Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (29)

Search Parameters:
Keywords = super hybrid rice

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 5200 KiB  
Article
DRFAN: A Lightweight Hybrid Attention Network for High-Fidelity Image Super-Resolution in Visual Inspection Applications
by Ze-Long Li, Bai Jiang, Liang Xu, Zhe Lu, Zi-Teng Wang, Bin Liu, Si-Ye Jia, Hong-Dan Liu and Bing Li
Algorithms 2025, 18(8), 454; https://doi.org/10.3390/a18080454 - 22 Jul 2025
Viewed by 314
Abstract
Single-image super-resolution (SISR) plays a critical role in enhancing visual quality for real-world applications, including industrial inspection and embedded vision systems. While deep learning-based approaches have made significant progress in SR, existing lightweight SR models often fail to accurately reconstruct high-frequency textures, especially [...] Read more.
Single-image super-resolution (SISR) plays a critical role in enhancing visual quality for real-world applications, including industrial inspection and embedded vision systems. While deep learning-based approaches have made significant progress in SR, existing lightweight SR models often fail to accurately reconstruct high-frequency textures, especially under complex degradation scenarios, resulting in blurry edges and structural artifacts. To address this challenge, we propose a Dense Residual Fused Attention Network (DRFAN), a novel lightweight hybrid architecture designed to enhance high-frequency texture recovery in challenging degradation conditions. Moreover, by coupling convolutional layers and attention mechanisms through gated interaction modules, the DRFAN enhances local details and global dependencies with linear computational complexity, enabling the efficient utilization of multi-level spatial information while effectively alleviating the loss of high-frequency texture details. To evaluate its effectiveness, we conducted ×4 super-resolution experiments on five public benchmarks. The DRFAN achieves the best performance among all compared lightweight models. Visual comparisons show that the DRFAN restores more accurate geometric structures, with up to +1.2 dB/+0.0281 SSIM gain over SwinIR-S on Urban100 samples. Additionally, on a domain-specific rice grain dataset, the DRFAN outperforms SwinIR-S by +0.19 dB in PSNR and +0.0015 in SSIM, restoring clearer textures and grain boundaries essential for industrial quality inspection. The proposed method provides a compelling balance between model complexity and image reconstruction fidelity, making it well-suited for deployment in resource-constrained visual systems and industrial applications. Full article
Show Figures

Figure 1

19 pages, 728 KiB  
Article
Yield Performance of Super Hybrid Rice Grown in Subtropical Environments at a Similar Latitude but Different Altitudes in Southwest China
by Peng Jiang, Dingbing Wang, Lin Zhang, Xingbing Zhou, Mao Liu, Hong Xiong, Xiaoyi Guo, Yongchuan Zhu, Changchun Guo and Fuxian Xu
Plants 2025, 14(5), 660; https://doi.org/10.3390/plants14050660 - 21 Feb 2025
Viewed by 679
Abstract
Investigating the variation in and key factors influencing the yield of super hybrid rice cultivated at different altitudes but within the same latitude provides valuable insights for further improvements in super hybrid rice grain yields. Field and pot experiments were conducted using four [...] Read more.
Investigating the variation in and key factors influencing the yield of super hybrid rice cultivated at different altitudes but within the same latitude provides valuable insights for further improvements in super hybrid rice grain yields. Field and pot experiments were conducted using four rice varieties at the following two altitudinal locations in Sichuan Province, China: Hanyuan (high, 1000 m) and Luxian (low, 300 m). The results indicated that Hanyuan achieved an average grain yield of 13.89 t ha−1 in paddy fields, with yields being from 63.6% to 94.2% higher than those at Luxian in the field experiments and from 10.8% to 68.0% higher in the pot experiments. The grain yield was consistently higher in the soil from Hanyuan compared to that from Luxian at the same sites. In the field experiments, the grain yield was influenced by location (L), plant density (P), and variety (V), but there were no significant interactions between these factors. In the pot experiments, the grain yield was significantly impacted by L, soil (S), and the interaction between L and S. Climatic factors, which varied with the altitude of the planting site, played a crucial role in achieving optimal yields of the super hybrid rice. Hanyuan exhibited more cumulative solar radiation with a longer growth duration and lower temperatures and higher soil fertility compared to Luxian. The higher grain yield observed at Hanyuan was linked to increases in panicle numbers, spikelets per panicle, grain filling, pre- and post-heading biomass production, and the harvest index. The variations in biomass production between Hanyuan and Luxian were largely due to differences in pre- and post-heading crop growth rates (CGRs) and pre-heading radiation use efficiency (RUE), which were influenced by differences in the maximum and minimum temperatures and cumulative solar radiation. This study indicated that the differences in the grain yield of super hybrid rice across various ecological sites are primarily influenced by altitude and soil fertility, and further enhancement of the grain yield can be achieved by concurrently increasing biomass production before and after heading through improvements in pre- and post-heading CGR. Full article
Show Figures

