Tunnel Josephson Junction with Spin–Orbit/Ferromagnetic Valve
Abstract
1. Introduction
2. Model of the SIsNSOF Spin Valve
3. Proximity Effect in sNSOF Structure
4. Critical Current of the SIsNSOF Spin Valve
5. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cuthbert, M.; DeBenedictis, E.; Fagaly, R.L.; Fagas, G.; Febvre, P.; Fourie, C.; Frank, M.; Gupta, D.; Herr, A.; Holmes, D.S.; et al. International Roadmap for Devices and Systems. Cryogenic Electronics and Quantum Information Processing, 2022nd ed.; IEEE: Piscataway, NJ, USA, 2022. [Google Scholar]
- Soloviev, I.I.; Klenov, N.V.; Bakurskiy, S.V.; Kupriyanov, M.Y.; Gudkov, A.L.; Sidorenko, A.S. Beyond Moore’s technologies: Operation principles of a superconductor alternative. Beilstein J. Nanotechnol. 2017, 8, 2689–2710. [Google Scholar] [CrossRef] [PubMed]
- Klenov, N.; Pugach, N.; Sharafiev, A.; Bakurskiy, S.; Kornev, V. Josephson junctions with nonsinusoidal current-phase relations based on heterostructures with a ferromagnetic spacer and their applications. Phys. Solid State 2010, 52, 2246–2251. [Google Scholar] [CrossRef]
- Bakurskiy, S.; Klenov, N.; Soloviev, I.; Kupriyanov, M.Y.; Golubov, A.A. Superconducting phase domains for memory applications. Appl. Phys. Lett. 2016, 108, 042602. [Google Scholar] [CrossRef]
- Shafraniuk, S.E.; Nevirkovets, I.P.; Mukhanov, O.A. Modeling computer memory based on ferromagnetic/superconductor multilayers. Phys. Rev. Appl. 2019, 11, 064018. [Google Scholar] [CrossRef]
- Semenov, V.K.; Polyakov, Y.A.; Tolpygo, S.K. Very large scale integration of Josephson-junction-based superconductor random access memories. IEEE Trans. Appl. Supercond. 2019, 29, 1302809. [Google Scholar] [CrossRef]
- Ilin, E.; Song, X.; Burkova, I.; Silge, A.; Guo, Z.; Ilin, K.; Bezryadin, A. Supercurrent-controlled kinetic inductance superconducting memory element. Appl. Phys. Lett. 2021, 118, 112603. [Google Scholar] [CrossRef]
- Karelina, L.; Bolginov, V.; Erkenov, S.A.; Egorov, S.V.; Golovchanskiy, I.; Chichkov, V.; Ben Hamida, A.; Ryazanov, V.V. Magnetoresistance of a Ferromagnet/Superconductor/Ferromagnet Trilayer Microbridge Based on Diluted PdFe Alloy. JETP Lett. 2020, 112, 705–709. [Google Scholar] [CrossRef]
- Karelina, L.; Hovhannisyan, R.A.; Golovchanskiy, I.; Chichkov, V.; Ben Hamida, A.; Stolyarov, V.; Uspenskaya, L.; Erkenov, S.A.; Bolginov, V.; Ryazanov, V. Scalable memory elements based on rectangular SIsFS junctions. J. Appl. Phys. 2021, 130, 173901. [Google Scholar] [CrossRef]
- Karelina, L.; Shuravin, N.; Ionin, A.; Bakurskiy, S.; Egorov, S.; Golovchanskiy, I.; Chichkov, V.; Bol’ginov, V.; Ryazanov, V. Magnetic Memory Effect in Planar Ferromagnet/Superconductor/Ferromagnet Microbridges Based on Highly Diluted PdFe Alloy. JETP Lett. 2022, 116, 110–116. [Google Scholar] [CrossRef]
- Schneider, M.L.; Donnelly, C.A.; Russek, S.E.; Baek, B.; Pufall, M.R.; Hopkins, P.F.; Dresselhaus, P.D.; Benz, S.P.; Rippard, W.H. Ultralow power artificial synapses using nanotextured magnetic Josephson junctions. Sci. Adv. 2018, 4, e1701329. [Google Scholar] [CrossRef]
