Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (41)

Search Parameters:
Keywords = super wideband

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 5777 KiB  
Article
Considering a mm-Wave Front-End Receiver and Quadrature Down-Converter for 18–40 GHz with Low Noise Figure and High Gain for an ESM System
by Yuseok Jeon and Hyunkyu Kim
Electronics 2025, 14(14), 2803; https://doi.org/10.3390/electronics14142803 - 11 Jul 2025
Viewed by 281
Abstract
In this paper, RF sub-modules with millimeter-wave functionality are considered and verified for designing an ultra-wideband receiver (18–40 GHz) required in the electronic support measure (ESM) field. The pre-design of an ultra-wideband super heterodyne receiver (SHR) requires a front-end module (FEM) with four [...] Read more.
In this paper, RF sub-modules with millimeter-wave functionality are considered and verified for designing an ultra-wideband receiver (18–40 GHz) required in the electronic support measure (ESM) field. The pre-design of an ultra-wideband super heterodyne receiver (SHR) requires a front-end module (FEM) with four units in the system. Each FEM has four channels with the same path, while the quadrature millimeter down-converter (QMDC) needs to have a converting function that uses a broadband mixer. The FEM includes the ability to provide built-in test (BIT) path functionality to the antenna ports prior to system field installation. Each path of the QMDC requires the consideration of several factors, such as down-converting, broadband gain flatness, and high isolation. As this is an RF module requiring high frequency and wideband characteristics, it is necessary to identify risk factors in advance within a predictable range. Accordingly, the blind-mate A (BMA) connector connection method, the phase-alignment test method in the down-conversion structure, and the LO signal, IF path inflow-blocking method were analyzed and designed. Full article
Show Figures

Figure 1

17 pages, 2461 KiB  
Article
A Throughput Analysis of C+L-Band Optical Networks: A Comparison Between the Use of Band-Dedicated and Single-Wideband Amplification
by Tomás Maia and João Pires
Electronics 2025, 14(13), 2723; https://doi.org/10.3390/electronics14132723 - 6 Jul 2025
Viewed by 370
Abstract
Optical networks today constitute the fundamental backbone infrastructure of telecom and cloud operators. A possible medium-term solution to address the enormous increase in traffic demands faced by these operators is to rely on Super C+ L transmission optical bands, which can offer a [...] Read more.
Optical networks today constitute the fundamental backbone infrastructure of telecom and cloud operators. A possible medium-term solution to address the enormous increase in traffic demands faced by these operators is to rely on Super C+ L transmission optical bands, which can offer a bandwidth of about 12 THz. In this paper, we propose a methodology to compute the throughput of an optical network based on this solution. The methodology involves detailed physical layer modeling, including the impact of stimulated Raman scattering, which is responsible for energy transfer between the two bands. Two approaches are implemented for throughput evaluation: one assuming idealized Gaussian-modulated signals and the other using real modulation formats. For designing such networks, it is crucial to choose the most appropriate technological solution for optical amplification. This could either be a band-dedicated scheme, which uses a separate amplifier for each of the two bands, or a single-wideband amplifier capable of amplifying both bands simultaneously. The simulation results show that the single-wideband scheme provides an average throughput improvement of about 18% compared to the dedicated scheme when using the Gaussian modulation approach. However, with the real modulation approach, the improvement increases significantly to about 32%, highlighting the benefit in developing single-wideband amplifiers for future applications in Super C+L-band networks. Full article
(This article belongs to the Special Issue Optical Networking and Computing)
Show Figures

