicity, the original SiO2 fiber membrane cannot separate the oil-water mixture, so
no data were provided). With the increase in hydrothermal time, the separation efficiency
of membranes increased from 97.85% to 99.40%, while the permeation flux decreased from
9596.85 L·m−2·h−1 to 3843.38 L·m−2·h−1. This may be related to the growth of TiO2 on the
surface of the fiber membrane because the growth of TiO2 reduced the pore size of the fiber
membrane and impeded the penetration of water. Considering the practical application
performance and cost, the optimized TSFM-5 (abbreviated as TSFM unless otherwise stated)
was taken as a representative sample for further testing.

Membranes 2023, 13, x FOR PEER REVIEW 9 of 15 
 

 

trate after separation. These results showed that TSFM can effectively separate the 
oil-water mixture. 

 
Figure 7. Photographs the separation process of petroleum ether-water mixture. 

Figure 8a shows the separation efficiency and permeation flux of TSFM-1, TSFM-3, 
TSFM-5, and TSFM-9 for the petroleum ether-water mixture (due to the poor underwa-
ter hydrophobicity, the original SiO2 fiber membrane cannot separate the oil-water mix-
ture, so no data were provided). With the increase in hydrothermal time, the separation 
efficiency of membranes increased from 97.85% to 99.40%, while the permeation flux 
decreased from 9596.85 L·m−2·h−1 to 3843.38 L·m−2·h−1. This may be related to the growth 
of TiO2 on the surface of the fiber membrane because the growth of TiO2 reduced the 
pore size of the fiber membrane and impeded the penetration of water. Considering the 
practical application performance and cost, the optimized TSFM-5 (abbreviated as TSFM 
unless otherwise stated) was taken as a representative sample for further testing. 

The separation performance of TSFM for different oil-water mixtures was tested 
experimentally. Figure 8b shows the separation efficiency and permeation flux of TSFM 
for various oil-water mixtures. The results indicated that the separation efficiencies of 
TSFM were higher than 98.45% for different oil-water mixtures. The permeation fluxes 
for n-hexane, liquid paraffin, petroleum ether, and dichloroethane-water mixtures were 
3135.06 L·m−2·h−1, 3263.45 L·m−2·h−1, 3140.42 L·m−2·h−1 and 3016.38 L·m−2·h−1, respectively. 
The differences in separation efficiency and flux may be caused by the different proper-
ties of various oils, such as density, viscosity, and so on (Table 2). 

 
Figure 8. (a) The oil-water separation efficiency and permeation flux of TSFM-1, TSFM-3, TSFM-5, 
and TSFM-9, (b) The separation efficiency and permeation flux for different oil-water mixtures. 

Table 2. Summary of the properties of the oils and water. 

Liquids The Viscosity of Oils (mPa s) Density (g cm−3) Surface Tension  
(mN m−1) 

Liquid paraffin 14.2–17.2 0.86–0.91 33.1 
n-hexane 0.33 0.66 18.4 

Petroleum ether 0.3 0.66 18.8 

Figure 8. (a) The oil-water separation efficiency and permeation flux of TSFM-1, TSFM-3, TSFM-5,
and TSFM-9, (b) The separation efficiency and permeation flux for different oil-water mixtures.

The separation performance of TSFM for different oil-water mixtures was tested ex-
perimentally. Figure 8b shows the separation efficiency and permeation flux of TSFM
for various oil-water mixtures. The results indicated that the separation efficiencies of
TSFM were higher than 98.45% for different oil-water mixtures. The permeation fluxes
for n-hexane, liquid paraffin, petroleum ether, and dichloroethane-water mixtures were
3135.06 L·m−2·h−1, 3263.45 L·m−2·h−1, 3140.42 L·m−2·h−1 and 3016.38 L·m−2·h−1, respec-
tively. The differences in separation efficiency and flux may be caused by the different
properties of various oils, such as density, viscosity, and so on (Table 2).

Table 2. Summary of the properties of the oils and water.

Liquids The Viscosity of Oils
(mPa s) Density (g cm−3) Surface Tension

(mN m−1)

Liquid paraffin 14.2–17.2 0.86–0.91 33.1
n-hexane 0.33 0.66 18.4

Petroleum ether 0.3 0.66 18.8
dichloroethane 0.84 1.245 32.2

Water 0.89 1 72.8
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3.4. Stability and Anti-Fouling of Membranes

