Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (17)

Search Parameters:
Keywords = supercritical hydrothermal synthesis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 964 KiB  
Review
The Gasification of Marine and Coastal Resources for Syngas Production: A Review
by Gwendal Vonk, Virginie Boy, Jean-Louis Lanoisellé and Thomas Lendormi
Energies 2025, 18(3), 616; https://doi.org/10.3390/en18030616 - 29 Jan 2025
Viewed by 937
Abstract
Coasts are home to one-third of the human population. In the process of energy transition, local biomass and waste resources represent a renewable fuel that can substitute fossil fuels in order to reduce greenhouse gas emissions, hence including marine resources as part of [...] Read more.
Coasts are home to one-third of the human population. In the process of energy transition, local biomass and waste resources represent a renewable fuel that can substitute fossil fuels in order to reduce greenhouse gas emissions, hence including marine resources as part of the eligible feedstock for renewable energy production. Gasification regroups different technologies that aim to convert a solid fuel into a useful gas, and has several applications, such as heat production, power generation, and chemical synthesis. Gasification technologies regroup the traditional “dry” processes that use relatively dry fuels, but recent developments have been made with “wet” processes such as hydrothermal gasification, in sub- or supercritical conditions for the water, which can accept wet fuel. This review focuses on scientific articles that performed gasification of marine resources in order to produce a syngas. First, a definition of marine resources is made, followed by the presentation of marine resources studied in the literature. Secondly, this review presents the different types of gasification reactors and their operating conditions, followed by a summary of the different syngas produced with their composition as a performance indicator. Finally, this review exposes the limitations of the current literature and concludes with perspective propositions. Full article
Show Figures

Figure 1

15 pages, 6823 KiB  
Article
Catalytic Biomass Transformation to Hydrocarbons under Supercritical Conditions over Nickel Supported on Schungite
by Elena O. Schipanskaya, Antonina A. Stepacheva, Mariia E. Markova, Alexey V. Bykov, Alexander I. Sidorov, Valentina G. Matveeva, Mikhail G. Sulman and Lioubov Kiwi-Minsker
Processes 2024, 12(7), 1503; https://doi.org/10.3390/pr12071503 - 17 Jul 2024
Cited by 1 | Viewed by 904
Abstract
Liquid fuel production from biomass-derived molecules has received great attention due to the diminished fossil fuel reserves, growing energy demand, and the necessity of CO2 emission reduction. The deoxygenation of oils and fatty acids is a promising process to obtain “green” diesel. [...] Read more.
Liquid fuel production from biomass-derived molecules has received great attention due to the diminished fossil fuel reserves, growing energy demand, and the necessity of CO2 emission reduction. The deoxygenation of oils and fatty acids is a promising process to obtain “green” diesel. Herein, we report the results of the study of the deoxygenation of stearic acid to alkanes as a model reaction. Series of Ni-supported on schungite were obtained by precipitation in subcritical water (hydrothermal deposition) and for comparison via wetness impregnation followed, in both cases, by calcination at 500 °C and a reduction in H2 at 300 °C. The catalyst obtained via hydrothermal synthesis showed a three-fold higher specific surface area with a four-fold higher active phase dispersion compared to the catalysts synthesized via conventional impregnation. The catalysts were tested in stearic acid deoxygenation in supercritical n-hexane as the solvent. Under optimized process conditions (temperature of 280 °C, hydrogen partial pressure of 1.5 MPa, and 13.2 mol of stearic acid per mol of Ni), a close to 100% yield of C10–C18 alkanes, containing over 70 wt.% of targeted n-heptadecane, was obtained after 60 min of reaction. Full article
Show Figures

