Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = super-thick strata

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 5986 KiB  
Article
Study on Breakage Characteristics and Anti-Breakage Theory for Pressure-Relieved CBM Drainage by Surface Wells in Coalbed Groups Covered by Super-Thick Pedosphere
by Zegong Liu, Sihuai Shen, Jian Liu, Feng Cai and Kui Gao
Energies 2023, 16(20), 7116; https://doi.org/10.3390/en16207116 - 17 Oct 2023
Viewed by 1071
Abstract
During the mining of highly gassy and low-permeability coalbed groups, massive pressure-relieved desorbed coal bed methane (CBM) is stored in the fracture zone and in the gob under the impact of mining activities. Surface wells can cross the fracture zone and the gob [...] Read more.
During the mining of highly gassy and low-permeability coalbed groups, massive pressure-relieved desorbed coal bed methane (CBM) is stored in the fracture zone and in the gob under the impact of mining activities. Surface wells can cross the fracture zone and the gob to drain a large amount of highly concentrated pressure-relieved CBM. CBM drainage by surface wells is an effective technology for disaster control. However, it is difficult to drill or maintain surface wells in the mining disturbance zone and overlying strata in the gob. The keyisto prevent the surface wells in the mining disturbance zone from being broken and to keep the whole surface wells unblocked. This study adopted a variety of research methods, including similar-material simulation in laboratory, numerical simulation, onsite monitoring and industrial tests. Specifically, the strata structure of surface wells for pressure-relieved CBM drainage was explored, and the characteristics of roof strata movement and stress redistribution under coalbed group mining were analyzed. Besides, positions where the surface wells are prone to breakage were found. Furthermore, based on the mechanical analysis and breakage characteristics of surface wells, the anti-breakage principle of “resistance and dodge” and the surface well completion and protection method of “upper stop and lower leak” were proposed. The proposed theory and method were then applied to pressure-relieved CBM drainage surface wells in a coalbed group covered by the super-thick pedosphere in the Huainan Coal Field. The application results indicate that the proposed theory and method succeeded in solving the breakage of surface wells and realizing the smooth transport of CBM product. The surface wells can completely resist the mining disturbance, achieving an average single-well pure CBM production of 2.71 million m3, an average service period of 482 d, and a maximum pure CBM production of 4.32 million m3. Full article
(This article belongs to the Section H: Geo-Energy)
Show Figures

Figure 1

22 pages, 11093 KiB  
Article
Understanding the Mechanism of Strong Mining Tremors near the Goaf Area of Longwall Mining: A Case Study
by Yao Yang, Anye Cao, Yaoqi Liu, Xianxi Bai, Zhenqian Yan, Songwei Wang and Changbin Wang
Appl. Sci. 2023, 13(9), 5364; https://doi.org/10.3390/app13095364 - 25 Apr 2023
Cited by 5 | Viewed by 2440
Abstract
Strong mining tremors (SMTs) frequently occur in super-thick strata near the goaf when mining. Since 2021, there have been three consecutive SMTs with magnitude greater than 2.0 in longwall 1208 of the Shilawusu Coal Mine. These SMTs caused mine production to be suspended [...] Read more.
Strong mining tremors (SMTs) frequently occur in super-thick strata near the goaf when mining. Since 2021, there have been three consecutive SMTs with magnitude greater than 2.0 in longwall 1208 of the Shilawusu Coal Mine. These SMTs caused mine production to be suspended for more than 290 days and affected over 100 households located on the shaking ground, and seriously threatened the safety of underground workers and restricted production capacity. Therefore, it is essential to investigate the occurrence mechanism of SMTs in super-thick strata goaf mining in order to understand the phenomenon, how the disaster of mining tremors occurs, and the prevention and control of mining tremor disasters. In this study, field observation, numerical analysis, and theoretical calculation were used to study the occurrence mechanism of three SMTs in the Shilawusu Coal Mine. The results show that the super-thick strata fracture induced by the SMTs is generally higher by one to three orders of magnitude in some of the source mechanical parameters compared to other mining tremors, and so is more likely to cause ground shaking. Field observations revealed that before and after the occurrence of SMTs, the maximum surface subsidence suddenly increased by about 0.1 m and showed a “stepped” increase, and the super-thick strata began to experience fractures. The following theoretical mechanics model of super-thick strata was established: at the goaf stage of mining, with the increase in the area of the hanging roof, the super-thick strata will experience initial and periodic fractures, which can easily induce SMTs. The relative moment tensor inversion method was used to calculate the source mechanism of SMTs, which was found to be caused by the tensile rupture resulting from the initial and periodic ruptures of super-thick strata, in addition to the shear rupture generated by the adjustment of unstable strata structures. As the mining continues on the longwall face, there is still a possibility of SMT occurrence. This paper provides some insights into the mechanism and prevention of SMT in underground coal mines. Full article
Show Figures