The mechanical stability of the surface microstructure is an important factor in de-
termining the service life of the membrane. Many external influences caused by water
flow, such as shear forces and impact forces, can destroy the surface microstructure and
membrane separation function. To assess mechanical stability, the effects of mechanical
agitation and water impact tests on TSFM were tested. (Figure 9a,b), under the action of
external force, the UOCA of TSFM decreased to a certain extent [45], but it still has a good
separation performance of 96.7% for the oil-water mixture (Figure 9b,d). The above results
indicated the good mechanical stability of the membrane.
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In practical application, environmental stability plays a crucial role in the separation
performance and service life of membranes, which determine whether membranes can be
continuously used in complex environments. Generally, inorganic-modified separation
membranes such as oxides and metals are unstable in aqueous solutions containing strong
acids or bases [46,47]. While the organic membranes are easily destroyed in organic solvents
(such as 1,2-dichloromethane, chloroform, diesel, etc.) [48,49], which seriously affected
their practical application. To assess the environmental stability, the TSFM was put into
sodium chloride (1 mol/L), sodium hydroxide (1 mol/L), and hydrochloric acid (1 mol/L)
solutions for 12 h [50], and then the environmental stability of the membrane was evaluated
by testing the UOCA and oil-water separation efficiency. As shown in Figure 9c, the UOCA
of the membrane was maintained above 150◦, indicating the membrane surface can still
maintain underwater superoleophobicity. At the same time, the separation efficiency of the
petroleum ether-water mixture was still higher than 98%, and the separation flux remained
above 3357 L·m−2·h−1 (Figure 9d). The surface morphology of samples before and after
the stability test (Figure 9e) was compared. The results showed that the morphology of
TiO2 particles on the membrane surface was not significantly damaged after the chemical
stability test, indicating that it still had excellent chemical stability. However, the TiO2
particles on the membrane surface were subjected to strong external forces in the mechanical
stability test, resulting in a slight decrease in TiO2 adhesion on the fiber surface but still
maintaining a certain level of performance. This explains why the separation efficiency
of the membrane slightly decreases after mechanical stability testing. The above results
showed that the membrane has good stability in complex environments.
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Another problem faced by membrane materials in the application process is membrane
fouling. After continuous separation of complex oily wastewater, the membrane may be
contaminated by some oil or organic molecules, leading to the loss of the original surface
wettability and separation ability. In order to study the anti-fouling performance, the
repeated separation performance of the TSFM for the petroleum ether-water mixture
was studied experimentally. The changes in UOCA and separation performance of the
membrane are shown in Figure 10. Before separation, the original UOCA was 160◦. As the
number of times the separation process was repeated increased, the separation efficiency
decreased to 95.02% at the 8-cycle experiments, which indicated the TSFM was polluted to
some extent, and the UOCA was reduced to 135◦. The contaminated TSFM was irradiated
under a xenon lamp for 1 h, the UOCA was restored to 158◦, and the separation efficiency
was significantly improved to 99%. The results showed that TSFM has excellent anti-fouling
and self-cleaning properties.
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3.5. Separation Mechanisms

Hierarchical structure and surface energy are two key factors for constructing super-
wettability materials. According to the Wenzel equation (cosθw = rcosθ) [51], the hierarchical
structure can significantly enhance the wettability of the surface. After introducing the
hierarchical structure, the capillary effect enhances the surface wettability. As shown in
Figure 11a, a new solid/water/oil interface was formed when the oil droplets came into
contact with the membrane. The wetting state of underwater oil droplets on TSFM can be
explained by Young’s equation [52]:

cosθ3 =
γo−gcosθ1 − γw−gcosθ2

γo−w
(3)

where θ1 represents the contact angle of oil in the air, θ2 represents the contact angle of
water in the air, θ3 represents the contact angle of oil in water, γ represents the surface
tension, and subscripts o, w, and g represent the oil, water, and gas phases, respectively. It
can be used to calculate the underwater superoleophobicity of TSFM. The measurement
results of CA indicated the θ1 = 0◦, θ2 = 0◦, thus cosθ1 = 1, cosθ2 = 1. From the data in Table 2,
cos θ3 =

γo−g − γw−g
γo−w

< 0 (γo−w > 0), that is cosθ3 < 0. Therefore, it is calculated that θ3 value
must be greater than 90◦, which means the TSFM is oil-repellent underwater. As shown in
Figure 11b, water permeates the TSFM, and oil is rejected by the membrane, successfully
achieving the separation of the oil-water mixture.
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4. Conclusions

The TSFM was successfully prepared by a one-step hydrothermal method for oil-water
separation in acid, alkali, and salt environments. The membrane showed superhydrophilic-
ity/underwater superoleophobicity with a WCA of 0◦ and a UOCA of 160◦. The optimal
TSFM exhibited excellent separation performance, with a separation efficiency of above
98%. Furthermore, the optimal TSFM showed excellent mechanical resistance to fluid
shear/impact forces and environmental resistance to alkali, acid, and salt. Moreover, the
TSFM exhibited anti-fouling self-cleaning ability, ensuring long-term separation perfor-
mance. In a word, a simple one-step method for fabricating super-hydrophilic/underwater
super-oleophobic membranes with good separation performance and excellent anti-fouling
self-cleaning ability was reported in this work.
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