Figure 1

20 pages, 3507 KiB  
Article
One-Time Application of Polymer-Coated Urea Increased Rice Yield and Plant Nitrogen Uptake by Optimizing Root Morphological and Physiological Traits
by Junlin Zhu, Song Chen, Chunmei Xu, Yuanhui Liu, Kai Yu, Xiufu Zhang, Danying Wang and Guang Chu
Agronomy 2025, 15(2), 282; https://doi.org/10.3390/agronomy15020282 - 23 Jan 2025
Viewed by 939
Abstract
Previous studies have shown that a one-time application of polymer-coated urea (PCU) can increase rice yield and nitrogen (N) uptake. However, the connection between rice root morphology and physiological traits and grain yield and N absorption has still not been well understood. The [...] Read more.
Previous studies have shown that a one-time application of polymer-coated urea (PCU) can increase rice yield and nitrogen (N) uptake. However, the connection between rice root morphology and physiological traits and grain yield and N absorption has still not been well understood. The objective of this study was to explore whether one-time application of PCU could enhance shoot growth, improve plant physiological activity, and ultimately boost rice yield and NUE by optimizing root morphological and physiological traits. In this study, a super-large-panicle indica-japonica hybrid rice variety, Yongyou1540, was cultivated under three N treatments during 2022 and 2023: (1) 0N, throughout the entire growth period, no N fertilizer was applied; (2) LFP, local farmers’ N management practices were followed, using urea as the N source, and N fertilizer management was carried out according to the local farmers’ customary fertilization practices; and (3) PCU, a one-time application of PCU was performed at one day before transplanting. PCU is a controlled-release fertilizer in which urea granules are coated with a synthetic polymer layer; it has been widely used in rice cultivation. In both LFP and PCU treatments, N was applied at a rate of 200 kg N ha−1. PCU is a type of controlled-release fertilizer in which urea granules are coated with a layer of synthetic polymer. Compared to LFP, PCU significantly improved several root morphological traits, including increased deep-root proportion and specific root length (SRL), throughout the entire growth period; increased root length and root length density at heading and maturity; and increased root biomass growth rate from jointing to heading and reduced reduction rate after heading. Additionally, PCU enhanced root oxidative activity (ROA) and increased zeatin and zeatin riboside (Z+ZR) content in both roots and root bleeding sap at the middle and late grain-filling stages. Furthermore, PCU markedly increased the flag-leaf net photosynthetic rate, Z+ZR content in leaves, and activities of key enzymes involved in sucrose-to-starch conversion in grains during the middle and late grain-filling stages. Correlation analysis indicated that root and shoot biomass growth rate showed a significant positive correlation before heading, and that root biomass reduction rate was significantly negatively correlated with shoot biomass growth rate after heading. ROA and Z+ZR content in both roots and root bleeding sap were significantly associated with flag-leaf photosynthetic rate, Z+ZR content in leaves, and the activities of key enzymes involved in the sucrose-to-starch conversion in grains. On average, PCU increased rice yield by 10.0% and agronomic NUE by 46.2%, compared to LFP. These findings suggest that PCU could optimize root morphological and physiological traits, and thereby promote shoot growth, enhance physiological activity, and ultimately increase both rice yield and NUE. Further research could also investigate the potential for combining PCU with other agronomic practices to enhance both rice yield and NUE. Full article
(This article belongs to the Section Plant-Crop Biology and Biochemistry)
Show Figures