Figure 1

23 pages, 5604 KiB  
Article
Study on Mine Earthquakes Mechanism and Ground Vertical Well Hydraulic Fracturing Shock Absorption in Thick Hard Rock Mine
by Xiaoguang Shang, Sitao Zhu, Fuxing Jiang, Jinhai Liu, Xiufeng Zhang, Xiang Sun, Chao Wang, Yang Chen, Bo Xu, Jiajie Li and Xiaocheng Qu
Sustainability 2023, 15(6), 5122; https://doi.org/10.3390/su15065122 - 14 Mar 2023
Cited by 5 | Viewed by 1774
Abstract
Mine earthquakes are serious disasters in coal mines, especially in extremely thick hard strata. This study investigates the occurrence mechanism of fracture-type mine earthquakes in thick hard strata. Hydraulic fracturing by ground vertical well was used for shock absorption. Dongtan coal mine was [...] Read more.
Mine earthquakes are serious disasters in coal mines, especially in extremely thick hard strata. This study investigates the occurrence mechanism of fracture-type mine earthquakes in thick hard strata. Hydraulic fracturing by ground vertical well was used for shock absorption. Dongtan coal mine was taken as a case study. Field investigation, theoretical analysis, industrial tests, and field monitoring were used for revealing the mechanism. First, the mechanical model of extremely thick, hard strata under horizontal concentrated stress was established. The fracture step equation and energy release equation of extremely thick hard rock were derived by semi-inverse solution and variational method. Then, the mechanical model of extremely thick hard rock after hydraulic fracturing by ground vertical well was established. The relationship between the spacing of the ground vertical well and the maximum magnitude of mine earthquakes was deduced. The fracturing well in the 6306 working face was designed for controlling the maximum mine earthquake magnitude. Results show that the increases in the breaking distance of the thick hard rock layer led to an increase in the released energy during the fracture, and an enhancement of the magnitude of the mine earthquake. By applying hydraulic fracturing technology using the ground vertical shaft, the occurrence frequency and total energy of mine earthquakes above 1.5 ML in the 6306 working face decreased by 54.55% and 81.22% than that in 6304 working face, and reduced by 70% and 84.98% than that in 6305 working face. Hydraulic fracturing technology by ground vertical well can significantly reduce the frequency of fracture-type and the total energy of mine earthquakes in extremely thick and hard strata. However, it can not prevent and control the occurrence of back-transition mine earthquakes and slip-type mine earthquakes. The obtained results can provide a basis for the fracture-type mine earthquake mechanism and fracturing shock absorption technology in coal mines with super-thick hard strata. Full article
(This article belongs to the Special Issue Deep Mining Engineering in Sustainability)
Show Figures