Figure 1

20 pages, 11249 KiB  
Article
Design and Equivalent Circuit Model Extraction of a Fractal Slot-Loaded 3–40 GHz Super Wideband Antenna
by Wasan Alamro, Boon-Chong Seet, Lulu Wang and Prabakar Parthiban
Electronics 2024, 13(22), 4380; https://doi.org/10.3390/electronics13224380 - 8 Nov 2024
Cited by 1 | Viewed by 1271
Abstract
In this paper, we present the design and equivalent circuit model (ECM) of a fractal slot-loaded super wideband (SWB) antenna for compact and high-performance applications operating in the 3–40 GHz range. The proposed antenna features a compact dimension of 40 × 35 × [...] Read more.
In this paper, we present the design and equivalent circuit model (ECM) of a fractal slot-loaded super wideband (SWB) antenna for compact and high-performance applications operating in the 3–40 GHz range. The proposed antenna features a compact dimension of 40 × 35 × 1.57 mm³, a measured bandwidth ratio of 13:1, a peak gain of 9.7 dBi, an average radiation efficiency of 94%, and a low cross-polarization level across the entire bandwidth. The presented ECM is derived using transmission line theory and incorporates the individual behavior of each constituting element of the antenna. A dual sequential optimization approach is employed to determine the optimal element values. The ECM results show good agreement with both simulated and measured results in terms of the magnitude of reflection coefficient |S11| and both real and imaginary impedances with low mean absolute percentage errors of 4.9%, 7.5%, and 7.7%, respectively, demonstrating the model’s ability to accurately predict the antenna’s performance. Full article
(This article belongs to the Section Microwave and Wireless Communications)
Show Figures

Figure 1

19 pages, 8857 KiB  
Article
Enhanced Vital Parameter Estimation Using Short-Range Radars with Advanced Motion Compensation and Super-Resolution Techniques
by Sewon Yoon, Seungjae Baek, Inoh Choi, Soobum Kim, Bontae Koo, Youngseok Baek, Jooho Jung, Sanghong Park and Min Kim
Sensors 2024, 24(20), 6765; https://doi.org/10.3390/s24206765 - 21 Oct 2024
Viewed by 1574
Abstract
Various short-range radars, such as impulse-radio ultra-wideband (IR-UWB) and frequency-modulated continuous-wave (FMCW) radars, are currently employed to monitor vital signs, including respiratory and cardiac rates (RRs and CRs). However, these methods do not consider the motion of an individual, which can distort the [...] Read more.
Various short-range radars, such as impulse-radio ultra-wideband (IR-UWB) and frequency-modulated continuous-wave (FMCW) radars, are currently employed to monitor vital signs, including respiratory and cardiac rates (RRs and CRs). However, these methods do not consider the motion of an individual, which can distort the phase of the reflected signal, leading to inaccurate estimation of RR and CR because of a smeared spectrum. Therefore, motion compensation (MOCOM) is crucial for accurately estimating these vital rates. This paper proposes an efficient method incorporating MOCOM to estimate RR and CR with super-resolution accuracy. The proposed method effectively models the radar signal phase and compensates for motion. Additionally, applying the super-resolution technique to RR and CR separately further increases the estimation accuracy. Experimental results from the IR-UWB and FMCW radars demonstrate that the proposed method successfully estimates RRs and CRs even in the presence of body movement. Full article
Show Figures

Figure 1

14 pages, 12198 KiB  
Article
Super-Wideband Monopole Printed Antenna with Half-Elliptical-Shaped Patch
by Fitri Yuli Zulkifli, Aditya Inzani Wahdiyat, Abdurrahman Zufar, Nurhayati Nurhayati and Eko Setijadi
Telecom 2024, 5(3), 760-773; https://doi.org/10.3390/telecom5030038 - 5 Aug 2024
Cited by 6 | Viewed by 1622
Abstract
Super-wideband (SWB) antennas have emerged as a promising technology for next-generation wireless communication systems due to their ability to transmit and receive signals across a wide frequency spectrum. A half-elliptical-shaped patch antenna for a super-wideband antenna is proposed in this paper. The proposed [...] Read more.
Super-wideband (SWB) antennas have emerged as a promising technology for next-generation wireless communication systems due to their ability to transmit and receive signals across a wide frequency spectrum. A half-elliptical-shaped patch antenna for a super-wideband antenna is proposed in this paper. The proposed antenna was composed of a half-elliptical-shaped patch with a microstrip feedline and a partial ground plane with a triangular inset and a bent edge ground plane. This proposed antenna was designed using Taconic TLY-5 with a dielectric permittivity of 2.2 and a total dimension of 200 × 220 × 1.57 mm3. The proposed antenna demonstrates a bandwidth of 23 GHz (from 0.5 GHz to 23.5 GHz) with a bandwidth ratio of 47:1. Full article
Show Figures