Figure 1

27 pages, 12855 KiB  
Article
Design and Testing of a Branched Air-Chamber Type Pneumatic Seed Metering Device for Rice
by Xiantao Zha, Lin Chen, Dongquan Chen, Yupeng He and Ranbing Yang
Agriculture 2024, 14(11), 1934; https://doi.org/10.3390/agriculture14111934 - 30 Oct 2024
Cited by 2 | Viewed by 942
Abstract
To meet the diverse seeding requirements of super hybrid rice, common hybrid rice, and conventional rice—which vary from 1 to 3 seeds, 2 to 4 seeds, and 5 to 8 seeds per hole, respectively—this study developed a branched air-chamber type pneumatic seed metering [...] Read more.
To meet the diverse seeding requirements of super hybrid rice, common hybrid rice, and conventional rice—which vary from 1 to 3 seeds, 2 to 4 seeds, and 5 to 8 seeds per hole, respectively—this study developed a branched air-chamber type pneumatic seed metering device for rice. The device utilizes an air chamber control board to manage the branched air chamber casing, enabling precise adjustments to the seeding quantity. This study presents a theoretical analysis of the seed metering device’s operation and its critical components. Structural parameter optimization was conducted using Ansys-Fluent (2021 R1) software, followed by multi-objective optimization of operational parameters through bench testing. Simulation results indicated that optimal vacuum pressure in the seed metering disc pores reached a maximum of 857 Pa with a chamber depth of 22 mm, an angle of 100°, and a cavity depth of 25 mm, achieving a minimal coefficient of variation of 0.86%. Bench test results showed that for seeding targets of 1 to 3 rice seeds per hole, the optimal operational parameters were: two openings, a working vacuum of 1355 Pa, and a rotor speed of 32.78 r/min, resulting in a missed seeding rate of 4.70%, a qualification rate of 85.81%, and a re-seeding rate of 9.49%. For targets of 2 to 4 seeds per hole, the best parameters included three openings, a working vacuum of 1357 Pa, and a speed of 32.87 r/min, with a missed seeding rate of 4.60%, a qualification rate of 85.59%, and a re-seeding rate of 9.81%. For 5 to 8 seeds per hole, optimal parameters were six openings, a vacuum of 1339 Pa, and a rotor speed of 31.07 r/min, yielding a missed seeding rate of 4.09%, a qualification rate of 87.27%, and a re-seeding rate of 8.64%. These findings demonstrate that the branched air-chamber type pneumatic seed metering device effectively meets the varied direct seeding requirements of rice, enhancing the adaptability of pneumatic seed metering devices to different seeding quantities in rice and potentially informing the design of pneumatic seeders for other crops. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

17 pages, 1263 KiB  
Article
Differences in Grain Yield and Nitrogen Uptake between Tetraploid and Diploid Rice: The Physiological Mechanisms under Field Conditions
by Jian Xiao, Zhuang Xiong, Jiada Huang, Zuolin Zhang, Detian Cai, Dongliang Xiong, Kehui Cui, Shaobing Peng and Jianliang Huang
Plants 2024, 13(20), 2884; https://doi.org/10.3390/plants13202884 - 15 Oct 2024
Viewed by 1228
Abstract
Research indicates that, owing to the enhanced grain-filling rate of tetraploid rice, its yield has notably improved compared to previous levels. Studies conducted on diploid rice have revealed that optimal planting density and fertilization rates play crucial roles in regulating rice yield. In [...] Read more.
Research indicates that, owing to the enhanced grain-filling rate of tetraploid rice, its yield has notably improved compared to previous levels. Studies conducted on diploid rice have revealed that optimal planting density and fertilization rates play crucial roles in regulating rice yield. In this study, we investigated the effects of different nitrogen application and planting density treatments on the growth, development, yield, and nitrogen utilization in tetraploid (represented by T7, an indica–japonica conventional allotetraploid rice) and diploid rice (Fengliangyou-4, represented by FLY4, a two-line super hybrid rice used as a reference variety for the approval of super rice with a good grain yield performance). The results indicated that the highest grain-filling rate of T7 could reach 77.8% under field experimental conditions due to advancements in tetraploid rice breeding. This is a significant improvement compared with the rate seen in previous research. Under the same conditions, T7 exhibited a significantly lower grain yield than FLY4, which could be attributed to its lower grain-filling rate, spikelets per panicle, panicle number m−2, and harvest index score. Nitrogen application and planting density displayed little effect on the grain yield of both genotypes. A higher planting density significantly enhanced the leaf area index and biomass accumulation, but decreased the harvest index score. Compared with T7, FLY4 exhibited a significantly higher nitrogen use efficiency (NUEg), which was mainly due to the higher nitrogen content in the straw. Increasing nitrogen application significantly decreased NUEg due to its minimal effect on grain yield combined with its significant enhancement of nitrogen uptake. Our results suggest that the yield and grain-filling rate of T7 have been improved compared with those of previously tested polyploid rice, but are still lower than those of FLY4, and the yield of tetraploid rice can be further improved by enhancing the grain-filling rate, panicle number m−2, and spikelets per panicle via genotype improvement. Full article
(This article belongs to the Special Issue Emerging Trends in Alternative and Sustainable Crop Production)
Show Figures