Figure 1

17 pages, 6881 KiB  
Article
Metallogenic Prediction of Magnetite in the Pandian Area at the Northwest Margin of Luxi Uplift, China: Constraints of Wide-Field Electromagnetic Data
by Jianxin Liu, Keke Zhou, Hongda Liu, Rongwen Guo, Yunqi Zhu, Zihao Zhang and Rong Liu
Remote Sens. 2023, 15(5), 1217; https://doi.org/10.3390/rs15051217 - 22 Feb 2023
Cited by 6 | Viewed by 2283
Abstract
The Pandian deposit is a newly discovered contact metasomatic skarn magnetite deposit found in the Cainozoic super-thick overburden on the northwest margin of Luxi Uplift (LXU). Presently, the horizontal scale of the deposit delineated by the potential field (gravity and magnetic method) has [...] Read more.
The Pandian deposit is a newly discovered contact metasomatic skarn magnetite deposit found in the Cainozoic super-thick overburden on the northwest margin of Luxi Uplift (LXU). Presently, the horizontal scale of the deposit delineated by the potential field (gravity and magnetic method) has shown giant potential for ore deposits, and mapping the ore-controlling structures in the vertical scale becomes a primary task for metallogenic prediction. In our study, the wide-field electromagnetic method (WFEM), with a strong anti-noise ability in recording electromagnetic signals on the surface at multiple frequencies, is applied to characterize the deep conductivity distribution of the Pandian area. Based on the inversion results from two parallel WFEM profiles, which consist of 105 sites and previous geological and geophysical results, the 2D geoelectric models are established. The low-resistivity regions (with a typical range of 25~32 Ω·m) in the electrical models are proven to be ore bodies of Pandian deposit, which are developed along the contact zone between Yanshanian intrusive rocks and Paleozoic Ordovician strata. The scattered bodies (typically >32 Ω·m) in Ordovician limestone strata are probably caused by intrusive diorite pluton closely related to magnetite mineralization. Due to contact metasomatism, bedded limestone near magnetite was metamorphosed into marble and accompanied by low-resistivity skarn alteration, with resistivity much different from its high-resistivity protolith. The inverted geoelectrical models visually reflect the spatial distribution features of intrusive rocks and lithologic alteration/fracture zones. Full article
(This article belongs to the Special Issue Multi-Scale Remote Sensed Imagery for Mineral Exploration)
Show Figures

Graphical abstract

30 pages, 17514 KiB  
Article
Mechanical Properties and Failure Mechanism of the Weakly Cemented Overburden in Deep Mining
by Guojian Zhang, Guangli Guo, Wei Wei, Jun Wang, Huaizhan Li and Qiu Du
Minerals 2022, 12(10), 1276; https://doi.org/10.3390/min12101276 - 10 Oct 2022
Cited by 7 | Viewed by 1828
Abstract
With increases in the mining depth and area in the Ordos coal field, the failure law of the super thick sandstone in the Zhidan group leads to frequent disasters, such as rock bursts and mine earthquakes, which have become a significant issue, restricting [...] Read more.
With increases in the mining depth and area in the Ordos coal field, the failure law of the super thick sandstone in the Zhidan group leads to frequent disasters, such as rock bursts and mine earthquakes, which have become a significant issue, restricting large-scale continuous mining. To adequately understand the movement mechanism of the super-thick and weakly cemented overburden, and to promote the large-scale mining of the coal resources under it, this study analyzes the physical and mechanical properties, along with the microstructural characteristics, of the weakly cemented overburden of the Yingpanhao Coal Mine through mechanics tests, scanning electron microscope tests (SEM) and hydrolysis experiments. A two-dimensional discrete element model of the survey region is then built to explore the temporal and spatial evolution laws of the overburden failure. The results show that, even though poorly cemented strata such as the Cretaceous Zhidan group sandstone and the Zhiluo group sandstone are weak in lithology, their unique mineral composition and microstructural characteristics give them a greater rigidity when their thickness reaches a certain value. The surface subsidence exhibits a sudden increase, and the dynamic disaster range of the overlying strata is wide when deep multi-face mining was carried out under the super-thick and weakly cemented overburden. The temporal and spatial evolution laws of the strata subsidence and influence boundary are closely related to their depth, and their relationships evolve into the Boltzmann function and Boltzmann–parabolic function, respectively. The failure mode of the super-thick and weakly cemented overburden is ‘beam–arch shell–half arch shell’, and the failure boundary exhibits arch fractures. Full article
(This article belongs to the Special Issue Green Mining of Coal Mine in China)
Show Figures