Figure 1

25 pages, 1606 KiB  
Review
Hydrochar Production by Hydrothermal Carbonization: Microwave versus Supercritical Water Treatment
by Modupe Elizabeth Ojewumi and Gang Chen
Biomass 2024, 4(2), 574-598; https://doi.org/10.3390/biomass4020031 - 6 Jun 2024
Cited by 10 | Viewed by 4528
Abstract
Hydrochar, a carbonaceous material produced through hydrothermal carbonization of lignocellulosic biomass, has gained significant attention due to its versatile applications in agriculture, energy, and environmental protection. This review extensively explores hydrochar production by hydrothermal carbonization, specifically microwave and supercritical water treatment. These innovative [...] Read more.
Hydrochar, a carbonaceous material produced through hydrothermal carbonization of lignocellulosic biomass, has gained significant attention due to its versatile applications in agriculture, energy, and environmental protection. This review extensively explores hydrochar production by hydrothermal carbonization, specifically microwave and supercritical water treatment. These innovative approaches hold substantial promises in enhancing the efficiency and sustainability of hydrochar synthesis. The review commences with an in-depth analysis of the fundamental principles governing hydrochar production, emphasizing the distinct mechanisms of microwave and supercritical water treatment. Insightful discussions on the influence of critical process parameters, such as temperature, pressure, and residence time, underscore these factors’ pivotal role in tailoring hydrochar characteristics. Drawing on a wide array of research findings, the review evaluates the impact of different lignocellulosic biomass feedstocks on hydrochar properties, which is crucial for optimizing hydrochar production. The comparative assessment of microwave and supercritical water treatment sheds light on their unique advantages and challenges, guiding researchers toward informed decision-making in selection of methods. Furthermore, the review delves into the myriad applications of hydrochar, spanning soil amendment, carbon sequestration, and renewable energy. Environmental considerations and life cycle assessments associated with microwave and supercritical water treatment are also explored, providing a holistic perspective on the sustainability of hydrochar production. In conclusion, this comprehensive review synthesizes current knowledge on hydrochar production from diverse lignocellulosic biomass sources, emphasizing the efficacy of microwave and supercritical water methods. Full article
Show Figures

Graphical abstract

19 pages, 10051 KiB  
Article
Study on the Synthesis of Nano Zinc Oxide Particles under Supercritical Hydrothermal Conditions
by Panpan Sun, Zhaobin Lv and Chuanjiang Sun
Nanomaterials 2024, 14(10), 844; https://doi.org/10.3390/nano14100844 - 12 May 2024
Cited by 7 | Viewed by 2534
Abstract
The supercritical hydrothermal synthesis of nanomaterials has gained significant attention due to its straightforward operation and the excellent performance of the resulting products. In this study, the supercritical hydrothermal method was used with Zn(CH3COO)2·2H2O as the precursor [...] Read more.
The supercritical hydrothermal synthesis of nanomaterials has gained significant attention due to its straightforward operation and the excellent performance of the resulting products. In this study, the supercritical hydrothermal method was used with Zn(CH3COO)2·2H2O as the precursor and deionized water and ethanol as the solvent. Nano-ZnO was synthesized under different reaction temperatures (300~500 °C), reaction times (5~15 min), reaction pressures (22~30 MPa), precursor concentrations (0.1~0.5 mol/L), and ratios of precursor to organic solvent (C2H5OH) (2:1~1:4). The effects of synthesis conditions on the morphology and size of ZnO were studied. It was found that properly increasing hydrothermal temperature and pressure and extending the hydrothermal time are conducive to the more regular morphology and smaller size of ZnO particles, which is mainly achieved through the change of reaction conditions affecting the hydrothermal reaction rate. Moreover, the addition of ethanol makes the morphology of nano-zno more regular and significantly inhibits the agglomeration phenomenon. In addition to the change in physical properties of the solvent, this may also be related to the chemical bond established between ethanol and ZnO. The results show that the optimum synthesis conditions of ZnO are 450 °C, 26 MPa, 0.3 mol/L, 10 min, and the molar ratio of precursor to ethanol is 1:3. Full article
(This article belongs to the Special Issue Hydrothermal Synthesis of Nanoparticles: 2nd Edition)
Show Figures

Figure 1

14 pages, 15483 KiB  
Article
Continuous Supercritical Water Impregnation Method for the Preparation of Metal Oxide on Activated Carbon Composite Materials
by Florentina Maxim, Elena-Ecaterina Toma, Giuseppe-Stefan Stoian, Cristian Contescu, Irina Atkinson, Christian Ludwig and Speranta Tanasescu
Energies 2024, 17(4), 913; https://doi.org/10.3390/en17040913 - 16 Feb 2024
Cited by 1 | Viewed by 1408
Abstract
Metal oxide (MexOy) nanomaterials are used as catalysts and/or sorbents in processes taking place in supercritical water (scH2O), which is the “green” solvent needed to obtain energy-relevant products. Their properties are significantly influenced by the synthesis method [...] Read more.
Metal oxide (MexOy) nanomaterials are used as catalysts and/or sorbents in processes taking place in supercritical water (scH2O), which is the “green” solvent needed to obtain energy-relevant products. Their properties are significantly influenced by the synthesis method used to prepare active MexOy. In addition, the use of supported MexOy nanoparticles is more practical and cost-effective in terms of their performance maintenance. Within this context, the present study reports on the preparation of carbon-supported ZnO and CuO composites using an innovative scH2O impregnation method. Metal oxides were impregnated on a carbon (C) support using a continuous-flow tubular reactor. The results show that impregnation in scH2O is a promising approach for the preparation of ZnO/C and CuO/C composite materials. This one-step synthesis method, in a continuous flow, uses neither a seed layer nor a mineralizer, and it needs substantially lower preparation times than conventional impregnation methods. Full article
(This article belongs to the Special Issue Emerging Topics in Future Energy Materials)
Show Figures