- Schneider, M.L.; Donnelly, C.A.; Russek, S.E. Tutorial: High-speed low-power neuromorphic systems based on magnetic Josephson junctions. J. Appl. Phys. 2018, 124, 161102. [Google Scholar] [CrossRef]
- Schneider, M.L.; Donnelly, C.A.; Haygood, I.W.; Wynn, A.; Russek, S.E.; Castellanos-Beltran, M.; Dresselhaus, P.D.; Hopkins, P.F.; Pufall, M.R.; Rippard, W.H. Synaptic weighting in single flux quantum neuromorphic computing. Sci. Rep. 2020, 10, 934. [Google Scholar] [CrossRef]
- Jue, E.; Iankevich, G.; Reisinger, T.; Hahn, H.; Provenzano, V.; Pufall, M.R.; Haygood, I.W.; Rippard, W.H.; Schneider, M.L. Artificial synapses based on Josephson junctions with Fe nanoclusters in the amorphous Ge barrier. J. Appl. Phys. 2022, 131, 073902. [Google Scholar] [CrossRef]
- Klenov, N.; Khaydukov, Y.; Bakurskiy, S.; Morari, R.; Soloviev, I.; Boian, V.; Keller, T.; Kupriyanov, M.; Sidorenko, A.; Keimer, B. Periodic Co/Nb pseudo spin valve for cryogenic memory. Beilstein J. Nanotechnol. 2019, 10, 833–839. [Google Scholar] [CrossRef] [PubMed]
- Schegolev, A.E.; Klenov, N.V.; Bakurskiy, S.V.; Soloviev, I.I.; Kupriyanov, M.Y.; Tereshonok, M.V.; Sidorenko, A.S. Tunable superconducting neurons for networks based on radial basis functions. Beilstein J. Nanotechnol. 2022, 13, 444–454. [Google Scholar] [CrossRef] [PubMed]
- Vissers, M.R.; Hubmayr, J.; Sandberg, M.; Chaudhuri, S.; Bockstiegel, C.; Gao, J. Frequency-tunable superconducting resonators via nonlinear kinetic inductance. Appl. Phys. Lett. 2015, 107, 062601. [Google Scholar] [CrossRef]
- Gu, X.; Kockum, A.F.; Miranowicz, A.; Liu, Y.x.; Nori, F. Microwave photonics with superconducting quantum circuits. Phys. Rep. 2017, 718, 1–102. [Google Scholar] [CrossRef]
- Vozhakov, V.A.; Bastrakova, M.V.; Klenov, N.V.; Soloviev, I.I.; Pogosov, W.V.; Babukhin, D.V.; Zhukov, A.A.; Satanin, A.M. State control in superconducting quantum processors. Phys. Uspekhi 2022, 65, 421–439. [Google Scholar] [CrossRef]
- Bergeret, F.S.; Volkov, A.F.; Efetov, K.B. Enhancement of the Josephson Current by an Exchange Field in Superconductor-Ferromagnet Structures. Phys. Rev. Lett. 2001, 86, 3140–3143. [Google Scholar] [CrossRef]
- Krivoruchko, V.; Koshina, E. From inversion to enhancement of the dc Josephson current in S/F- I- F/S tunnel structures. Phys. Rev. 2001, 64, 172511. [Google Scholar] [CrossRef]
- Koshina, E.; Krivoruchko, V. Spin polarization and π-phase state of the Josephson contact: Critical current of mesoscopic SFIFS and SFIS junctions. Phys. Rev. B 2001, 63, 224515. [Google Scholar] [CrossRef]
- Golubov, A.A.; Kupriyanov, M.Y.; Fominov, Y.V. Critical current in SFIFS junctions. JETP Lett. 2002, 75, 190–194. [Google Scholar] [CrossRef]
- Golubov, A.A.; Kupriyanov, M.Y.; Fominov, Y.V. Nonsinusoidal current-phase relation in SFS Josephson junctions. JETP Lett. 2002, 75, 588–592. [Google Scholar] [CrossRef]
- Golubov, A.A.; Kupriyanov, M.Y.; Il’ichev, E. The current-phase relation in Josephson junctions. Rev. Mod. Phys. 2004, 76, 411–469. [Google Scholar] [CrossRef]
- Buzdin, A.I. Proximity effects in superconductor-ferromagnet heterostructures. Rev. Mod. Phys. 2005, 77, 935. [Google Scholar] [CrossRef]
