Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = superconducting spin valve

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 2719 KB  
Article
Spin-Valve-Controlled Triggering of Superconductivity
by Alexey Neilo, Sergey Bakurskiy, Nikolay Klenov, Igor Soloviev and Mikhail Kupriyanov
Nanomaterials 2024, 14(3), 245; https://doi.org/10.3390/nano14030245 - 23 Jan 2024
Cited by 2 | Viewed by 1576
Abstract
We have studied the proximity effect in an SF1S1F2s superconducting spin valve consisting of a massive superconducting electrode (S) and a multilayer structure formed by thin ferromagnetic (F1,2) and superconducting (S1, [...] Read more.
We have studied the proximity effect in an SF1S1F2s superconducting spin valve consisting of a massive superconducting electrode (S) and a multilayer structure formed by thin ferromagnetic (F1,2) and superconducting (S1, s) layers. Within the framework of the Usadel equations, we have shown that changing the mutual orientation of the magnetization vectors of the F1,2 layers from parallel to antiparallel serves to trigger superconductivity in the outer thin s-film. We studied the changes in the pair potential in the outer s-film and found the regions of parameters with a significant spin-valve effect. The strongest effect occurs in the region of parameters where the pair-potential sign is changed in the parallel state. This feature reveals new ways to design devices with highly tunable inductance and critical current. Full article
(This article belongs to the Special Issue Superconducting Nanostructures for Applications in Electronics)
Show Figures

Figure 1

11 pages, 6387 KB  
Article
Ab Initio Characterization of Magnetoelectric Coupling in Fe/BaTiO3, Fe/SrTiO3, Co/BaTiO3 and Co/SrTiO3 Heterostructures
by Irina Piyanzina, Kirill Evseev, Andrey Kamashev and Rinat Mamin
Magnetism 2023, 3(3), 215-225; https://doi.org/10.3390/magnetism3030017 - 31 Jul 2023
Cited by 1 | Viewed by 2077
Abstract
Magneto-electric coupling is a desirable property for a material used in modern electronic devices to possess due to the favorable possibilities of tuning the electronic properties using a magnetic field and vice versa. However, such materials are rare in nature. That is why [...] Read more.
Magneto-electric coupling is a desirable property for a material used in modern electronic devices to possess due to the favorable possibilities of tuning the electronic properties using a magnetic field and vice versa. However, such materials are rare in nature. That is why the so-called superlattice approach to creating such materials is receiving so much attention. In the superlattice approach, the functionality of a combined heterostructure depends on the interacting components and can be adjusted depending on the desired property. In the present paper, we present supercells of ferromagnetic thin films of Fe and Co deposited on ferroelectric and piezoelectric substrates of BaTiO3 and SrTiO3 that exhibit magnetism, ferroelectric polarization and piezoelectric effects. Within the structures under investigation, magnetic moments can be tuned by an external electric field via the ferroelectric dipoles. We investigate the effect of magnetoelectric coupling by means of ab initio spin-polarized and spin–orbit calculations. We study the structural, electronic and magnetic properties of heterostructures, and show that electrostriction can reduce the magnitude of the magnetization vector of a ferromagnet. This approach can become the basis for controlling the properties of one of the ferromagnetic layers of a superconducting spin valve, and thus the superconducting properties of the valve. Full article
Show Figures

Figure 1

11 pages, 2269 KB  
Article
Investigation of the Features of a Superconducting Spin Valve Fe1/Cu/Fe2/Cu/Pb on a Piezoelectric PMN–PT Substrate
by Andrey Kamashev, Nadir Garif’yanov, Aidar Validov, Zvonko Jagličić, Viktor Kabanov, Rinat Mamin and Ilgiz Garifullin
Magnetism 2023, 3(3), 204-214; https://doi.org/10.3390/magnetism3030016 - 13 Jul 2023
Cited by 2 | Viewed by 1830
Abstract
The properties of a superconducting spin valve Fe1/Cu/Fe2/Cu/Pb on a piezoelectric PMN–PT substrate ([Pb(Mg1/3Nb2/3)O3]0.7–[PbTiO3]0.3) in electric and magnetic fields have been studied. The magnitude of the shift of the superconducting transition [...] Read more.
The properties of a superconducting spin valve Fe1/Cu/Fe2/Cu/Pb on a piezoelectric PMN–PT substrate ([Pb(Mg1/3Nb2/3)O3]0.7–[PbTiO3]0.3) in electric and magnetic fields have been studied. The magnitude of the shift of the superconducting transition temperature in the magnetic field H = 1 kOe equal to 150 mK was detected, while the full superconducting spin valve effect was demonstrated. Abnormal behavior of the superconducting transition temperature was observed, which manifests itself in the maximum values of the superconducting transition temperature with the orthogonal orientation of the magnetization vectors of ferromagnetic layers. This may indirectly indicate the formation of the easy axis of the magnetization vector of the Fe1-layer adjacent to the piezoelectric substrate PMN–PT. It was found that with an increase in the magnitude of the applied electric field to the PMN–PT substrate, the shift in the superconducting transition temperature of the Fe1/Cu/Fe2/Cu/Pb heterostructure increases. The maximum shift was 10 mK in an electric field of 1 kV/cm. Thus, it has been shown for the first time that a piezoelectric superconducting spin valve can function. Full article
Show Figures