Figure 1

23 pages, 1978 KiB  
Review
A Review of the Design and Performance of Catalysts for Hydrothermal Gasification of Biomass to Produce Hydrogen-Rich Gas Fuel
by Kapil Khandelwal, Philip Boahene, Sonil Nanda and Ajay K. Dalai
Molecules 2023, 28(13), 5137; https://doi.org/10.3390/molecules28135137 - 30 Jun 2023
Cited by 17 | Viewed by 3657
Abstract
Supercritical water gasification has emerged as a promising technology to sustainably convert waste residues into clean gaseous fuels rich in combustible gases such as hydrogen and methane. The composition and yield of gases from hydrothermal gasification depend on process conditions such as temperature, [...] Read more.
Supercritical water gasification has emerged as a promising technology to sustainably convert waste residues into clean gaseous fuels rich in combustible gases such as hydrogen and methane. The composition and yield of gases from hydrothermal gasification depend on process conditions such as temperature, pressure, reaction time, feedstock concentration, and reactor geometry. However, catalysts also play a vital role in enhancing the gasification reactions and selectively altering the composition of gas products. Catalysts can also enhance hydrothermal reforming and cracking of biomass to achieve desired gas yields at moderate temperatures, thereby reducing the energy input of the hydrothermal gasification process. However, due to the complex hydrodynamics of supercritical water, the literature is limited regarding the synthesis, application, and performance of catalysts used in hydrothermal gasification. Hence, this review provides a detailed discussion of different heterogeneous catalysts (e.g., metal oxides and transition metals), homogeneous catalysts (e.g., hydroxides and carbonates), and novel carbonaceous catalysts deployed in hydrothermal gasification. The article also summarizes the advantages, disadvantages, and performance of these catalysts in accelerating specific reactions during hydrothermal gasification of biomass, such as water–gas shift, methanation, hydrogenation, reforming, hydrolysis, cracking, bond cleavage, and depolymerization. Different reaction mechanisms involving a variety of catalysts during the hydrothermal gasification of biomass are outlined. The article also highlights recent advancements with recommendations for catalytic supercritical water gasification of biomass and its model compounds, and it evaluates process viability and feasibility for commercialization. Full article
(This article belongs to the Collection Recycling of Biomass Resources: Biofuels and Biochemicals)
Show Figures

Figure 1

13 pages, 17915 KiB  
Article
Ready-to-Use Recycled Carbon Fibres Decorated with Magnetic Nanoparticles: Functionalization after Recycling Process Using Supercritical Fluid Chemistry
by Sophie Martin, Tatjana Kosanovic Milickovic, Costas A. Charitidis and Sandy Moisan
J. Compos. Sci. 2023, 7(6), 236; https://doi.org/10.3390/jcs7060236 - 6 Jun 2023
Cited by 1 | Viewed by 1807
Abstract
An innovative simultaneous process, using supercritical fluid (SCF) chemistry, was used to recycle uncured prepregs and to functionalize the recovered carbon fibres with Fe3O4 magnetic nanoparticles (MNPs), to produce a new type of secondary raw material suitable for composite applications. [...] Read more.
An innovative simultaneous process, using supercritical fluid (SCF) chemistry, was used to recycle uncured prepregs and to functionalize the recovered carbon fibres with Fe3O4 magnetic nanoparticles (MNPs), to produce a new type of secondary raw material suitable for composite applications. This specific functionalization allows the fibres to be heated by induction through a hysteresis loss mechanism characteristic for nanoparticle susceptor-embedded systems, for triggered healing properties and a potentially easy route for CF reclamation. Using SCF and hydrothermal conditions for recycling, functionalization of fibres can be performed in the same reactor, resulting in the creation of ready-to-use fibres and limiting the use organic solvent. After cutting the uncured prepreg to the desired length to fit in future applications, supercritical CO2 extraction is performed to partially remove some components of the uncured prepreg matrix (step 1). Then, the recycled carbon fibres (rCFs), still embedded inside the remaining organic matrix, are brought into contact with reactants for the functionalization step (step 2). Two possibilities were studied: the direct synthesis of MNPs coated with PAA in hydrothermal conditions, and the deposition of already synthesized MNPs assisted by supercritical CO2-acetone. No CF surface activation is needed thanks to the presence of functional groups due to the remaining matrix. After functionalization, ready-to-use material with homogeneous depositions of MNPs at the surface of rCF is produced, with a strong magnetic behaviour and without observed degradation of the fibres. Full article
(This article belongs to the Special Issue Multifunctional Composite Structures)
Show Figures

