Demulsifier-Inspired Superhydrophilic/Underwater Superoleophobic Membrane Modified with Polyoxypropylene Polyoxyethylene Block Polymer for Enhanced Oil/Water Separation Properties
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of F127@SMA
2.2. Chemical Structure Characterization of Membrane Surfaces
2.3. Morphology and Pore Structure of Membranes
2.4. Permeability and Surface Wettability of Membranes
2.5. Antifouling Performance
2.6. Separation of the O/W Emulsion
2.6.1. O/W Separation Performance
2.6.2. Anti−Crude Oil Fouling and Operational Stability
2.6.3. Stability of the Modified Membrane
3. Experimental
3.1. Materials
3.2. Preparation of F127 Grafted SMA Ploymer
3.3. Preparation of the Membrane
3.4. Characterization of Membranes
3.4.1. Structure and Surface Features
3.4.2. Mechanical Properties
3.4.3. Permeability and Surface Wettability
3.4.4. Antifouling Performance
3.5. O/W Emulsion Separation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Du, L.; Quan, X.; Fan, X.-F.; Chen, S.; Yu, H.-T. Electro-responsive carbon membranes with reversible superhydrophobicity/superhydrophilicity switch for efficient oil/water separation. Sep. Purif. Technol. 2019, 210, 891–899. [Google Scholar] [CrossRef]
- Zhang, M.-J.; Cui, J.-X.; Lu, T.; Tang, G.-S.; Wu, S.-T.; Ma, W.-J.; Huang, C.-B. Robust, functionalized reduced graphene-based nanofibrous membrane for contaminated water purification. Chem. Eng. J. 2021, 404, 126347. [Google Scholar] [CrossRef]
- Ma, W.-J.; Ding, Y.-C.; Zhang, M.-J.; Gao, S.-T.; Li, Y.-S.; Huang, C.-B.; Fu, G.-D. Nature-inspired chemistry toward hierarchical superhydrophobic, antibacterial and biocompatible nanofibrous membranes for effective UV-shielding, self-cleaning and oil-water separation. J. Hazard. Mater. 2020, 384, 121476. [Google Scholar] [CrossRef] [PubMed]
- Tummons, E.; Han, Q.; Tanudjaja, H.J.; Hejase, C.A.; Chew, J.W.; Tarabara, V.V. Membrane fouling by emulsified oil: A review. Sep. Purif. Technol. 2020, 248, 116919. [Google Scholar] [CrossRef]
- Zheng, W.-W.; Huang, J.-Y.; Li, S.-H.; Ge, M.-Z.; Teng, L.; Chen, Z.; Lai, Y.-K. Advanced materials with special wettability toward intelligent oily wastewater remediation. ACS Appl. Mater. Interfaces 2021, 13, 67–87. [Google Scholar] [CrossRef]
- Xia, C.-B.; Li, Y.-B.; Fei, T.; Gong, W.-L. Facile one-pot synthesis of superhydrophobic reduced graphene oxidecoated polyurethane sponge at the presence of ethanol for oil-water separation. Chem. Eng. J. 2018, 345, 648–658. [Google Scholar] [CrossRef]
- Jiang, G.-M.; Li, J.-X.; Nie, Y.-L.; Zhang, S.; Dong, F.; Guan, B.-H.; Lv, X.-S. Immobilizing Water into Crystal Lattice of Calcium Sulfate for its Separation from Water-in-Oil Emulsion. Environ. Sci. Technol. 2016, 50, 7650–7657. [Google Scholar] [CrossRef]