Figure 1

10 pages, 4087 KiB  
Article
In Situ Studies on the Characteristics of Strata Structures and Behaviors in Mining of a Thick Coal Seam with Hard Roofs
by Yiwen Lan, Rui Gao, Bin Yu and Xiangbin Meng
Energies 2018, 11(9), 2470; https://doi.org/10.3390/en11092470 - 17 Sep 2018
Cited by 33 | Viewed by 3522
Abstract
The movements of overburden induced by mining a thick coal seam with a hard roof extend widely. The effects of breakages in the hard strata on the strata behaviors might vary with the overlying strata layers. For this reason, we applied a test [...] Read more.
The movements of overburden induced by mining a thick coal seam with a hard roof extend widely. The effects of breakages in the hard strata on the strata behaviors might vary with the overlying strata layers. For this reason, we applied a test method that integrated a borehole TV tester, borehole-based monitoring of strata movement, and monitoring of support resistance for an in situ investigation of a super-thick, 14–20 m coal seam mining in the Datong mining area in China. The results showed that the range of the overburden movement was significantly high, which could reach to more than 300 m. The key strata (KS) in the lower layer main roof were broken into a ‘cantilever beam and voussoir beam’ structure. This structure accounted for the ‘long duration and short duration’ strata behaviors in the working face. On the other hand, the hard KS in the upper layer broke into a ‘high layer structure’. The structural instability induced intensive and wide-ranging strata behaviors that lasted for a long time (two to three days). Support in the working face were over-pressured by large dynamic factors and were widely crushed, while the roadways were violently deformed. Hence, the structure of a thick coal seam with a hard roof after mining will form a ‘cantilever beam and voussoir beam and high layer structure’, which is unique to a large space stope. Full article
Show Figures

Figure 1

16 pages, 17319 KiB  
Article
Influence of the Elastic Dilatation of Mining-Induced Unloading Rock Mass on the Development of Bed Separation
by Weibing Zhu, Shengchao Yu and Jingmin Xu
Energies 2018, 11(4), 785; https://doi.org/10.3390/en11040785 - 29 Mar 2018
Cited by 17 | Viewed by 3358
Abstract
Understanding how mining-induced strata movement, fractures, bed separation, and ground subsidence evolve is an area of great importance for the underground coal mining industry, particularly for disaster control and sustainable mining. Based on the rules of mining-induced strata movement and stress evolution, accumulative [...] Read more.
Understanding how mining-induced strata movement, fractures, bed separation, and ground subsidence evolve is an area of great importance for the underground coal mining industry, particularly for disaster control and sustainable mining. Based on the rules of mining-induced strata movement and stress evolution, accumulative dilatation of mining-induced unloading rock mass is first proposed in this paper. Triaxial unloading tests and theoretical calculation were used to investigate the influence of elastic dilatation of mining-induced unloading rock mass on the development of bed separation in the context of district No. 102 where a layer of super-thick igneous sill exists in the Haizi colliery. It is shown that the elastic dilatation coefficient of mining-induced unloading hard rocks and coal were 0.9~1.0‰ and 2.63‰ respectively under the axial load of 16 MPa, which increased to 1.30~1.59‰ and 4.88‰ when the axial load was 32 MPa. After successively excavating working faces No. 1022 and No. 1024, the elastic dilatation of unloading rock mass was 157.9 mm, which represented approximately 6.3% of the mining height, indicating the elastic dilatation of mining-induced unloading rock mass has a moderate influence on the development of bed separation. Drill hole detection results after grouting, showed that only 0.33 m of the total grouting filling thickness (1.67 m) was located in the fracture zone and bending zone, which verified the result from previous drill hole detection that only small bed separation developed beneath the igneous sill. Therefore, it was concluded that the influences of elastic dilatation of mining-induced unloading rock mass and bulking of caved rock mass jointly contributed to the small bed separation space beneath the igneous sill. Since the accurate calculation of the unloading dilatation of rock mass is the fundamental basis for quantitative calculation of bed separation and surface subsidence, this paper is expected to be a meaningful beginning point and could provide a useful reference for future, related research. Full article
(This article belongs to the Section L: Energy Sources)
Show Figures

Figure 1

Back to TopTop