Graphical abstract

13 pages, 825 KB  
Article
Tunnel Josephson Junction with Spin–Orbit/Ferromagnetic Valve
by Alexey Neilo, Sergey Bakurskiy, Nikolay Klenov, Igor Soloviev and Mikhail Kupriyanov
Nanomaterials 2023, 13(13), 1970; https://doi.org/10.3390/nano13131970 - 28 Jun 2023
Cited by 3 | Viewed by 1907
Abstract
We have theoretically studied the transport properties of the SIsNSOF structure consisting of thick (S) and thin (s) films of superconductor, an insulator layer (I), a thin film of normal metal with spin–orbit interaction (SOI) (NSO), and [...] Read more.
We have theoretically studied the transport properties of the SIsNSOF structure consisting of thick (S) and thin (s) films of superconductor, an insulator layer (I), a thin film of normal metal with spin–orbit interaction (SOI) (NSO), and a monodomain ferromagnetic layer (F). The interplay between superconductivity, ferromagnetism, and spin–orbit interaction allows the critical current of this Josephson junction to be smoothly varied over a wide range by rotating the magnetization direction in the single F-layer. We have studied the amplitude of the spin valve effect and found the optimal ranges of parameters. Full article
(This article belongs to the Special Issue Nanoscale Quantum Optics)
Show Figures

Figure 1

15 pages, 1114 KB  
Article
Superconducting Valve Exploiting Interplay between Spin-Orbit and Exchange Interactions
by Alexey Neilo, Sergey Bakurskiy, Nikolay Klenov, Igor Soloviev and Mikhail Kupriyanov
Nanomaterials 2022, 12(24), 4426; https://doi.org/10.3390/nano12244426 - 12 Dec 2022
Cited by 2 | Viewed by 1995
Abstract
We theoretically investigated the proximity effect in SNSOF and SF’F structures consisting of a superconductor (S), a normal metal (NSO), and ferromagnetic (F’,F) thin films with spin–orbit interaction (SOI) in the NSO layer. We show [...] Read more.
We theoretically investigated the proximity effect in SNSOF and SF’F structures consisting of a superconductor (S), a normal metal (NSO), and ferromagnetic (F’,F) thin films with spin–orbit interaction (SOI) in the NSO layer. We show that a normal layer with spin–orbit interaction effectively suppresses triplet correlations generated in a ferromagnetic layer. Due to this effect, the critical temperature of the superconducting layer in the SNSOF multilayer turns out to be higher than in a similar multilayer without spin–orbit interaction in the N layer. Moreover, in the presence of a mixed type of spin–orbit interaction involving the Rashba and Dresselhaus components, the SNSOF structure is a spin valve, whose critical temperature is determined by the direction of the magnetization vector in the F layer. We calculated the control characteristics of the SNSOF spin valve and compared them with those available in traditional SF’F devices with two ferromagnetic layers. We concluded that SNSOF structures with one controlled F layer provide solid advantages over the broadly considered SF’F spin valves, paving the way for high-performance storage components for superconducting electronics. Full article
(This article belongs to the Special Issue Nanostructures for Superconducting Electronics)
Show Figures

Figure 1

15 pages, 4486 KB  
Article
Synthesis, Characterization, and Magnetoresistive Properties of the Epitaxial Pd0.96Fe0.04/VN/Pd0.92Fe0.08 Superconducting Spin-Valve Heterostructure
by Igor Yanilkin, Wael Mohammed, Amir Gumarov, Airat Kiiamov, Roman Yusupov and Lenar Tagirov
Nanomaterials 2021, 11(1), 64; https://doi.org/10.3390/nano11010064 - 29 Dec 2020
Cited by 11 | Viewed by 3396
Abstract
A thin-film superconductor(S)/ferromagnet(F) F1/S/F2-type Pd0.96Fe0.04(20 nm)/VN(30 nm)/Pd0.92Fe0.08(12 nm) heteroepitaxial structure was synthesized on (001)-oriented single-crystal MgO substrate utilizing a combination of the reactive magnetron sputtering and the molecular-beam epitaxy techniques in ultrahigh vacuum conditions. The [...] Read more.
A thin-film superconductor(S)/ferromagnet(F) F1/S/F2-type Pd0.96Fe0.04(20 nm)/VN(30 nm)/Pd0.92Fe0.08(12 nm) heteroepitaxial structure was synthesized on (001)-oriented single-crystal MgO substrate utilizing a combination of the reactive magnetron sputtering and the molecular-beam epitaxy techniques in ultrahigh vacuum conditions. The reference VN film, Pd0.96Fe0.04/VN, and VN/Pd0.92Fe0.08 bilayers were grown in one run with the target sample. In-situ low-energy electron diffraction and ex-situ X-ray diffraction investigations approved that all the Pd1−xFex and VN layers in the series grew epitaxial in a cube-on-cube mode. Electric resistance measurements demonstrated sharp transitions to the superconducting state with the critical temperature reducing gradually from 7.7 to 5.4 K in the sequence of the VN film, Pd0.96Fe0.04/VN, VN/Pd0.92Fe0.08, and Pd0.96Fe0.04/VN/Pd0.92Fe0.08 heterostructures due to the superconductor/ferromagnet proximity effect. Transition width increased in the same sequence from 21 to 40 mK. Magnetoresistance studies of the trilayer Pd0.96Fe0.04/VN/Pd0.92Fe0.08 sample revealed a superconducting spin-valve effect upon switching between the parallel and antiparallel magnetic configurations, and anomalies associated with the magnetic moment reversals of the ferromagnetic Pd0.92Fe0.08 and Pd0.96Fe0.04 alloy layers. The moderate critical temperature suppression and manifestations of superconducting spin-valve properties make this kind of material promising for superconducting spintronics applications. Full article
(This article belongs to the Section Synthesis, Interfaces and Nanostructures)
Show Figures

Figure 1

Back to TopTop