- Bergeret, F.; Volkov, A.F.; Efetov, K.B. Odd triplet superconductivity and related phenomena in superconductor-ferromagnet structures. Rev. Mod. Phys. 2005, 77, 1321. [Google Scholar] [CrossRef]
- Blamire, M.; Robinson, J. The interface between superconductivity and magnetism: Understanding and device prospects. J. Phys. Condens. Matter 2014, 26, 453201. [Google Scholar] [CrossRef]
- Eschrig, M. Spin-polarized supercurrents for spintronics: A review of current progress. Rep. Prog. Phys. 2015, 78, 104501. [Google Scholar] [CrossRef]
- Linder, J.; Robinson, J.W. Superconducting spintronics. Nat. Phys. 2015, 11, 307–315. [Google Scholar] [CrossRef]
- Bell, C.; Burnell, G.; Leung, C.W.; Tarte, E.; Kang, D.J.; Blamire, M. Controllable Josephson current through a pseudospin-valve structure. Appl. Phys. Lett. 2004, 84, 1153–1155. [Google Scholar] [CrossRef]
- Abd El Qader, M.; Singh, R.; Galvin, S.N.; Yu, L.; Rowell, J.; Newman, N. Switching at small magnetic fields in Josephson junctions fabricated with ferromagnetic barrier layers. Appl. Phys. Lett. 2014, 104, 022602. [Google Scholar] [CrossRef]
- Baek, B.; Rippard, W.H.; Benz, S.P.; Russek, S.E.; Dresselhaus, P.D. Hybrid superconducting-magnetic memory device using competing order parameters. Nat. Commun. 2014, 5, 3888. [Google Scholar] [CrossRef] [PubMed]
- Niedzielski, B.M.; Bertus, T.; Glick, J.A.; Loloee, R.; Pratt, W., Jr.; Birge, N.O. Spin-valve Josephson junctions for cryogenic memory. Phys. Rev. B 2018, 97, 024517. [Google Scholar] [CrossRef]
- Bol’ginov, V.; Stolyarov, V.; Sobanin, D.; Karpovich, A.; Ryazanov, V. Magnetic switches based on Nb-PdFe-Nb Josephson junctions with a magnetically soft ferromagnetic interlayer. JETP Lett. 2012, 95, 408–413. [Google Scholar] [CrossRef]
- Larkin, T.I.; Bol’ginov, V.V.; Stolyarov, V.S.; Ryazanov, V.V.; Vernik, I.V.; Tolpygo, S.K.; Mukhanov, O.A. Ferromagnetic Josephson switching device with high characteristic voltage. Appl. Phys. Lett. 2012, 100, 222601. [Google Scholar] [CrossRef]
- Vernik, I.V.; Bol’ginov, V.V.; Bakurskiy, S.V.; Golubov, A.A.; Kupriyanov, M.Y.; Ryazanov, V.V.; Mukhanov, O.A. Magnetic Josephson junctions with superconducting interlayer for cryogenic memory. IEEE Trans. Appl. Supercond. 2012, 23, 1701208. [Google Scholar] [CrossRef]
- Bakurskiy, S.; Klenov, N.; Soloviev, I.; Bol’ginov, V.; Ryazanov, V.; Vernik, I.; Mukhanov, O.; Kupriyanov, M.Y.; Golubov, A.A. Theoretical model of superconducting spintronic SIsFS devices. Appl. Phys. Lett. 2013, 102, 192603. [Google Scholar] [CrossRef]
- Caruso, R.; Massarotti, D.; Miano, A.; Bolginov, V.V.; Hamida, A.B.; Karelina, L.N.; Campagnano, G.; Vernik, I.V.; Tafuri, F.; Ryazanov, V.V.; et al. Properties of ferromagnetic Josephson junctions for memory applications. IEEE Trans. Appl. Supercond. 2018, 28, 1800606. [Google Scholar] [CrossRef]
- Caruso, R.; Massarotti, D.; Bolginov, V.; Ben Hamida, A.; Karelina, L.; Miano, A.; Vernik, I.; Tafuri, F.; Ryazanov, V.; Mukhanov, O.; et al. RF assisted switching in magnetic Josephson junctions. J. Appl. Phys. 2018, 123, 133901. [Google Scholar] [CrossRef]