Figure 1

15 pages, 1968 KiB  
Article
Optimizing Nitrogen Fertilizer Management Enhances Rice Yield, Dry Matter, and Nitrogen Use Efficiency
by Xiaoe He, Haijun Zhu, Ailong Shi and Xuehua Wang
Agronomy 2024, 14(5), 919; https://doi.org/10.3390/agronomy14050919 - 27 Apr 2024
Cited by 15 | Viewed by 3885
Abstract
Optimizing nitrogen fertilizer management can effectively improve soil ecology, promote agricultural production, and increase the income of farmers and workers. Nitrogen fertilizer is an important factor in the growth and development of rice, and it is important to find out the optimal amount [...] Read more.
Optimizing nitrogen fertilizer management can effectively improve soil ecology, promote agricultural production, and increase the income of farmers and workers. Nitrogen fertilizer is an important factor in the growth and development of rice, and it is important to find out the optimal amount and frequency of fertilizer application for the super-hybrid early rice ‘Zhu LiangYou 819’ in Hunan Province, to give full play to its high quality and high yield characteristics. Various N fertilizer application frequencies (P1, basal–tiller fertilizer = 5:5; P2, basal–tiller–spike fertilizer = 4:3:3; P3, basal–tiller–spike–grain fertilizer = 4:3:2:1) and N application amounts (N1, 90 kg ha−1; N2, 150 kg ha−1; N3, 210 kg ha−1) were applied to the hybrid rice ZLY819. The results show that, under the same frequency of N application, ZLY819 had the highest yield, agronomic efficiency, and physiological utilization rate of N fertilizer with the N2 treatment, averaging 7.53 t ha−1, 18.10 kg kg−1, and 34.34%, respectively, with the yield under N2 being 19.38% higher than that under N1. For the same amount of N application, the yield, agronomic efficiency, partial factor productivity of N (PFPN), N contribution to seed, and N use efficiency (NUE) increased with an increase in the frequency of N application, mainly in the order of P3 > P2 > P1, whereby the yield of P3 was 10.11% higher than that of P1. According to the regression equation, the yield is higher when the amount of nitrogen application is 202.15 kg ha−1 and the fertilization frequency is four times. Appropriate N fertilizer management (P3N2) improved the rice growth characteristics, dry matter accumulation, crop growth rate, dry matter transport rate, dry matter contribution rate, and NUE, thus promoting an increase in the rice yield and efficient use of nitrogen. Full article
Show Figures

Figure 1

11 pages, 414 KiB  
Article
Grain Yield and Yield Attributes of Currently Popular Hybrid Rice Varieties Compared to Representative Super Hybrid Rice Varieties in Subtropical Environments
by Chengjing Liao, Shengliang Fang, Hengdong Zhang, Longsheng Liu, Jiaxin Xie, Xing Li, Fangbo Cao, Jiana Chen and Min Huang
Agronomy 2024, 14(2), 318; https://doi.org/10.3390/agronomy14020318 - 1 Feb 2024
Cited by 4 | Viewed by 2205
Abstract
Understanding the yield attributes of the popular rice (Oryza sativa L.) hybrids can provide useful information for developing new hybrid rice varieties. Field experiments were conducted at two subtropical sites (Hengyang and Xingyi) in two years (2021 and 2022) to compare grain [...] Read more.
Understanding the yield attributes of the popular rice (Oryza sativa L.) hybrids can provide useful information for developing new hybrid rice varieties. Field experiments were conducted at two subtropical sites (Hengyang and Xingyi) in two years (2021 and 2022) to compare grain yield and yield attributes of three currently popular hybrid rice varieties (Jingliangyouhuazhan, Jingliangyou 534, and Longliangyouhuazhan) with three representative super hybrid rice varieties (Y-liangyou 1, Y-liangyou 2, and Y-liangyou 900). No significant differences in grain yield were observed between the group of popular hybrids and the group of super hybrids at Hengyang and Xingyi in 2021 or at Xingyi in 2022, but at Hengyang in 2022, the group of popular hybrids produced a 15% higher grain yield. The grain yield at Hengyang in 2022 was lower than that at Hengyang and Xingyi in 2021 and at Xingyi in 2022. At Hengyang in 2022, the group of popular hybrids had 9–15% higher panicles per m2, spikelet filling percentage, and harvest index but similar spikelets per panicle and total biomass production and 12% lower grain weight compared to the group of super hybrids. Correlation plot analysis showed that grain yield was significantly related to panicles per m2 but not other yield attributes across six varieties at Hengyang in 2022. These results indicated that the currently popular hybrid rice varieties had higher yield performance than the representative super hybrid rice varieties under the condition of relatively lower productivity, and the key factor for this higher yield performance in the popular hybrids was the higher panicles per m2. This finding highlights that more attention should focus on the yield performance under medium- and low-productivity conditions in hybrid rice breeding programs, and an effective breeding strategy is to select the varieties with high panicle numbers. Full article
(This article belongs to the Section Crop Breeding and Genetics)
Show Figures