Figure 1

17 pages, 6118 KiB  
Article
CFD–PBM Simulation for Continuous Hydrothermal Flow Synthesis of Zirconia Nanoparticles in a Confined Impinging Jet Reactor
by Qingyun Li, Zihua Wang and Xuezhong Wang
Materials 2023, 16(9), 3421; https://doi.org/10.3390/ma16093421 - 27 Apr 2023
Cited by 3 | Viewed by 2439
Abstract
Computational fluid dynamics (CFD) and population balance models (PBM) were coupled together for the first time to simulate the synthesis of zirconia nanoparticles in a continuous hydrothermal flow synthesis (CHFS) system with a self-designed confined impinging jet mixing (CJM) reactor. The hydrodynamic and [...] Read more.
Computational fluid dynamics (CFD) and population balance models (PBM) were coupled together for the first time to simulate the synthesis of zirconia nanoparticles in a continuous hydrothermal flow synthesis (CHFS) system with a self-designed confined impinging jet mixing (CJM) reactor. The hydrodynamic and thermodynamic behaviors within the CJM reactor strongly influenced the formation of the ZrO2 nanoparticles. Crucial parameters, such as velocities, temperatures, mixing conditions, and reaction rates, were analyzed under various supercritical conditions. Temperature and velocity measurements as functions of distance were also investigated. Normal particle size distribution (PSD) patterns were observed in all cases. The mean particle sizes in this study were calculated and compared using PBM aggregation analysis. Full article
(This article belongs to the Section Advanced Nanomaterials and Nanotechnology)
Show Figures

Figure 1

14 pages, 4647 KiB  
Article
Comparative Experiments on the Role of CO2 in the Gold Distribution between Pyrite and a High-Salinity Fluid
by Yuri Laptev, Anna Doroshkevich and Ilya Prokopyev
Minerals 2023, 13(4), 464; https://doi.org/10.3390/min13040464 - 25 Mar 2023
Viewed by 1687
Abstract
Experimental studies were conducted to identify the physical and chemical features of gold’s behaviour in hydrothermal processes linked to ore formation and involving CO2 in oxidized deposits. With the aid of the autoclave method, in a temperature range of between 200 and [...] Read more.
Experimental studies were conducted to identify the physical and chemical features of gold’s behaviour in hydrothermal processes linked to ore formation and involving CO2 in oxidized deposits. With the aid of the autoclave method, in a temperature range of between 200 and 400 °C, the isochoric dependences of the PVT parameters of concentrated sulphate chloride fluids were plotted, both in the presence and absence of CO2. Our experiments established that concentrated sulphate–chloride fluids (22 wt % Na2SO4 + 2.2 wt % NaCl) that lack CO2 are characterized by a wide supercritical temperature range, with homogenization temperatures of between 250 and 325 °C. In the presence of CO2, the same type of fluids showed heterogenization at a molar fraction of XCO2 = 0.18 (t = 192 °C, P = 176 bar). The process of homogenization for these low-density and high-salinity fluids was impossible at temperatures between 375 and 400 °C and at pressures between 600 and 700 bar. The behaviour of gold was studied during its interaction with a basic composition fluid of sulphate–chloride. We applied the autoclave method under the conditions of a simultaneous synthesis of pyrite and gold dissolution (metallic Au), at a temperature of 340 °C and at a pressure of 440 bar. High Au concentrations (up to 4410 ppm of Au in CO2-bearing fluids) were attained at high gold solubilities (up to 13.5 ppm in the presence of CO2), owing to the process of Au reprecipitation within the pyrite phase. We did not detect Au in the pyrite when we used the XRD or SEM methods, which suggested that it might be present as invisible gold. High values of the distribution coefficient (KD = CAu(solid)/CAu(solution)) in the fluids lacking (KD = 62) and bearing CO2 (KD = 327) empirically confirmed the possibility that gold concentrates in pyrite in structurally non-binding forms. Full article
(This article belongs to the Special Issue Precious Metals vs. Base Metals: Nature and Experiment)
Show Figures