- Ge, J.-L.; Jin, Q.; Zong, D.-D.; Yu, J.-Y.; Ding, B. Biomimetic Multilayer Nanofibrous Membranes with Elaborated Superwettability for Effective Purification of Emulsified Oily Wastewater. ACS Appl. Mater. Interfaces 2018, 10, 16183–16192. [Google Scholar] [CrossRef]
- Shin, J.H.; Heo, J.H.; Jeon, S.; Park, J.H.; Kim, S.; Kang, H.W. Bio-inspired hollow PDMS sponge for enhanced oil-water separation. J. Hazard. Mater. 2019, 365, 494–501. [Google Scholar] [CrossRef]
- Zhang, Y.; Tong, X.; Zhang, B.; Zhang, C.; Zhang, H.; Chen, Y. Enhanced permeation and antifouling performance of polyvinyl chloride (PVC) blend Pluronic F127 ultrafiltration membrane by using salt coagulation bath (SCB). J. Membr. Sci. 2018, 548, 32–41. [Google Scholar] [CrossRef]
- Padaki, M.; Emadzadeh, D.; Masturra, T.; Ismail, A.F. Antifouling properties of novel PSf and TNT composite membrane and study of effect of the flow direction on membrane washing. Desalination 2015, 362, 141–150. [Google Scholar] [CrossRef]
- Zhang, F.; Zhang, W.-B.; Shi, Z.; Wang, D.; Jin, J.; Jiang, L. Nanowire-haired inorganic membranes with superhydrophilicity and underwater ultralow adhesive superoleophobicity for high-efficiency oil/water separation. Adv. Mater. 2013, 25, 4192–4198. [Google Scholar] [PubMed]
- Li, L.-X.; Zhang, J.-P.; Wang, A.-Q. Removal of Organic Pollutants from Water Using Superwetting Materials. Chem. Rec. 2018, 18, 118–136. [Google Scholar] [PubMed]
- Wei, C.-J.; Dai, F.-Y.; Lin, L.-G.; An, Z.-H.; He, Y.; Chen, X.; Chen, L.; Zhao, Y.-P. Simplified and robust adhesive-free superhydrophobic SiO2-decorated PVDF membranes for efficient oil/water separation. J. Membr. Sci. 2018, 555, 220–228. [Google Scholar] [CrossRef]
- Wu, Y.-L.; Lu, J.; Xing, W.-D.; Ma, F.-G.; Gao, J.; Lin, X.-Y.; Yu, C.; Yan, M. Double-layer-based molecularly imprinted membranes for template-dependent recognition and separation: An imitated core-shell-based synergistic integration design. Chem. Eng. J. 2020, 397, 125371. [Google Scholar]
- Liu, J.-H.; Shen, L.-G.; Lin, H.-J.; Huang, Z.-Y.; Hong, H.-C.; Chen, C. Preparation of Ni@UiO-66 incorporated polyethersulfone (PES) membrane by magnetic field assisted strategy to improve permeability and photocatalytic self-cleaning ability. J. Colloid Interface Sci. 2022, 618, 483–495. [Google Scholar] [CrossRef]
- Qian, M.; Yan, X.; Chen, Y.; Guo, X.-J.; Lang, W.-Z. Covalent organic framework membrane on electrospun polyvinylidene fluoride substrate with a hydrophilic intermediate layer. J. Colloid Interface Sci. 2022, 622, 11–20. [Google Scholar] [CrossRef]
- Yan, L.-L.; Yang, X.-B.; Zhao, Y.-Y.; Wu, Y.-D.; Moutloali, R.M.; Mamba, B.B.; Sorokin, P.; Shao, L. Bio-inspired mineral-hydrogel hybrid coating on hydrophobic PVDF membrane boosting oil/water emulsion separation. Sep. Purif. Technol. 2022, 285, 120383. [Google Scholar] [CrossRef]
- Peng, K.; Huang, Y.-A.; Peng, N.; Chang, C.-Y. Antibacterial nanocellulose membranes coated with silver nanoparticles for oil/water emulsions separation. Carbohydr. Polym. 2022, 278, 118929. [Google Scholar] [CrossRef]