Figure 1

15 pages, 3013 KiB  
Article
Genetic Dissection of Panicle Morphology Traits in Super High-Yield Hybrid Rice Chaoyou 1000
by Jing Jiang, Li Wang, Gucheng Fan, Yu Long, Xueli Lu, Run Wang, Haiyang Liu, Xianjin Qiu, Dali Zeng and Zhixin Li
Plants 2024, 13(2), 179; https://doi.org/10.3390/plants13020179 - 9 Jan 2024
Cited by 1 | Viewed by 1405
Abstract
The morphological characteristics of the rice panicle play a pivotal role in influencing yield. In our research, we employed F2 and F2:3 populations derived from the high-yielding hybrid rice variety Chaoyou 1000. We screened 123 pairs of molecular markers, which were [...] Read more.
The morphological characteristics of the rice panicle play a pivotal role in influencing yield. In our research, we employed F2 and F2:3 populations derived from the high-yielding hybrid rice variety Chaoyou 1000. We screened 123 pairs of molecular markers, which were available, to construct the genetic linkage map. Subsequently, we assessed the panicle morphology traits of F2 populations in Lingshui County, Hainan Province, in 2017, and F2:3 populations in Hangzhou City, Zhejiang Province, in 2018. These two locations represent two types of ecology. Hangzhou’s climate is characterized by high temperatures and humidity, while Lingshui’s climate is characterized by a tropical monsoon climate. In total, 33 QTLs were identified, with eight of these being newly discovered, and two of them were consistently detected in two distinct environments. We identified fourteen QTL-by-environment interactions (QEs), which collectively explained 4.93% to 59.95% of the phenotypic variation. While most of the detected QTLs are consistent with the results of previous tests, the novel-detected QTLs will lay the foundation for rice yield increase and molecular breeding. Full article
Show Figures

Figure 1

15 pages, 2631 KiB  
Article
Delayed Leaf Senescence Improves Radiation Use Efficiency and Explains Yield Advantage of Large Panicle-Type Hybrid Rice
by Jun Deng, Tian Sheng, Xuefen Zhong, Jiayu Ye, Chunhu Wang, Liying Huang, Xiaohai Tian, Ke Liu and Yunbo Zhang
Plants 2023, 12(23), 4063; https://doi.org/10.3390/plants12234063 - 3 Dec 2023
Cited by 9 | Viewed by 1734
Abstract
Super hybrid rice with predominantly large panicle types has achieved remarkable success in enhancing crop yield. However, when compared with multi-panicle-type varieties, the yield stability of large panicle-type varieties remains a challenge, and limited information is available on the comparative advantages of multi-panicle [...] Read more.
Super hybrid rice with predominantly large panicle types has achieved remarkable success in enhancing crop yield. However, when compared with multi-panicle-type varieties, the yield stability of large panicle-type varieties remains a challenge, and limited information is available on the comparative advantages of multi-panicle types. Consequently, a two-year experiment was conducted to evaluate the grain yield, biomass production, leaf area index (LAI), and radiation use efficiency (RUE) of large panicle-type hybrid rice (Y-liangyou 900, YLY900) and multi-panicle-type hybrid rice (C-liangyouhuazhan, CLYHZ) under three nitrogen (N) treatments (0, 180, 270 kg N ha−1). The effects of increased N fertilization were more pronounced in the large panicle-type varieties. YLY900 outperformed CLYHZ in terms of average yield (6% higher), and its yield advantage was attributed to higher spikelets per panicle (28%). Due to YLY900’s RUE being 9% higher than CLYHZ, it results in a 12% greater accumulation of dry matter than CLYHZ. Furthermore, YLY900 exhibited significant improvements of 16%, 4%, and 14% in specific leaf weight, effective leaf area ratio, and LAI at 20 days after the heading stage (20DAH), respectively, compared with CLYHZ. YLY900 also demonstrated a stronger correlation between rice yield and intercepted photosynthetically active radiation (IPAR) compared with CLYHZ, with R2 values of 0.80 and 0.66, respectively. These findings highlight the superior performance of YLY900, resulting from higher light interception percentage (IP) and IPAR values, which consequently led to enhanced RUE and grain yield. Our research reveals that delayed leaf senescence by increasing LAI at the post-heading stage for large panicle-type hybrid rice, thereby contributing to greater RUE, led to higher biomass production and grain yield. Full article
Show Figures

