Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = sum of the van der Waals radii concept

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
61 pages, 14169 KB  
Review
The Pnictogen Bond, Together with Other Non-Covalent Interactions, in the Rational Design of One-, Two- and Three-Dimensional Organic-Inorganic Hybrid Metal Halide Perovskite Semiconducting Materials, and Beyond
by Arpita Varadwaj, Pradeep R. Varadwaj, Helder M. Marques and Koichi Yamashita
Int. J. Mol. Sci. 2022, 23(15), 8816; https://doi.org/10.3390/ijms23158816 - 8 Aug 2022
Cited by 28 | Viewed by 4948
Abstract
The pnictogen bond, a somewhat overlooked supramolecular chemical synthon known since the middle of the last century, is one of the promising types of non-covalent interactions yet to be fully understood by recognizing and exploiting its properties for the rational design of novel [...] Read more.
The pnictogen bond, a somewhat overlooked supramolecular chemical synthon known since the middle of the last century, is one of the promising types of non-covalent interactions yet to be fully understood by recognizing and exploiting its properties for the rational design of novel functional materials. Its bonding modes, energy profiles, vibrational structures and charge density topologies, among others, have yet to be comprehensively delineated, both theoretically and experimentally. In this overview, attention is largely centered on the nature of nitrogen-centered pnictogen bonds found in organic-inorganic hybrid metal halide perovskites and closely related structures deposited in the Cambridge Structural Database (CSD) and the Inorganic Chemistry Structural Database (ICSD). Focusing on well-characterized structures, it is shown that it is not merely charge-assisted hydrogen bonds that stabilize the inorganic frameworks, as widely assumed and well-documented, but simultaneously nitrogen-centered pnictogen bonding, and, depending on the atomic constituents of the organic cation, other non-covalent interactions such as halogen bonding and/or tetrel bonding, are also contributors to the stabilizing of a variety of materials in the solid state. We have shown that competition between pnictogen bonding and other interactions plays an important role in determining the tilting of the MX6 (X = a halogen) octahedra of metal halide perovskites in one, two and three-dimensions. The pnictogen interactions are identified to be directional even in zero-dimensional crystals, a structural feature in many engineered ordered materials; hence an interplay between them and other non-covalent interactions drives the structure and the functional properties of perovskite materials and enabling their application in, for example, photovoltaics and optoelectronics. We have demonstrated that nitrogen in ammonium and its derivatives in many chemical systems acts as a pnictogen bond donor and contributes to conferring stability, and hence functionality, to crystalline perovskite systems. The significance of these non-covalent interactions should not be overlooked, especially when the focus is centered on the rationale design and discovery of such highly-valued materials. Full article
(This article belongs to the Collection Feature Papers in 'Physical Chemistry and Chemical Physics')
Show Figures

Figure 1

53 pages, 11369 KB  
Viewpoint
The Pnictogen Bond: The Covalently Bound Arsenic Atom in Molecular Entities in Crystals as a Pnictogen Bond Donor
by Arpita Varadwaj, Pradeep R. Varadwaj, Helder M. Marques and Koichi Yamashita
Molecules 2022, 27(11), 3421; https://doi.org/10.3390/molecules27113421 - 25 May 2022
Cited by 21 | Viewed by 5280
Abstract
In chemical systems, the arsenic-centered pnictogen bond, or simply the arsenic bond, occurs when there is evidence of a net attractive interaction between the electrophilic region associated with a covalently or coordinately bound arsenic atom in a molecular entity and a nucleophile in [...] Read more.
In chemical systems, the arsenic-centered pnictogen bond, or simply the arsenic bond, occurs when there is evidence of a net attractive interaction between the electrophilic region associated with a covalently or coordinately bound arsenic atom in a molecular entity and a nucleophile in another or the same molecular entity. It is the third member of the family of pnictogen bonds formed by the third atom of the pnictogen family, Group 15 of the periodic table, and is an inter- or intramolecular noncovalent interaction. In this overview, we present several illustrative crystal structures deposited into the Cambridge Structure Database (CSD) and the Inorganic Chemistry Structural Database (ICSD) during the last and current centuries to demonstrate that the arsenic atom in molecular entities has a significant ability to act as an electrophilic agent to make an attractive engagement with nucleophiles when in close vicinity, thereby forming σ-hole or π-hole interactions, and hence driving (in part, at least) the overall stability of the system’s crystalline phase. This overview does not include results from theoretical simulations reported by others as none of them address the signatory details of As-centered pnictogen bonds. Rather, we aimed at highlighting the interaction modes of arsenic-centered σ- and π-holes in the rationale design of crystal lattices to demonstrate that such interactions are abundant in crystalline materials, but care has to be taken to identify them as is usually done with the much more widely known noncovalent interactions in chemical systems, halogen bonding and hydrogen bonding. We also demonstrate that As-centered pnictogen bonds are usually accompanied by other primary and secondary interactions, which reinforce their occurrence and strength in most of the crystal structures illustrated. A statistical analysis of structures deposited into the CSD was performed for each interaction type As···D (D = N, O, S, Se, Te, F, Cl, Br, I, arene’s π system), thus providing insight into the typical nature of As···D interaction distances and ∠R–As···D bond angles of these interactions in crystals, where R is the remainder of the molecular entity. Full article
(This article belongs to the Section Physical Chemistry)
Show Figures