- Yang, Y.-J.; Li, Y.-Q.; Cao, L.-X.; Wang, Y.-J.; Li, L.; Li, W.-L. Electrospun PVDF-SiO2 nanofibrous membranes with enhanced surface roughness for oil-water coalescence separation. Sep. Purif. Technol. 2021, 269, 118726. [Google Scholar]
- Zhao, Y.-H.; Guo, J.-X.; Li, Y.-C.; Zhang, X.-N.; An, A.K.; Wang, Z.-K. Sustainable Superhydrophobic and superoleophilic PH-CNT membrane for emulsified oil-water separation. Desalination 2022, 526, 115536. [Google Scholar] [CrossRef]
- Ahmad, N.; Rasheed, S.; Ahmed, K.; Musharraf, S.G.; Najam-ul-Haq, M.; Hussain, D. Facile two-step functionalization of multifunctional superhydrophobic cotton fabric for UV-blocking, self cleaning, antibacterial, and oil-water separation. Sep. Purif. Technol. 2023, 306, 122626. [Google Scholar] [CrossRef]
- Zhang, J.-Y.; Fang, W.-X.; Zhang, F.; Gao, S.-J.; Guo, Y.-L.; Li, J.-Y.; Zhu, Y.-Z.; Zhang, Y.-T.; Jin, J. Ultrathin microporous membrane with high oil intrusion pressure for effective oil/water separation. J. Membr. Sci. 2020, 608, 118201. [Google Scholar] [CrossRef]
- Boyraz, E.; Yalcinkaya, F. Hydrophilic Surface-Modified PAN Nanofibrous Membranes for Efficient Oil-Water Emulsion Separation. Polymers 2021, 13, 197. [Google Scholar] [CrossRef]
- Tian, Q.; Qiu, F.-X.; Li, Z.-D.; Xiong, Q.; Zhao, B.-C.; Zhang, T. Structured sludge derived multifunctional layer for simultaneous separation of oil/water emulsions and anions contaminants. J. Hazard. Mater. 2022, 432, 128651. [Google Scholar] [CrossRef] [PubMed]
- Tuteja, A.; Choi, W.; Ma, M.L.; Mabry, J.M.; Mazzella, S.A.; Rutledge, G.C.; McKinley, G.H.; Cohen, R.E. Designing superoleophobic surfaces. Science 2007, 318, 1618–1622. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giacomello, A.; Meloni, S.; Chinappi, M.; Casciola, C.M. Cassie-Baxter and Wenzel states on a nanostructured surface: Phase diagram, metastabilities, and transition mechanism by atomistic free energy calculations. Langmuir 2012, 28, 10764–10772. [Google Scholar] [CrossRef] [PubMed]
- Xiang, S.; Tang, X.-X.; Rajabzadeh, S.; Zhang, P.-F.; Cui, Z.-Y.; Matsuyama, H. Fabrication of PVDF/EVOH blend hollow fiber membranes with hydrophilic property via thermally induced phase process. Sep. Purif. Technol. 2022, 301, 122031. [Google Scholar] [CrossRef]
- Salimi, P.; Aroujalian, A.; Iranshahi, D. Development of PES-based hydrophilic membranes via corona air plasma for highly effective water purification. J. Environ. Chem. Eng. 2022, 10, 107775. [Google Scholar] [CrossRef]
- Jiang, Y.-X.; Xian, C.-Y.; Xu, X.-F.; Zheng, W.-W.; Zhu, T.-X.; Cai, W.-L.; Huang, J.-Y.; Lai, Y.-K. Robust PAAm-TA hydrogel coated PVDF membranes with excellent crude-oil antifouling ability for sustainable emulsion separation. J. Membr. Sci. 2023, 667, 121166. [Google Scholar] [CrossRef]