Figure 1

13 pages, 2433 KiB  
Article
Towards Improved Grain Yield and Soil Microbial Communities of Super Hybrid Rice through Sustainable Management
by Jiayu Ye, Xuefen Zhong, Matthew Tom Harrison, Kai Kang, Tian Sheng, Cheng Shang, Chunhu Wang, Jun Deng, Liying Huang, Xiaohai Tian, Ke Liu and Yunbo Zhang
Agronomy 2023, 13(9), 2259; https://doi.org/10.3390/agronomy13092259 - 28 Aug 2023
Cited by 2 | Viewed by 1894
Abstract
Superior yields of super hybrid rice have demonstrably contributed to contemporary food security. Despite this, the extent to which intensive nitrogen fertilizer requirements of such crops have impacted on soil health and microbial communities primarily remains unchartered territory, evoking questions of sustainability. Here, [...] Read more.
Superior yields of super hybrid rice have demonstrably contributed to contemporary food security. Despite this, the extent to which intensive nitrogen fertilizer requirements of such crops have impacted on soil health and microbial communities primarily remains unchartered territory, evoking questions of sustainability. Here, we examine how four management treatments (zero fertilizer, CK; farm practice, FP; high-yield and high-efficiency, HYHE; and super-high-yield management, SHY) influenced the grain yields, soil biodiversity and community strata underpinning soil health of an elite super hybrid rice variety (Y-liangyou 900). We show that SHY treatments increased yields, altered soil physicochemical properties, and fostered greater biodiversity and soil bacteria and fungi abundance, while FP, HYHE and SHY treatments transformed community bacteria and fungi strata. Environmental regulators of bacterial and fungal communities differed widely, with bacterial communities most closely associated with soil organic carbon (SOC) and NH4+-N, and with fungal communities more related to available phosphorus. We show that alpha diversity of bacteria and fungi and community composition of fungi were positively correlated with yield, but bacterial community composition was negatively correlated with yield. Our work clearly exemplifies the nexus between appropriate farm and landscape management in enabling soil health and driving consistently high yields, of which both are required for sustainable food security. Full article
(This article belongs to the Special Issue Farming in Harmony with Nature)
Show Figures

Figure 1

16 pages, 5378 KiB  
Article
Optimizing Grain Yield and Radiation Use Efficiency through Synergistic Applications of Nitrogen and Potassium Fertilizers in Super Hybrid Rice
by Jun Deng, Jiayu Ye, Xuefen Zhong, Qingqing Yang, Matthew Tom Harrison, Chunhu Wang, Liying Huang, Xiaohai Tian, Ke Liu and Yunbo Zhang
Plants 2023, 12(15), 2858; https://doi.org/10.3390/plants12152858 - 3 Aug 2023
Cited by 5 | Viewed by 2117
Abstract
The remarkable yield performance of super hybrid rice has played a crucial role in ensuring global food security. However, there is a scarcity of studies investigating the contribution of radiation use efficiency (RUE) to hybrid rice yields under different nitrogen and potassium treatments. [...] Read more.
The remarkable yield performance of super hybrid rice has played a crucial role in ensuring global food security. However, there is a scarcity of studies investigating the contribution of radiation use efficiency (RUE) to hybrid rice yields under different nitrogen and potassium treatments. In this three-year field experiment, we aimed to evaluate the impact of two hybrid rice varieties (Y-liangyou 900: YLY900 and Quanyouhuazhan: QYHZ) under varying nitrogen regimes (N90: 90 kg N ha−1, N120: 120 kg N ha−1, N180: 180 kg N ha−1) and potassium regimes (K120: 120 kg K2O ha−1, K160: 160 kg K2O ha−1, K210: 210 kg K2O ha−1) on grain yield and its physiological determinants, including RUE, intercepted photosynthetically active radiation (IPAR), aboveground biomass production, and harvest index (HI). Our results revealed that both rice varieties exhibited significantly higher yields when coupled with nitrogen and potassium fertilization. Compared to the N90 × K120 treatment, the N120 × K160 and N180 × K210 combinations resulted in substantial increases in grain yield (12.0% and 21.1%, respectively) and RUE (11.9% and 21.4%, respectively). The YLY900 variety showed notable yield improvement due to enhanced aboveground biomass production resulting from increased IPAR and RUE. In contrast, the QYHZ variety’s aboveground biomass accumulation was primarily influenced by RUE rather than IPAR, resulting in higher RUE and grain yields of 9.2% and 5.3%, respectively, compared to YLY900. Importantly, fertilization led to significant increases in yield, biomass, and RUE, while HI remained relatively constant. Both varieties demonstrated a positive relationship between grain yield and IPAR and RUE. Multiple regression analysis indicated that increasing RUE was the primary driver of yield improvement in hybrid rice varieties. By promoting sustainable agriculture and enhancing fertilizer management, elevating nitrogen and potassium levels from a low base would synergistically enhance rice yield and RUE, emphasizing the critical importance of RUE in hybrid rice productivity compared to HI. Full article
Show Figures