Figure 1

52 pages, 19052 KB  
Review
The Stibium Bond or the Antimony-Centered Pnictogen Bond: The Covalently Bound Antimony Atom in Molecular Entities in Crystal Lattices as a Pnictogen Bond Donor
by Arpita Varadwaj, Pradeep R. Varadwaj, Helder M. Marques and Koichi Yamashita
Int. J. Mol. Sci. 2022, 23(9), 4674; https://doi.org/10.3390/ijms23094674 - 23 Apr 2022
Cited by 21 | Viewed by 4300
Abstract
A stibium bond, i.e., a non-covalent interaction formed by covalently or coordinately bound antimony, occurs in chemical systems when there is evidence of a net attractive interaction between the electrophilic region associated with an antimony atom and a nucleophile in another, or the [...] Read more.
A stibium bond, i.e., a non-covalent interaction formed by covalently or coordinately bound antimony, occurs in chemical systems when there is evidence of a net attractive interaction between the electrophilic region associated with an antimony atom and a nucleophile in another, or the same molecular entity. This is a pnictogen bond and are likely formed by the elements of the pnictogen family, Group 15, of the periodic table, and is an inter- or intra-molecular non-covalent interaction. This overview describes a set of illustrative crystal systems that were stabilized (at least partially) by means of stibium bonds, together with other non-covalent interactions (such as hydrogen bonds and halogen bonds), retrieved from either the Cambridge Structure Database (CSD) or the Inorganic Crystal Structure Database (ICSD). We demonstrate that these databases contain hundreds of crystal structures of various dimensions in which covalently or coordinately bound antimony atoms in molecular entities feature positive sites that productively interact with various Lewis bases containing O, N, F, Cl, Br, and I atoms in the same or different molecular entities, leading to the formation of stibium bonds, and hence, being partially responsible for the stability of the crystals. The geometric features, pro-molecular charge density isosurface topologies, and extrema of the molecular electrostatic potential model were collectively examined in some instances to illustrate the presence of Sb-centered pnictogen bonding in the representative crystal systems considered. Full article
(This article belongs to the Collection Feature Papers in 'Physical Chemistry and Chemical Physics')
Show Figures