- Teng, L.; Yue, C.; Zhang, G.-W. Epoxied SiO2 nanoparticles and polyethyleneimine (PEI) coated polyvinylidene fluoride (PVDF) membrane for improved oil water separation, anti-fouling, dye and heavy metal ions removal capabilities. J. Colloid Interface Sci. 2023, 630, 416–429. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.-B.; Zhu, Y.-Z.; Liu, X.; Wang, D.; Li, J.-Y.; Jiang, L.; Jin, J. Salt-induced fabrication of superhydrophilic and underwater superoleophobic PAA-g-PVDF membranes for effective separation of oil-in-water emulsions. Angew. Chem. 2014, 53, 856–860. [Google Scholar] [CrossRef] [PubMed]
- Gao, S.-J.; Sun, J.-C.; Liu, P.-P.; Zhang, F.; Zhang, W.-B.; Yuan, S.-L.; Li, J.-Y.; Jin, J. A Robust Polyionized Hydrogel with an Unprecedented Underwater Anti-Crude-Oil-Adhesion Property. Adv. Mater. 2016, 28, 5307–5314. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.; Yan, F.; Wang, M.-X.; Yan, H.; Cui, Z.-Y.; Li, J.-X.; He, B.-Q. Fabrication of hyperbranched polyether demulsifier modified PVDF membrane for demulsification and separation of oil-in-water emulsion. J. Membr. Sci. 2020, 602, 117974. [Google Scholar] [CrossRef]
- Niu, Z.; Yue, T.; He, X.; Manica, R. Changing the Interface Between an Asphaltene Model Compound and Water by Addition of an EO-PO Demulsifier through Adsorption Competition or Adsorption Replacement. Energy Fuels 2019, 33, 5035–5042. [Google Scholar] [CrossRef]
- Niu, Z.; Ma, X.M.; Manica, R.; Yue, T. Molecular Destabilization Mechanism of Asphaltene Model Compound C5Pe Interfacial Film by EO-PO Copolymer: Experiments and MD Simulation. J. Phys. Chem. C 2019, 123, 10501–10508. [Google Scholar] [CrossRef]
- Zhu, Y.-Z.; Zhang, F.; Wang, D.; Pei, X.-F.; Zhang, W.-B.; Jin, J. A novel zwitterionic polyelectrolyte grafted PVDF membrane for thoroughly separating oil from water with ultrahigh efficiency. J. Mater. Chem. A 2013, 1, 5758–5765. [Google Scholar] [CrossRef]
- Karkooti, A.; Yazdi, A.Z.; Chen, P.; McGregor, M.; Nazemifard, N.; Sadrzadeh, M. Development of advanced nanocomposite membranes using graphene nanoribbons and nanosheets for water treatment. J. Membr. Sci. 2018, 560, 97–107. [Google Scholar] [CrossRef]
- Chen, Y.-F.; Zhang, Y.-T.; Zhang, H.-Q.; Liu, J.-D.; Song, C.-H. Biofouling control of halloysite nanotubes-decorated polyethersulfone ultrafiltration membrane modified with chitosan-silver nanoparticles. Chem. Eng. J. 2013, 228, 12–20. [Google Scholar] [CrossRef]
- Yan, F.; Chen, H.; Lu, Y.; Lu, Z.-H.; Yu, S.-C.; Liu, M.-H.; Gao, C.-J. Improving the water permeability and antifouling property of thin-film composite polyamide nanofiltration membrane by modifying the active layer with triethanolamine. J. Membr. Sci. 2016, 513, 108–116. [Google Scholar] [CrossRef]
- Gao, C.-M.; Chen, J.-C.; Liu, S.-H.; Yang, H.; Ji, S.-F.; Chen, H.-Y. A double anti-fouling mechanism established by self-assembly of TiO2 on F127 chains for improving the hydrophilicity of PES membrane based on RTIPS method. Sep. Purif. Technol. 2021, 255, 117742. [Google Scholar] [CrossRef]