Figure 1

14 pages, 5398 KiB  
Article
Meander Line Super-Wideband Radiator for Fifth-Generation (5G) Vehicles
by Narayana Rao Palepu, Jayendra Kumar and Samineni Peddakrishna
Vehicles 2024, 6(1), 242-255; https://doi.org/10.3390/vehicles6010010 - 23 Jan 2024
Cited by 3 | Viewed by 2150
Abstract
Designing antennas for vehicular communication systems presents several unique challenges due to the dynamic nature of vehicular environments, mobility, and the need for reliable connectivity. A wider bandwidth is a critical requirement of vehicular antennas. In this paper, a super-wideband FR4 epoxy-based low-cost [...] Read more.
Designing antennas for vehicular communication systems presents several unique challenges due to the dynamic nature of vehicular environments, mobility, and the need for reliable connectivity. A wider bandwidth is a critical requirement of vehicular antennas. In this paper, a super-wideband FR4 epoxy-based low-cost meander line patch antenna is designed for fifth-generation (5G) vehicular mobile frequency applications. The proposed antenna is excited through a microstrip feedline on top of the substrate with a continuous ground plane. The meander line is implemented through a theoretical formula to cover upper-5G frequency range 1 (FR1) and frequency range 2 (FR2). The proposed antenna has 7.5 dBi peak gain when operated at 28 GHz. The simulated bandwidth ratio (BWR) is 9.09:1 for a −10 dB reflection coefficient covering a 53.4 GHz (6.6 GHz to 60 GHz) frequency range. The proposed antenna has a linear meander line planar structure, occupies a small area of 34 mm × 20 mm × 1.6 mm, and satisfies the bandwidth requirements of 5G millimeter-wave and sub-bands of the sixth generation for vehicular applications. Full article
Show Figures

Figure 1

15 pages, 5756 KiB  
Article
Design and Optimization of a Compact Super-Wideband MIMO Antenna with High Isolation and Gain for 5G Applications
by Bashar A. F. Esmail, Slawomir Koziel and Anna Pietrenko-Dabrowska
Electronics 2023, 12(22), 4710; https://doi.org/10.3390/electronics12224710 - 20 Nov 2023
Cited by 12 | Viewed by 2477
Abstract
This paper presents a super-wideband multiple-input multiple-output (SWB MIMO) antenna with low profile, low mutual coupling, high gain, and compact size for microwave and millimeter-wave (mm-wave) fifth-generation (5G) applications. A single antenna is a simple elliptical-square shape with a small physical size of [...] Read more.
This paper presents a super-wideband multiple-input multiple-output (SWB MIMO) antenna with low profile, low mutual coupling, high gain, and compact size for microwave and millimeter-wave (mm-wave) fifth-generation (5G) applications. A single antenna is a simple elliptical-square shape with a small physical size of 20 × 20 × 0.787 mm3. The combination of both square and elliptical shapes results in an exceptionally broad impedance bandwidth spanning from 3.4 to 70 GHz. Antenna dimensions are optimized using the trust-region algorithm to enhance its impedance bandwidth and maintain the gain within a predefined limit across the entire band. For that purpose, regularized merit function is defined, which permits to control both the single antenna reflection response and gain. Subsequently, the SWB MIMO system is constructed with four radiators arranged orthogonally. This arrangement results in high isolation, better than 20 dB, over a frequency band from 3.4 to 70 GHz band. Further, the system achieves an average gain of approximately 7 dB below 45 GHz and a maximum gain equal to 12 dB for 70 GHz. The system exhibits excellent diversity performance throughout the entire bandwidth, as evidenced by the low envelope correlation coefficient (ECC) (<3 × 10−3), total active reflection coefficient (TARC) (≤−10 dB), and channel capacity loss (CCL) (<0.3 bit/s/Hz) metrics, as well as the high diversity gain (DG) of approximately 10 dB. Experimental validation of the developed SWB MIMO demonstrates a good matching between the measurements and simulations. Full article
Show Figures