Figure 1

19 pages, 4480 KiB  
Article
Evaluation of Methane Emission Reduction Potential of Water Management and Chinese Milk Vetch Planting in Hunan Paddy Rice Fields
by Zhiwei Zhang, Jianling Fan, Yunfan Wan, Jinming Wang, Yulin Liao, Yanhong Lu and Xiaobo Qin
Agronomy 2023, 13(7), 1799; https://doi.org/10.3390/agronomy13071799 - 5 Jul 2023
Cited by 4 | Viewed by 2722
Abstract
In order to explore the methane reduction potential with two scenarios of water management and Chinese Milk Vetch return, we calculated the methane emissions of Hunan Province rice fields in 2019 using the SECTOR tool based on Excel and released by the International [...] Read more.
In order to explore the methane reduction potential with two scenarios of water management and Chinese Milk Vetch return, we calculated the methane emissions of Hunan Province rice fields in 2019 using the SECTOR tool based on Excel and released by the International Rice Research Institute. Thus, we preliminarily established an agricultural carbon emissions monitoring, reporting, and verification (MRV) system. The results showed that: (1) There was significant spatial variation in methane emissions in Hunan rice fields, with higher emissions in both the south and north and lower emissions in the east and west. Late rice was the main contributor to methane emissions, and the cities of Changde, Hengyang, Yueyang, and Shaoyang were high-emission areas due to differences in rice planting types and areas. Compared with flooding (1275.75 Gg), optimized water management measures (mid-drainage and AWD irrigation) reduced methane emissions by 29~45% (905.79 and 701.66 Gg, respectively). (2) Under the same nitrogen input conditions, compared with a solely straw return (375.24 Gg), combining green manure with straw return could partially reduce methane emissions from Hunan super hybrid rice (327.63 Gg). Compared with the control fertilizers (404.28 Gg), the reduction rates of winter-planted Chinese Milk Vetch, the return of rice straw, and the incorporation of both Chinese Milk Vetch and straw were 7.19%, 13.01%, and 18.96%, respectively. Based on scientific accounting tools, a preliminary MRV system for rice field carbon emissions was established. Under the national demand for reducing fertilizer use and increasing efficiency, equal nitrogen organic amendments could effectively contribute to the development of green, low-carbon, and high-quality agriculture. Full article
Show Figures

Figure 1

13 pages, 2642 KiB  
Case Report
Genetic Analysis for the Flag Leaf Heterosis of a Super-Hybrid Rice WFYT025 Combination Using RNA-Seq
by Qin Cheng, Shiying Huang, Lan Lin, Qi Zhong, Tao Huang, Haohua He and Jianmin Bian
Plants 2023, 12(13), 2496; https://doi.org/10.3390/plants12132496 - 29 Jun 2023
Cited by 2 | Viewed by 1968
Abstract
The photosynthetic capacity of flag leaf plays a key role in grain yield in rice. Nevertheless, there are few studies on the heterosis of the rice flag leaf. Therefore, this study focuses on investigating the genetic basis of heterosis for flag leaf in [...] Read more.
The photosynthetic capacity of flag leaf plays a key role in grain yield in rice. Nevertheless, there are few studies on the heterosis of the rice flag leaf. Therefore, this study focuses on investigating the genetic basis of heterosis for flag leaf in the indica super hybrid rice combination WFYT025 in China using a high-throughput next-generation RNA-seq strategy. We analyzed the gene expression of flag leaf in different environments and different time periods between WFYT025 and its female parent. After obtaining the gene expression profile of the flag leaf, we further investigated the gene regulatory network. Weighted gene expression network analysis (WGCNA) was used to identify the co-expressed gene sets, and a total of 5000 highly expressed genes were divided into 24 co-expression groups. In CHT025, we found 13 WRKY family transcription factors in SDGhps under the environment of early rice and 16 WRKY family genes in SDGhps of under the environment of middle rice. We found nine identical transcription factors in the two stages. Except for five reported TFs, the other four TFs might play an important role in heterosis for grain number and photosynthesis. Transcription factors such as WRKY3, WRKY68, and WRKY77 were found in both environments. To eliminate the influence of the environment, we examined the metabolic pathway with the same SDGhp (SSDGhp) in two environments. There were 312 SSDGhps in total. These SSDGhps mainly focused on the phosphorus metallic process, phosphorylation, plasma membrane, etc. These results provide resources for studying heterosis during super hybrid rice flag leaf development. Full article
(This article belongs to the Special Issue Genetic Basis of Yield and Yield Stability in Major Crops)
Show Figures