- Lin, Y.-C.; Chao, C.-M.; Wang, D.-K.; Liu, K.-M.; Tseng, H.H. Enhancing the antifouling properties of a PVDF membrane for protein separation by grafting branch-like zwitterions via a novel amphiphilic SMA-HEA linker. J. Membr. Sci. 2021, 624, 119126. [Google Scholar] [CrossRef]
- Yuan, T.; Meng, J.-Q.; Hao, T.-Y.; Wang, Z.-H.; Zhang, Y.-F. A scalable method toward superhydrophilic and underwater superoleophobic PVDF membranes for effective oil/water emulsion separation. ACS Appl. Mater. Interfaces 2015, 7, 14896–14904. [Google Scholar] [CrossRef]
- Shao, L.-Y.; Yu, Z.-X.; Li, X.-H.; Zeng, H.-J.; Liu, Y.-C. One-step preparation of sepiolite/graphene oxide membrane for multifunctional oil-in-water emulsions separation. Appl. Clay Sci. 2019, 181, 105208. [Google Scholar] [CrossRef]
- Li, C.-C.; Chen, X.-Y.; Luo, J.; Wang, F.; Liu, G.-J.; Zhu, H.-L.; Guo, Y.-H. PVDF grafted Gallic acid to enhance the hydrophilicity and antibacterial properties of PVDF composite membrane. Sep. Purif. Technol. 2021, 259, 118127. [Google Scholar] [CrossRef]
- Cui, J.-Y.; Xie, A.-T.; Yan, Z.; Yan, Y.-S. Fabrication of crosslinking modified PVDF/GO membrane with acid, alkali and salt resistance for efficient oil-water emulsion separation. Sep. Purif. Technol. 2021, 265, 118525. [Google Scholar] [CrossRef]
- Li, J.-F.; Xu, Z.-L.; Yang, H.; Yu, L.-Y.; Liu, M. Effect of TiO2 nanoparticles on the surface morphology and performance of microporous PES membrane. Appl. Surf. Sci. 2009, 255, 4725–4732. [Google Scholar] [CrossRef]
- Feng, C.-S.; Shi, B.-L.; Li, G.-M.; Wu, Y.-L. Preparation and properties of microporous membrane from poly(vinylidene fluoride-co-tetrafluoroethylene) (F2.4) for membrane distillation. J. Membr. Sci. 2004, 237, 15–24. [Google Scholar] [CrossRef]
- Gumbi, N.N.; Hu, M.-Y.; Mamba, B.B.; Li, J.-X.; Nxumalo, E.N. Macrovoid-free PES/SPSf/O-MWCNT ultrafiltration membranes with improved mechanical strength, antifouling and antibacterial properties. J. Membr. Sci. 2018, 566, 288–300. [Google Scholar] [CrossRef]
- Chen, F.-T.; Shi, X.-X.; Chen, X.-B.; Chen, W.-X. An iron (II) phthalocyanine/poly(vinylidene fluoride) composite membrane with antifouling property and catalytic self-cleaning function for high-efficiency oil/water separation. J. Membr. Sci. 2018, 552, 295–304. [Google Scholar] [CrossRef]
- Wei, Q.-Q.; Wu, C.-Y.; Zhang, J.; Cui, Z.-Y.; Jiang, T.; Li, J.-X. Fabrication of surface microstructure for the ultrafiltration membrane based on “active-passive” synergistic antifouling and its antifouling mechanism of protein. React. Funct. Polym. 2021, 169, 105068. [Google Scholar] [CrossRef]
Samples | Composition (at %) | Atomic Ratio | ||
---|---|---|---|---|
C | O | F | O/F | |
M-0 | 48.2 | 0 | 51.8 | 0 |
M-1 | 61.2 | 10.5 | 28.3 | 0.4 |