Figure 1

15 pages, 3979 KiB  
Article
Implementation of a Wideband Microwave Filter Design with Dual Electromagnetic Interference (EMI) Mitigation for Modern Wireless Communication Systems with Low Insertion Loss and High Selectivity
by Abdul Basit, Amil Daraz and Guoqiang Zhang
Micromachines 2023, 14(11), 1986; https://doi.org/10.3390/mi14111986 - 26 Oct 2023
Cited by 4 | Viewed by 1864
Abstract
By leveraging the advantages of the uniform transmission line, this manuscript presents a broadband high-selectivity filter range starting from 2.5 GHz to 16.8 GHz, utilizing a simple uniform transmission line structure loaded with three-quarter-wavelength stubs. The proposed UWB filter is studied using the [...] Read more.
By leveraging the advantages of the uniform transmission line, this manuscript presents a broadband high-selectivity filter range starting from 2.5 GHz to 16.8 GHz, utilizing a simple uniform transmission line structure loaded with three-quarter-wavelength stubs. The proposed UWB filter is studied using the ABCD network parameter method. After that, a shorted T-shaped stub-loaded resonator is coupled with the transmission line of the UWB filter to obtain dual-notch features at 4.4 GHz (for long distance wireless ISPs (WISPs), 4G/5G operator for LTE backhaul) and 7.5 GHz (for X-band downlink communication). The overall footprint is specified as 22.5 mm × 12 mm or 1.12 λg × 0.6 λg, where λg represents the wavelength at the central frequency. The operating principle of such a filter is explained, and its controllable broadband response, as well as controllable stopband frequencies, are optimized to show some of the attractive features of the new scheme, such as a super wideband response of about a 148.18% fractional bandwidth; an out-of-band performance up to 25 GHz; five single-resonator transmission poles filtering behaviour at different frequencies, with highly reduced radiation losses greater than 10 dB; a simple topology; a flat group delay; a low insertion loss of 0.4 dB; and high selectivity. Additionally, the filter is fabricated and evaluated, and the results show a good match for experimental validation purposes. Full article
Show Figures

Figure 1

12 pages, 3275 KiB  
Article
Super-High-Frequency Bulk Acoustic Resonators Based on Aluminum Scandium Nitride for Wideband Applications
by Wentong Dou, Congquan Zhou, Ruidong Qin, Yumeng Yang, Huihui Guo, Zhiqiang Mu and Wenjie Yu
Nanomaterials 2023, 13(20), 2737; https://doi.org/10.3390/nano13202737 - 10 Oct 2023
Cited by 13 | Viewed by 2550
Abstract
Despite the dominance of bulk acoustic wave (BAW) filters in the high-frequency market due to their superior performance and compatible integration process, the advent of the 5G era brings up new challenges to meet the ever-growing demands on high-frequency and large bandwidth. Al [...] Read more.
Despite the dominance of bulk acoustic wave (BAW) filters in the high-frequency market due to their superior performance and compatible integration process, the advent of the 5G era brings up new challenges to meet the ever-growing demands on high-frequency and large bandwidth. Al1-xScxN piezoelectric films with high Sc concentration are particularly desirable to achieve an increased electromechanical coupling (Kt2) for BAW resonators and also a larger bandwidth for filters. In this paper, we designed and fabricated the Al1-xScxN-based BAW resonators with Sc concentrations as high as 30%. The symmetry of the resonance region, border frame structure and thickness ratio of the piezoelectric stack are thoroughly examined for lateral modes suppression and resonant performance optimization. Benefiting from the 30% Sc doping, the fabricated BAW resonators demonstrate a large effective electromechanical coupling (Keff2) of 17.8% at 4.75 GHz parallel resonant frequency. Moreover, the temperature coefficient of frequency (TCF) of the device is obtained as −22.9 ppm/°C, indicating reasonable temperature stability. Our results show that BAW resonators based on highly doped Al1-xScxN piezoelectric film have great potential for high-frequency and large bandwidth applications. Full article
(This article belongs to the Special Issue Nanoelectronics: Materials, Devices and Applications)
Show Figures