- Soloviev, I.I.; Klenov, N.V.; Bakurskiy, S.V.; Bol’ginov, V.V.; Ryazanov, V.V.; Kupriyanov, M.Y.; Golubov, A.A. Josephson magnetic rotary valve. Appl. Phys. Lett. 2014, 105, 242601. [Google Scholar] [CrossRef]
- Soloviev, I.I.; Klenov, N.V.; Bakursky, S.V.; Kupriyanov, M.Y.; Golubov, A.A. Critical Current of SF–NFS Josephson Junctions. JETP Lett. 2015, 101, 240–246. [Google Scholar] [CrossRef]
- Goldobin, E.; Sickinger, H.; Weides, M.; Ruppelt, N.; Kohlstedt, H.; Kleiner, R.; Koelle, D. Memory cell based on a φ Josephson junction. Appl. Phys. Lett. 2013, 102, 242602. [Google Scholar] [CrossRef]
- Menditto, R.; Sickinger, H.; Weides, M.; Kohlstedt, H.; Žonda, M.; Novotný, T.; Koelle, D.; Kleiner, R.; Goldobin, E. Phase retrapping in a φ Josephson junction: Onset of the butterfly effect. Phys. Rev. B 2016, 93, 174506. [Google Scholar] [CrossRef]
- Bakurskiy, S.V.; Filippov, V.I.; Ruzhickiy, V.I.; Klenov, N.V.; Soloviev, I.I.; Kupriyanov, M.Y.; Golubov, A.A. Current-phase relations in SIsFS junctions in the vicinity of 0-π transition. Phys. Rev. B 2017, 95, 094522. [Google Scholar] [CrossRef]
- Bakurskiy, S.V.; Klenov, N.V.; Soloviev, I.I.; Pugach, N.G.; Kupriyanov, M.Y.; Golubov, A.A. Protected 0-pi states in SIsFS junctions for Josephson memory and logic. Appl. Phys. Lett. 2018, 113, 082602. [Google Scholar] [CrossRef]
- Ruppelt, N.; Sickinger, H.; Menditto, R.; Goldobin, E.; Koelle, D.; Kleiner, R.; Vavra, O.; Kohlstedt, H. Observation of 0–π transition in SIsFS Josephson junctions. Appl. Phys. Lett. 2015, 106, 022602. [Google Scholar] [CrossRef]
- Shafranjuk, S.; Nevirkovets, I.P.; Mukhanov, O.A.; Ketterson, J.B. Control of Superconductivity in a Hybrid Superconducting/Ferromagnetic Multilayer Using Nonequilibrium Tunneling Injection. Phys. Rev. Appl. 2016, 6, 024018. [Google Scholar] [CrossRef]
- Amundsen, M.; Linder, J.; Robinson, J.W.A.; Žutić, I.; Banerjee, N. Colloquium: Spin-Orbit Effects in Superconducting Hybrid Structures. arXiv 2022, arXiv:2210.03549. [Google Scholar]
- Johnsen, L.G.; Svalland, K.; Linder, J. Controlling the superconducting transition by rotation of an inversion symmetry-breaking axis. Phys. Rev. Lett. 2020, 125, 107002. [Google Scholar] [CrossRef] [PubMed]
- Zhao, D.; Wang, X.; Wang, Z.; Wei, D. Tuning superconductivity with spin–orbit coupling and proximity effects in ferromagnet/superconductor/heavy metal heterostructures. J. Phys. Appl. Phys. 2022, 55, 175301. [Google Scholar] [CrossRef]
- Bergeret, F.; Tokatly, I. Singlet-triplet conversion and the long-range proximity effect in superconductor-ferromagnet structures with generic spin dependent fields. Phys. Rev. Lett. 2013, 110, 117003. [Google Scholar] [CrossRef]
- Bergeret, F.; Tokatly, I. Spin-orbit coupling as a source of long-range triplet proximity effect in superconductor-ferromagnet hybrid structures. Phys. Rev. B 2014, 89, 134517. [Google Scholar] [CrossRef]
- Bergeret, F.; Tokatly, I. Theory of diffusive φ0 Josephson junctions in the presence of spin-orbit coupling. Europhys. Lett. 2015, 110, 57005. [Google Scholar] [CrossRef]