Figure 1

15 pages, 5039 KiB  
Article
Continuous Hydrothermal Flow Synthesis and Characterization of ZrO2 Nanoparticles Doped with CeO2 in Supercritical Water
by Qingyun Li, Lingyu Liu, Zihua Wang and Xuezhong Wang
Nanomaterials 2022, 12(4), 668; https://doi.org/10.3390/nano12040668 - 17 Feb 2022
Cited by 12 | Viewed by 3522
Abstract
A confined jet mixing reactor operated in continuous hydrothermal flow synthesis was investigated for the synthesis of CeO2-ZrO2 (CZ) nanoparticles. The obtained ultrafine powders were characterized using scanning electron microscopy–energy dispersive spectrometry (SEM-EDS), inductively coupled plasma–atomic emission spectroscopy (ICP-AES), Fourier [...] Read more.
A confined jet mixing reactor operated in continuous hydrothermal flow synthesis was investigated for the synthesis of CeO2-ZrO2 (CZ) nanoparticles. The obtained ultrafine powders were characterized using scanning electron microscopy–energy dispersive spectrometry (SEM-EDS), inductively coupled plasma–atomic emission spectroscopy (ICP-AES), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, X-ray diffraction analysis (XRD), transmission electron microscopy (TEM) coupled with selected area electron diffraction (SAED), a BET (Brunauer-Emmett-Teller)-specific surface area test and pore analysis, oxygen storage capacity (OSC) test, and a H2 temperature programmed reduction (H2-TPR) test. The XRD results show that all samples were composed of high-purity cubic CZ nanoparticles. High resolution transmission electron microscope (HR-TEM) analysis showed that CZ nanoparticles with uniform size and shape distributions were obtained in this investigation. The d-spacing values, determined based on the TEM-selected area electron diffraction (SAED) patterns, were in good agreements with the reference data. BET results showed that the prepared CZ samples had large specific surface areas. Pore volume and size distribution were obtained by pore analysis. Oxygen pulse adsorption technology was used to test the oxygen storage capacity of the sample. The redox capacity of the CZ material was determined by a H2 temperature-programmed reduction test. Full article
Show Figures

Figure 1

12 pages, 3839 KiB  
Article
Fabrication of Liquid Scintillators Loaded with 6-Phenylhexanoic Acid-Modified ZrO2 Nanoparticles for Observation of Neutrinoless Double Beta Decay
by Akito Watanabe, Arisa Magi, Akira Yoko, Gimyeong Seong, Takaaki Tomai, Tadafumi Adschiri, Yamato Hayashi, Masanori Koshimizu, Yutaka Fujimoto and Keisuke Asai
Nanomaterials 2021, 11(5), 1124; https://doi.org/10.3390/nano11051124 - 27 Apr 2021
Cited by 7 | Viewed by 3771
Abstract
The observation of neutrinoless double beta decay is an important issue in nuclear and particle physics. The development of organic liquid scintillators with high transparency and a high concentration of the target isotope would be very useful for neutrinoless double beta decay experiments. [...] Read more.
The observation of neutrinoless double beta decay is an important issue in nuclear and particle physics. The development of organic liquid scintillators with high transparency and a high concentration of the target isotope would be very useful for neutrinoless double beta decay experiments. Therefore, we propose a liquid scintillator loaded with metal oxide nanoparticles containing the target isotope. In this work, 6-phenylhexanoic acid-modified ZrO2 nanoparticles, which contain 96Zr as the target isotope, were synthesized under sub/supercritical hydrothermal conditions. The effects of the synthesis temperature on the formation and surface modification of the nanoparticles were investigated. Performing the synthesis at 250 and 300 °C resulted in the formation of nanoparticles with smaller particle sizes and higher surface modification densities than those prepared at 350 and 400 °C. The highest modification density (3.1 ± 0.2 molecules/nm2) and Zr concentration of (0.33 ± 0.04 wt.%) were obtained at 300 °C. The surface-modified ZrO2 nanoparticles were dispersed in a toluene-based liquid scintillator. The liquid scintillator was transparent to the scintillation wavelength, and a clear scintillation peak was confirmed by X-ray-induced radioluminescence spectroscopy. In conclusion, 6-phenylhexanoic acid-modified ZrO2 nanoparticles synthesized at 300 °C are suitable for loading in liquid scintillators. Full article
(This article belongs to the Special Issue Hydrothermal Synthesis of Nanoparticles)
Show Figures