Figure 1

14 pages, 5872 KiB  
Article
Design and Implementation of a Planar MIMO Antenna for Spectrum-Sensing Applications
by Sachin Kumar, Dinesh Kumar Raheja, Sandeep Kumar Palaniswamy, Binod Kumar Kanaujia, Hala Mostafa, Hyun Chul Choi and Kang Wook Kim
Electronics 2023, 12(15), 3311; https://doi.org/10.3390/electronics12153311 - 2 Aug 2023
Cited by 6 | Viewed by 2517
Abstract
Spectrum sensing is an important aspect in cognitive radio (CR) networks as it involves the identification of unused frequency spectra, which saves both bandwidth and energy. The design of a compact super-wideband (SWB) multi-input multi-output (MIMO)/diversity antenna with triple-band-notched features is presented for [...] Read more.
Spectrum sensing is an important aspect in cognitive radio (CR) networks as it involves the identification of unused frequency spectra, which saves both bandwidth and energy. The design of a compact super-wideband (SWB) multi-input multi-output (MIMO)/diversity antenna with triple-band-notched features is presented for spectrum sensing in CR systems. The MIMO antenna comprises four identical semi-elliptical-shaped monopole resonators, which are orthogonally positioned and excited individually via tapered coplanar waveguide feed lines. Also, a mirror-slot analogous to the radiator is etched in the ground conductor of each antenna element to achieve SWB characteristics. In order to avoid interference with the SWB, the antenna radiator is loaded with a staircase-shaped slit and a pair of concentric slits, arranged like a complementary split-ring resonator. The antenna resonates from 1.2 to 43 GHz, exhibiting a bandwidth ratio of 36:1. In the MIMO antenna, the antenna elements are located orthogonally, and the isolation > 18 dB and envelope correlation coefficient < 0.01 are realized in the resonating band. The antenna offers a peak gain of 4 dBi, and a sharp reduction in gain at notch frequencies (3.5 GHz, 5.5 GHz, and 8.5 GHz) is achieved. The size of the MIMO antenna is 52 mm × 52 mm. The proposed compact-size antenna features a high bandwidth ratio and straightforward design procedure, and can be simply integrated into contemporary RF equipment. The presented SWB MIMO antenna outperforms SWB antenna designs reported in the open literature, which featured one or two notched bands, whereas it has three notched bands. Also, the three notches in the SWB are achieved without the use of any filters, which simplifies the antenna development process. Full article
(This article belongs to the Section Microwave and Wireless Communications)
Show Figures

Figure 1

14 pages, 9958 KiB  
Communication
A Compact Super-Wideband High Bandwidth Dimension Ratio Octagon-Structured Monopole Antenna for Future-Generation Wireless Applications
by Naineri Suguna and Senthil Revathi
Appl. Sci. 2023, 13(8), 5057; https://doi.org/10.3390/app13085057 - 18 Apr 2023
Cited by 3 | Viewed by 2460
Abstract
A high-dimension ratio, octagonal-shaped, super-wideband (SWB) monopole antenna was proposed in this paper. The proposed antenna was composed of an octagonal-structured radiating patch with a flower-shaped slot fed by a linearly tapering microstrip line and a rectangular partial ground fabricated on a Rogers [...] Read more.
A high-dimension ratio, octagonal-shaped, super-wideband (SWB) monopole antenna was proposed in this paper. The proposed antenna was composed of an octagonal-structured radiating patch with a flower-shaped slot fed by a linearly tapering microstrip line and a rectangular partial ground fabricated on a Rogers 5880 dielectric substrate, with an overall dimension of 14 × 16 × 0.787 mm3. The designed antenna exhibits SWB characteristics over the frequency range of 3.71 to 337.88 GHz at |S11| ≤ −10 dB, VSWR < 2, a bandwidth ratio (BR) of 91.07:1, and a very high BDR of 6057.27. The proposed SWB antenna was designed, simulated, and analyzed using Ansys high-frequency structural simulator (HFSS). The simulated and measured findings have good confirmability, making them ideal for future-generation mobile networks, due to their strong radiation properties, compactness, and extremely wide bandwidth. Full article
(This article belongs to the Special Issue New Trends in Telecommunications Engineering)
Show Figures