M-3 | 64.8 | 14.9 | 20.3 | 0.7 |
M-5 | 66.3 | 16.5 | 17.2 | 1.0 |
M-7 | 68.1 | 18.1 | 13.8 | 1.3 |
Membrane | JW0 (L·m−2·h−1) | JW3 (L·m−2·h−1) | FRR (%) | Rr (%) | Rir (%) | Rt (%) |
---|---|---|---|---|---|---|
M-0 | 8.6 | 1.2 | 14.0 | 4.1 | 81.4 | 85.5 |
M-1 | 126.9 | 78.2 | 61.6 | 11.0 | 37.8 | 48.8 |
M-3 | 281.2 | 258.1 | 91.8 | 19.6 | 3.5 | 23.1 |
M-5 | 344.8 | 279.9 | 81.2 | 14.6 | 10.8 | 25.4 |
M-7 | 400. 5 | 308.9 | 77.1 | 12.7 | 16.2 | 28.9 |
Emulsion with Different Oil | |||
---|---|---|---|
(ppm) | (ppm) | (%) | |
Crude oil | 1082.7 | 7.8 | 99.3 |
Kerosene | 984.0 | 8.9 | 99.1 |
Dichloroethane | 946.4 | 7.5 | 99.2 |
Toluene | 807.2 | 7.2 | 99.1 |
Petroleum | 852.8 | 6.1 | 99.3 |
Membranes | Type of Oils in O/W Emulison | Separation Efficiency (%) | Emulsions Permeate Flux (L·m−2·h−1·bar−1) | Reference |
---|---|---|---|---|
PVDF/EVOH membrane | petroleum | 98.2% | 287 | [28] |
PES-g-SBMA membrane | gas oil | >99.0% | 364 | [29] |
SiO2/PEI/PVDF membrane | soybean oil | 99.6% | 712.8 | [31] |
PVDFAH Membrane | gasoline, dodecane, hexadecane | >99.0% | 650–1000 | [43] |
PVDF/Sep/GO membrane | kerosene, decane, petroleum ether, mesitylene | >98.7% | 70–200 | [44] |
PVDF-g-PGAL/PVDF membrane | engine | 97.37% | 241.99 | [45] |
PVDF/GO membrane | petroleum ether, toluene, dichloroethane, n-hexane | >99.0% | >145 | [46] |
F127@SMA/PVDF membrane | crude oil, kerosene, dichloroethane, toluene, petroleum | >99.1% | 272.4 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, M.; Wang, M.; Chen, J.; Dong, L.; Tian, Y.; Cui, Z.; Li, J.; He, B.; Yan, F. Demulsifier-Inspired Superhydrophilic/Underwater Superoleophobic Membrane Modified with Polyoxypropylene Polyoxyethylene Block Polymer for Enhanced Oil/Water Separation Properties. Molecules 2023, 28, 1282. https://doi.org/10.3390/molecules28031282
Zhang M, Wang M, Chen J, Dong L, Tian Y, Cui Z, Li J, He B, Yan F. Demulsifier-Inspired Superhydrophilic/Underwater Superoleophobic Membrane Modified with Polyoxypropylene Polyoxyethylene Block Polymer for Enhanced Oil/Water Separation Properties. Molecules. 2023; 28(3):1282. https://doi.org/10.3390/molecules28031282
Chicago/Turabian StyleZhang, Mengmeng, Mingxia Wang, Junwei Chen, Linfang Dong, Yuqin Tian, Zhenyu Cui, Jianxin Li, Benqiao He, and Feng Yan. 2023. "Demulsifier-Inspired Superhydrophilic/Underwater Superoleophobic Membrane Modified with Polyoxypropylene Polyoxyethylene Block Polymer for Enhanced Oil/Water Separation Properties" Molecules 28, no. 3: 1282. https://doi.org/10.3390/molecules28031282
APA StyleZhang, M., Wang, M., Chen, J., Dong, L., Tian, Y., Cui, Z., Li, J., He, B., & Yan, F. (2023). Demulsifier-Inspired Superhydrophilic/Underwater Superoleophobic Membrane Modified with Polyoxypropylene Polyoxyethylene Block Polymer for Enhanced Oil/Water Separation Properties. Molecules, 28(3), 1282. https://doi.org/10.3390/molecules28031282