Figure 1

14 pages, 2325 KiB  
Article
Hydrothermal Synthesis and Structural Investigation of a Crystalline Uranyl Borosilicate
by Kristen A. Pace, Vladislav V. Klepov, Mark D. Smith, Travis Williams, Gregory Morrison, Jochen A. Lauterbach, Scott T. Misture and Hans-Conrad zur Loye
Inorganics 2021, 9(4), 25; https://doi.org/10.3390/inorganics9040025 - 6 Apr 2021
Cited by 3 | Viewed by 3105
Abstract
The relevance of multidimensional and porous crystalline materials to nuclear waste remediation and storage applications has motivated exploratory research focused on materials discovery of compounds, such as actinide mixed-oxoanion phases, which exhibit rich structural chemistry. The novel phase K1.8Na1.2[(UO [...] Read more.
The relevance of multidimensional and porous crystalline materials to nuclear waste remediation and storage applications has motivated exploratory research focused on materials discovery of compounds, such as actinide mixed-oxoanion phases, which exhibit rich structural chemistry. The novel phase K1.8Na1.2[(UO2)BSi4O12] has been synthesized using hydrothermal methods, representing the first example of a uranyl borosilicate. The three-dimensional structure crystallizes in the orthorhombic space group Cmce with lattice parameters a = 15.5471(19) Å, b = 14.3403(17) Å, c = 11.7315(15) Å, and V = 2615.5(6) Å3, and is composed of UO6 octahedra linked by [BSi4O12]5− chains to form a [(UO2)BSi4O12]3− framework. The synthesis method, structure, results of Raman, IR, and X-ray absorption spectroscopy, and thermal stability are discussed. Full article
(This article belongs to the Special Issue Cornerstones in Contemporary Inorganic Chemistry)
Show Figures

Graphical abstract

29 pages, 3643 KiB  
Review
Synthesis of Micro- and Nanoparticles in Sub- and Supercritical Water: From the Laboratory to Larger Scales
by F. Ruiz-Jorge, J. R. Portela, J. Sánchez-Oneto and E. J. Martínez de la Ossa
Appl. Sci. 2020, 10(16), 5508; https://doi.org/10.3390/app10165508 - 9 Aug 2020
Cited by 17 | Viewed by 4761
Abstract
The use of micro- and nanoparticles is gaining more and more importance because of their wide range of uses and benefits based on their unique mechanical, physical, electrical, optical, electronic, and magnetic properties. In recent decades, supercritical fluid technologies have strongly emerged as [...] Read more.
The use of micro- and nanoparticles is gaining more and more importance because of their wide range of uses and benefits based on their unique mechanical, physical, electrical, optical, electronic, and magnetic properties. In recent decades, supercritical fluid technologies have strongly emerged as an effective alternative to other numerous particle generation processes, mainly thanks to the peculiar properties exhibited by supercritical fluids. Carbon dioxide and water have so far been two of the most commonly used fluids for particle generation, the former being the fluid par excellence in this field, mainly, because it offers the possibility of precipitating thermolabile particles. Nevertheless, the use of high-pressure and -temperature water opens an innovative and very interesting field of study, especially with regards to the precipitation of particles that could hardly be precipitated when CO2 is used, such as metal particles with a considerable value in the market. This review describes an innovative method to obtain micro- and nanoparticles: hydrothermal synthesis by means of near and supercritical water. It also describes the differences between this method and other conventional procedures, the most currently active research centers, the types of particles synthesized, the techniques to evaluate the products obtained, the main operating parameters, the types of reactors, and amongst them, the most significant and the most frequently used, the scaling-up studies under progress, and the milestones to be reached in the coming years. Full article
(This article belongs to the Special Issue New Trends in Supercritical Fluid and Green Processes)
Show Figures