Figure 1

19 pages, 8365 KiB  
Article
Multi Frequency Controllable In-Band Suppressions in a Broad Bandwidth Microstrip Filter Design for 5G Wi-Fi and Satellite Communication Systems Utilizing a Quad-Mode Stub-Loaded Resonator
by Guoqiang Zhang, Abdul Basit, Muhammad Irshad Khan, Amil Daraz, Najmus Saqib and Farid Zubir
Micromachines 2023, 14(4), 866; https://doi.org/10.3390/mi14040866 - 17 Apr 2023
Cited by 10 | Viewed by 2218
Abstract
The key elements used for receiving and processing signals in communication systems are the bandpass filters. Initially, a common operating mechanism was applied for the design of broadband filters, i.e., by cascading low-pass filters or high-pass filters using multiple line resonators with length [...] Read more.
The key elements used for receiving and processing signals in communication systems are the bandpass filters. Initially, a common operating mechanism was applied for the design of broadband filters, i.e., by cascading low-pass filters or high-pass filters using multiple line resonators with length quarter-half- or full-wavelength with central frequency, but using these approaches, the design topology becomes expensive and complex. The above mechanisms can be possibly overcome using a planar microstrip transmission line structure due to its simple design fabrication procedure and low cost. So, pointing out the above problems in bandpass filters such as low-cost, low insertion loss, and good out-of-band performance, this article presents a broadband filter with multifrequency suppression capability at 4.9 GHz, 8.3 GHz, and 11.5 GHz using a T-shaped shorted stub-loaded resonator with a central square ring coupled to the basic broadband filter. Initially, the C-shaped resonator is utilized for the formation of a stopband at 8.3 GHz for a satellite communication system, and then a shorted square ring resonator is added to the existing C-shaped structure for the realization of two more stopbands at 4.9 GHz and 11.5 GHz for 5G (WLAN 802.11j) communication, respectively. The overall circuit area covered with the proposed filter is 0.52 λg × 0.32 λg (λg is the wavelength of the feed lines at frequency 4.9 GHz). All the loaded stubs are folded in order to save the circuit area, which is an important requirement of next-generation wireless communication systems. The proposed filter has been analyzed using a well-known transmission line theory, even–odd-mode, and simulated with the 3D software HFSS. After the parametric analysis, some attractive features were obtained, i.e., compact structure, simple planar topology, low insertion losses of 0.4 dB over the entire band, good return loss greater than 10 dB, and independently controlled mutli stopbands, which make the proposed design unique and can be used in various wireless communication system applications. Finally, a Rogers RO-4350 substrate is selected for the fabrication of the prototype using an LPKF S63 ProtoLaser machine and then measured using a ZNB20 vector network analyzer for matching the simulated and measured results. After testing the prototype, a good agreement was found between the results. Full article
Show Figures

Figure 1

18 pages, 7142 KiB  
Article
Early-Stage Lung Tumor Detection Based on Super-Wideband Microwave Reflectometry
by Wasan Alamro, Boon-Chong Seet, Lulu Wang and Prabakar Parthiban
Electronics 2023, 12(1), 36; https://doi.org/10.3390/electronics12010036 - 22 Dec 2022
Cited by 9 | Viewed by 3445
Abstract
This paper aims to detect early-stage lung tumors in deep-seated and superficial locations, and to precisely measure the size of the detected tumor using non-invasive microwave reflectometry over a super-wideband (SWB) frequency range. Human lung phantom and lung tumors are modeled using a [...] Read more.
This paper aims to detect early-stage lung tumors in deep-seated and superficial locations, and to precisely measure the size of the detected tumor using non-invasive microwave reflectometry over a super-wideband (SWB) frequency range. Human lung phantom and lung tumors are modeled using a multi-layer concentric cylinder structure and spherical-shaped inclusions, respectively. Firstly, a study on the dielectric properties of human torso tissues is carried out over an SWB frequency range of 1–25 GHz based on the Cole–Cole dispersion model. Intensive full-wave simulations of the modeled phantom under irradiation by a custom-designed SWB antenna array are then performed. Results show that small tumor sizes from 5 mm radius in both deep-seated and superficial locations of the lung tissue can be detected based on the contrast of reflection coefficients and reconstructed images produced from backscattered signals between normal and anomalous tissues. The potential of using SWB microwave reflectometry to successfully detect the lung tumors in their early stages and at different depths of the lung tissue has been demonstrated. Full article
(This article belongs to the Special Issue New Technologies for Biomedical Circuits and Systems)
Show Figures