Figure 1

19 pages, 5301 KiB  
Article
Compressive Strength Prediction of Rice Husk Ash Concrete Using a Hybrid Artificial Neural Network Model
by Chuanqi Li, Xiancheng Mei, Daniel Dias, Zhen Cui and Jian Zhou
Materials 2023, 16(8), 3135; https://doi.org/10.3390/ma16083135 - 16 Apr 2023
Cited by 14 | Viewed by 3037
Abstract
The combination of rice husk ash and common concrete both reduces carbon dioxide emission and solves the problem of agricultural waste disposal. However, the measurement of the compressive strength of rice husk ash concrete has become a new challenge. This paper proposes a [...] Read more.
The combination of rice husk ash and common concrete both reduces carbon dioxide emission and solves the problem of agricultural waste disposal. However, the measurement of the compressive strength of rice husk ash concrete has become a new challenge. This paper proposes a novel hybrid artificial neural network model, optimized using a reptile search algorithm with circle mapping, to predict the compressive strength of RHA concrete. A total of 192 concrete data with 6 input parameters (age, cement, rice husk ash, super plasticizer, aggregate, and water) were utilized to train proposed model and compare its predictive performance with that of five other models. Four statistical indices were adopted to evaluate the predictive performance of all the developed models. The performance evaluation indicates that the proposed hybrid artificial neural network model achieved the most satisfactory prediction accuracy regarding R2 (0.9709), VAF (97.0911%), RMSE (3.4489), and MAE (2.6451). The proposed model also had better predictive accuracy than that of previously developed models on the same data. The sensitivity results show that age is the most important parameter for predicting the compressive strength of RHA concrete. Full article
(This article belongs to the Special Issue Green and Sustainable Infrastructure Construction Materials)
Show Figures

Figure 1

18 pages, 36533 KiB  
Article
Source–Sink Balance Optimization Depends on Soil Nitrogen Condition So as to Increase Rice Yield and N Use Efficiency
by Xiaoxiao Li, Yongjin Zhou, Peng Shuai, Xinyu Wang, Shaobing Peng and Fei Wang
Agronomy 2023, 13(3), 907; https://doi.org/10.3390/agronomy13030907 - 18 Mar 2023
Cited by 5 | Viewed by 2686
Abstract
Genetic improvement has been devoted to increasing rice yield by increasing the spikelet number per panicle and the spikelet/leaf ratio. As a result, indica-japonica hybrid rice “Yongyou” varieties with large panicles and superhigh yield potential have been developed. These varieties exhibit significantly higher [...] Read more.
Genetic improvement has been devoted to increasing rice yield by increasing the spikelet number per panicle and the spikelet/leaf ratio. As a result, indica-japonica hybrid rice “Yongyou” varieties with large panicles and superhigh yield potential have been developed. These varieties exhibit significantly higher grain yield and nitrogen use efficiency for grain (NUEg) under moderate and high N supply conditions due to their large sink size, but their yield performance remains obscure under low N input and low soil fertility conditions. In the present study, we investigated four varieties including Yongyou2640 (YY2640, large-panicle india-japonica hybrid variety), Yangliangyou6 (YLY6, two-line indica hybrid variety), Quanyou6 (QY6, three-line indica hybrid variety), and Huanghuazhan (HHZ, indica inbred variety) under two low soil fertility treatments [LF (removing half of soil depth) and CK] and two N fertilizer rates (0 and 100 kg N ha−1) in Central China. The results showed that the grain yield of YY2640 was more responsive to fertility than that of other varieties, which was 19.4–42.3% higher than that of the other three varieties under CK N100 treatment, but it was 14.5–19.4% lower than that of YLY6 and QY6 under LF N0 and LF N100. A higher spikelet/leaf ratio resulted in more biomass and N partition to panicles rather than to leaves under LF N0 and N100. Slightly more post-flowering dry matter obtained from higher leaf N content and crop growth rate failed to compensate for the adverse effects of reduced pre-flowering dry matter accumulation and stem-to-grain translocation during grain filling. This led to the lower NUEg of YY2640 than YLY6 and QY6 under low soil fertility conditions. Based on these findings, the present study suggested that the source–sink relationship of the super hybrid varieties should be optimized according to the soil N supply condition. Full article
Show Figures

Figure 1

Back to TopTop