Figure 1

34 pages, 4184 KiB  
Review
Tannin Gels and Their Carbon Derivatives: A Review
by Flavia Lega Braghiroli, Gisele Amaral-Labat, Alan Fernando Ney Boss, Clément Lacoste and Antonio Pizzi
Biomolecules 2019, 9(10), 587; https://doi.org/10.3390/biom9100587 - 8 Oct 2019
Cited by 46 | Viewed by 7768
Abstract
Tannins are one of the most natural, non-toxic, and highly reactive aromatic biomolecules classified as polyphenols. The reactive phenolic compounds present in their chemical structure can be an alternative precursor for the preparation of several polymeric materials for applications in distinct industries: adhesives [...] Read more.
Tannins are one of the most natural, non-toxic, and highly reactive aromatic biomolecules classified as polyphenols. The reactive phenolic compounds present in their chemical structure can be an alternative precursor for the preparation of several polymeric materials for applications in distinct industries: adhesives and coatings, leather tanning, wood protection, wine manufacture, animal feed industries, and recently also in the production of new porous materials (i.e., foams and gels). Among these new polymeric materials synthesized with tannins, organic and carbon gels have shown remarkable textural and physicochemical properties. Thus, this review presents and discusses the available studies on organic and carbon gels produced from tannin feedstock and how their properties are related to the different operating conditions, hence causing their cross-linking reaction mechanisms. Moreover, the steps during tannin gels preparation, such as the gelation and curing processes (under normal or hydrothermal conditions), solvent extraction, and gel drying approaches (i.e., supercritical, subcritical, and freeze-drying) as well as the methods available for their carbonization (i.e., pyrolysis and activation) are presented and discussed. Findings from organic and carbon tannin gels features demonstrate that their physicochemical and textural properties can vary greatly depending on the synthesis parameters, drying conditions, and carbonization methods. Research is still ongoing on the improvement of tannin gels synthesis and properties, but the review evaluates the application of these highly porous materials in multidisciplinary areas of science and engineering, including thermal insulation, contaminant sorption in drinking water and wastewater, and electrochemistry. Finally, the substitution of phenolic materials (i.e., phenol and resorcinol) by tannin in the production of gels could be beneficial to both the bioeconomy and the environment due to its low-cost, bio-based, non-toxic, and non-carcinogenic characteristics. Full article
(This article belongs to the Special Issue Perspectives on Tannins)
Show Figures

Figure 1

15 pages, 4933 KiB  
Article
PVB/PEG-Based Feedstocks for Injection Molding of Alumina Microreactor Components
by Anna Julia Medesi, Dorit Nötzel and Thomas Hanemann
Materials 2019, 12(8), 1219; https://doi.org/10.3390/ma12081219 - 14 Apr 2019
Cited by 13 | Viewed by 4703
Abstract
The ceramic injection molding (CIM) process is a cost-effective powder-based near net shape manufacturing process for large-scale production of complex-shaped ceramic functional components. This paper presents the rheological analysis of environmentally friendly CIM feedstock formulations based on the binder components polyvinyl butyral (PVB) [...] Read more.
The ceramic injection molding (CIM) process is a cost-effective powder-based near net shape manufacturing process for large-scale production of complex-shaped ceramic functional components. This paper presents the rheological analysis of environmentally friendly CIM feedstock formulations based on the binder components polyvinyl butyral (PVB) and polyethylene gycol (PEG). The prepared PVB/PEG-based alumina molding compounds were investigated with respect to their PVB:PEG ratios as well as to their powder filling degrees in the range between 50 and 64 vol.%. Corresponding viscosities and shear stresses were determined for increasing shear rates to show the effects of increased PEG content and solid loadings on them. Two single reactor components were injection molded and subsequently joined in their green state for fabrication of an alumina microreactor. The intended purpose of the alumina microreactors is their potential application as wear-resistant and hydrothermal stable multifunctional devices (µ-mixer, µ-reactor, µ-analyzer) for continuous hydrothermal synthesis (CHTS) of metal oxide nanoparticles in supercritical water (sc-H2O) as the reaction medium. Full article
(This article belongs to the Section Manufacturing Processes and Systems)
Show Figures

Figure 1

Back to TopTop