Figure 1

16 pages, 9298 KiB  
Article
Research on Ultra-Wideband NLFM Waveform Synthesis and Grating Lobe Suppression
by Shuyi Liu, Yan Jia, Yongqing Liu and Xiangkun Zhang
Sensors 2022, 22(24), 9829; https://doi.org/10.3390/s22249829 - 14 Dec 2022
Cited by 3 | Viewed by 2464
Abstract
Ultra-wideband (UWB) nonlinear frequency modulation (NLFM) waveforms have the advantages of low sidelobes and high resolution. By extending the frequency domain wideband synthesis method to the NLFM waveform, the synthetic bandwidth will be limited, and the grating lobe will grow as the number [...] Read more.
Ultra-wideband (UWB) nonlinear frequency modulation (NLFM) waveforms have the advantages of low sidelobes and high resolution. By extending the frequency domain wideband synthesis method to the NLFM waveform, the synthetic bandwidth will be limited, and the grating lobe will grow as the number of subpulses increases at a fixed synthetic bandwidth. Aiming for the highly periodic grating lobes caused by equally spaced splicing and small subpulse time-bandwidth products (TxBW), a multisubpulse UWB NLFM waveform synthesis method is proposed in this paper. Random frequency hopping and spectral correction are utilized to disperse the energy of periodic grating lobes and optimize the matched filter of the subpulse, thereby reducing notches and Fresnel ripples in the synthesized spectrum. The results of the hardware-in-the-loop simulation experiment show that the peak sidelobe ratio (PSLR) and the integral sidelobe ratio (ISLR) of the NLFM synthetic wideband waveform (SWW) obtained by 50 subpulses with a bandwidth of 36 MHz are improved by 4.8 dBs and 4.5 dBs, respectively, when compared to the frequency domain wideband synthesis method, and that the grating lobe is suppressed by an average of 10.6 dBs. It also performs well in terms of point target resolution, and it has potential for 2D radar super-resolution imaging. Full article
(This article belongs to the Section Radar Sensors)
Show Figures

Figure 1

10 pages, 5204 KiB  
Article
Amplitude–Temporal and Spectral Characteristics of Pulsed UHF-SHF Radiation of a High-Voltage Streamer Discharge in Air under the Atmospheric Pressure
by Ilya Zudin, Mikhail Gushchin, Ivan Vershinin, Sergey Korobkov, Petr Mikryukov, Askold Strikovskiy, Andrey Nikolenko, Alexey Belov, Vladimir Syssoev, Alexander Orlov, Dmitry Sukharevsky, Maria Naumova, Yuri Kuznetsov, Nikolay Shvets and Evgeniy Basov
Energies 2022, 15(24), 9425; https://doi.org/10.3390/en15249425 - 13 Dec 2022
Cited by 8 | Viewed by 1657
Abstract
A special experimental setup with a three-electrode discharge gap was used to study the dynamic characteristics of the ultra-high- and super-high-frequency (UHF-SHF) electromagnetic radiation of a high-voltage discharge having the streamer form with reference to the dynamics of individual streamers at the nanosecond [...] Read more.
A special experimental setup with a three-electrode discharge gap was used to study the dynamic characteristics of the ultra-high- and super-high-frequency (UHF-SHF) electromagnetic radiation of a high-voltage discharge having the streamer form with reference to the dynamics of individual streamers at the nanosecond time resolution. We performed synchronous detection of the radiation waveforms using a wideband horn antenna, on the one hand, and high-speed photography of the discharge development in the discharge gap using an ICCD camera, on the other hand. It was found that the high-voltage discharge is a source of radiation in the frequency band up to 10 GHz, which is a series of individual ultrawideband (UWB) bursts having durations of less than 1 ns and leading fronts less than 100 ps long and appears when the streamers moving from the discharge anode (thin wire) meet the discharge cathode (plane). By the order of magnitude, the number of radiation bursts corresponds to the number of streamers that reach the electrode, according to the high-speed photography data. The qualitative data confirmed by simple theoretical estimations show that the sources of UWB radiation pulses are individual streamers at the moment of their contact with the electrode, and the radiation of the streamers can be regarded as transition radiation. Full article
Show Figures

Figure 1

Back to TopTop