- Jacobsen, S.H.; Ouassou, J.A.; Linder, J. Critical temperature and tunneling spectroscopy of superconductor-ferromagnet hybrids with intrinsic Rashba-Dresselhaus spin-orbit coupling. Phys. Rev. B 2015, 92, 024510. [Google Scholar] [CrossRef]
- Alidoust, M.; Halterman, K. Long-range spin-triplet correlations and edge spin currents in diffusive spin–orbit coupled SNS hybrids with a single spin-active interface. J. Phys. Condens. Matter 2015, 27, 235301. [Google Scholar] [CrossRef]
- Ouassou, J.A.; Di Bernardo, A.; Robinson, J.W.; Linder, J. Electric control of superconducting transition through a spin-orbit coupled interface. Sci. Rep. 2016, 6, 1–9. [Google Scholar] [CrossRef]
- Banerjee, N.; Ouassou, J.A.; Zhu, Y.; Stelmashenko, N.; Linder, J.; Blamire, M.G. Controlling the superconducting transition by spin-orbit coupling. Phys. Rev. B 2018, 97, 184521. [Google Scholar] [CrossRef]
- Johnsen, L.G.; Banerjee, N.; Linder, J. Magnetization reorientation due to the superconducting transition in heavy-metal heterostructures. Phys. Rev. B 2019, 99, 134516. [Google Scholar] [CrossRef]
- Martínez, I.; Högl, P.; González-Ruano, C.; Cascales, J.P.; Tiusan, C.; Lu, Y.; Hehn, M.; Matos-Abiague, A.; Fabian, J.; Žutić, I.; et al. Interfacial Spin-Orbit Coupling: A Platform for Superconducting Spintronics. Phys. Rev. Appl. 2020, 13, 014030. [Google Scholar] [CrossRef]
- Guarcello, C.; Bergeret, F. Cryogenic memory element based on an anomalous Josephson junction. Phys. Rev. Appl. 2020, 13, 034012. [Google Scholar] [CrossRef]
- Neilo, A.; Bakurskiy, S.; Klenov, N.; Soloviev, I.; Kupriyanov, M. Superconducting Valve Exploiting Interplay between Spin-Orbit and Exchange Interactions. Nanomaterials 2022, 12, 4426. [Google Scholar] [CrossRef] [PubMed]
- Faure, M.; Buzdin, A.I.; Golubov, A.A.; Kupriyanov, M.Y. Properties of superconductor/ferromagnet structures with spin-dependent scattering. Phys. Rev. B 2006, 73, 064505. [Google Scholar] [CrossRef]
- Ivchenko, E.L. Optical Spectroscopy of Semiconductor Nanostructures; Alpha Science International Ltd: Harrow, UK, 2005. [Google Scholar]
- Bychkov, Y.A.; Rashba, E.I. Oscillatory effects and the magnetic susceptibility of carriers in inversion layers. J. Phys. Solid State Phys. 1984, 17, 6039. [Google Scholar] [CrossRef]
- Dresselhaus, G. Spin-orbit coupling effects in zinc blende structures. Phys. Rev. 1955, 100, 580. [Google Scholar] [CrossRef]
- Usadel, K.D. Generalized diffusion equation for superconducting alloys. Phys. Rev. Lett. 1970, 25, 507. [Google Scholar] [CrossRef]
- Kuprianov, M.Y.; Lukichev, V.F. Effect of boundary transparency on critical current in dirty SS’S structures. Sov. Phys. JETP 1988, 67, 1163–1168. [Google Scholar]
- Linder, J.; Amundsen, M. Quasiclassical boundary conditions for spin-orbit coupled interfaces with spin-charge conversion. Phys. Rev. B 2022, 105, 064506. [Google Scholar] [CrossRef]
- Vasenko, A.; Hekking, F. Nonequilibrium electron cooling by NIS tunnel junctions. J. Low Temp. Phys. 2009, 154, 221–232. [Google Scholar] [CrossRef]
- Ambegaokar, V.; Baratoff, A. Tunneling between superconductors. Phys. Rev. Lett. 1963, 10, 486. [Google Scholar] [CrossRef]
- Hijano, A.; Ilić, S.; Rouco, M.; González-Orellana, C.; Ilyn, M.; Rogero, C.; Virtanen, P.; Heikkilä, T.T.; Khorshidian, S.; Spies, M.; et al. Coexistence of superconductivity and spin-splitting fields in superconductor/ferromagnetic insulator bilayers of arbitrary thickness. Phys. Rev. Res. 2021, 3, 023131. [Google Scholar] [CrossRef]
- Tyagi, P.; Hinds, B.J. Mechanism of ultrathin tunnel barrier failure due to mechanical-stress-induced nanosized hillocks and voids. J. Vac. Sci. Technol. Nanotechnol. Microelectron. Mater. Process. Meas. Phenom. 2010, 28, 517–521. [Google Scholar] [CrossRef]
- Gurvitch, M.; Washington, M.; Huggins, H.; Rowell, J. Preparation and properties of Nb Josephson junctions with thin Al layers. IEEE Trans. Magn. 1983, 19, 791–794. [Google Scholar] [CrossRef]
- Lichtenberger, A.; Lea, D.; Li, C.; Lloyd, F.; Feldman, M.; Mattauch, R.; Pan, S.K.; Kerr, A. Fabrication of micron size Nb/Al-Al/sub 2/O/sub 3//Nb junctions with a trilevel resist liftoff process. IEEE Trans. Magn. 1991, 27, 3168–3171. [Google Scholar] [CrossRef]
- Miller, R.; Mallison, W.; Kleinsasser, A.; Delin, K.; Macedo, E. Niobium trilayer Josephson tunnel junctions with ultrahigh critical current densities. Appl. Phys. Lett. 1993, 63, 1423–1425. [Google Scholar] [CrossRef]
- Mallison, W.; Miller, R.; Kleinsasser, A. Effect of growth conditions on the electrical properties of Nb/Al-oxide/Nb tunnel junctions. IEEE Trans. Appl. Supercond. 1995, 5, 2330–2333. [Google Scholar] [CrossRef]
- Kleinsasser, A.W.; Miller, R.E.; Mallison, W.H. Dependence of critical current density on oxygen exposure in Nb-AlO/sub x/-Nb tunnel junctions. IEEE Trans. Appl. Supercond. 1995, 5, 26–30. [Google Scholar] [CrossRef]
- Tolpygo, S.K.; Amparo, D.J.C.; Hunt, R.T.; Vivalda, J.A.; Yohannes, D.T. Subgap Leakage in Nb/Al-AlOx/Nb Josephson Junctions and Run-to-Run Reproducibility: Effects of Oxidation Chamber and Film Stress. IEEE Trans. Appl. Supercond. 2013, 23, 1100305. [Google Scholar] [CrossRef]
- Tolpygo, S.K.; Bolkhovsky, V.; Zarr, S.; Weir, T.; Wynn, A.; Day, A.L.; Johnson, L.; Gouker, M. Properties of unshunted and resistively shunted Nb/AlOx-Al/Nb Josephson junctions with critical current densities from 0.1 to 1 mA/μm2. IEEE Trans. Appl. Supercond. 2017, 27, 1100815. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Neilo, A.; Bakurskiy, S.; Klenov, N.; Soloviev, I.; Kupriyanov, M. Tunnel Josephson Junction with Spin–Orbit/Ferromagnetic Valve. Nanomaterials 2023, 13, 1970. https://doi.org/10.3390/nano13131970
Neilo A, Bakurskiy S, Klenov N, Soloviev I, Kupriyanov M. Tunnel Josephson Junction with Spin–Orbit/Ferromagnetic Valve. Nanomaterials. 2023; 13(13):1970. https://doi.org/10.3390/nano13131970
Chicago/Turabian StyleNeilo, Alexey, Sergey Bakurskiy, Nikolay Klenov, Igor Soloviev, and Mikhail Kupriyanov. 2023. "Tunnel Josephson Junction with Spin–Orbit/Ferromagnetic Valve" Nanomaterials 13, no. 13: 1970. https://doi.org/10.3390/nano13131970
APA StyleNeilo, A., Bakurskiy, S., Klenov, N., Soloviev, I., & Kupriyanov, M. (2023). Tunnel Josephson Junction with Spin–Orbit/Ferromagnetic Valve. Nanomaterials, 13(13), 1970. https://doi.org/10.3390/nano13131970