Figure 1

31 pages, 7242 KB  
Review
The Nitrogen Bond, or the Nitrogen-Centered Pnictogen Bond: The Covalently Bound Nitrogen Atom in Molecular Entities and Crystals as a Pnictogen Bond Donor
by Pradeep R. Varadwaj, Arpita Varadwaj, Helder M. Marques and Koichi Yamashita
Compounds 2022, 2(1), 80-110; https://doi.org/10.3390/compounds2010007 - 15 Mar 2022
Cited by 32 | Viewed by 7922
Abstract
The nitrogen bond in chemical systems occurs when there is evidence of a net attractive interaction between the electrophilic region associated with a covalently or coordinately bound nitrogen atom in a molecular entity and a nucleophile in another, or the same molecular entity. [...] Read more.
The nitrogen bond in chemical systems occurs when there is evidence of a net attractive interaction between the electrophilic region associated with a covalently or coordinately bound nitrogen atom in a molecular entity and a nucleophile in another, or the same molecular entity. It is the first member of the family of pnictogen bonds formed by the first atom of the pnictogen family, Group 15, of the periodic table, and is an inter- or intra-molecular non-covalent interaction. In this featured review, we present several illustrative crystal structures deposited in the Cambridge Structure Database (CSD) and the Inorganic Crystal Structure Databases (ICSD) to demonstrate that imide nitrogen is not the only instance where nitrogen can act as an electrophilic agent. Analysis of a set of carefully chosen illustrative crystal systems shows that a covalently bound nitrogen atom in a variety of molecular entities features a σ-hole or even a π-hole, and these have the ability to sustain attractive engagements with negative sites to form inter- and/or intramolecular interactions that drive, or assist, the formation of a crystalline phase. Full article
(This article belongs to the Special Issue Feature Papers in Compounds)
Show Figures

Figure 1

27 pages, 13983 KB  
Review
The Phosphorus Bond, or the Phosphorus-Centered Pnictogen Bond: The Covalently Bound Phosphorus Atom in Molecular Entities and Crystals as a Pnictogen Bond Donor
by Pradeep R. Varadwaj, Arpita Varadwaj, Helder M. Marques and Koichi Yamashita
Molecules 2022, 27(5), 1487; https://doi.org/10.3390/molecules27051487 - 23 Feb 2022
Cited by 30 | Viewed by 5573
Abstract
The phosphorus bond in chemical systems, which is an inter- or intramolecular noncovalent interaction, occurs when there is evidence of a net attractive interaction between an electrophilic region associated with a covalently or coordinately bonded phosphorus atom in a molecular entity and a [...] Read more.
The phosphorus bond in chemical systems, which is an inter- or intramolecular noncovalent interaction, occurs when there is evidence of a net attractive interaction between an electrophilic region associated with a covalently or coordinately bonded phosphorus atom in a molecular entity and a nucleophile in another, or the same, molecular entity. It is the second member of the family of pnictogen bonds, formed by the second member of the pnictogen family of the periodic table. In this overview, we provide the reader with a snapshot of the nature, and possible occurrences, of phosphorus-centered pnictogen bonding in illustrative chemical crystal systems drawn from the ICSD (Inorganic Crystal Structure Database) and CSD (Cambridge Structural Database) databases, some of which date back to the latter part of the last century. The illustrative systems discussed are expected to assist as a guide to researchers in rationalizing phosphorus-centered pnictogen bonding in the rational design of molecular complexes, crystals, and materials and their subsequent characterization. Full article
(This article belongs to the Special Issue Intermolecular Interactions in Crystal Lattice)
Show Figures

Figure 1

63 pages, 14258 KB  
Review
Halogen Bonding: A Halogen-Centered Noncovalent Interaction Yet to Be Understood
by Pradeep R. Varadwaj, Arpita Varadwaj and Helder M. Marques
Inorganics 2019, 7(3), 40; https://doi.org/10.3390/inorganics7030040 - 12 Mar 2019
Cited by 145 | Viewed by 12596
Abstract
In addition to the underlying basic concepts and early recognition of halogen bonding, this paper reviews the conflicting views that consistently appear in the area of noncovalent interactions and the ability of covalently bonded halogen atoms in molecules to participate in noncovalent interactions [...] Read more.
In addition to the underlying basic concepts and early recognition of halogen bonding, this paper reviews the conflicting views that consistently appear in the area of noncovalent interactions and the ability of covalently bonded halogen atoms in molecules to participate in noncovalent interactions that contribute to packing in the solid-state. It may be relatively straightforward to identify Type-II halogen bonding between atoms using the conceptual framework of σ-hole theory, especially when the interaction is linear and is formed between the axial positive region (σ-hole) on the halogen in one monomer and a negative site on a second interacting monomer. A σ-hole is an electron density deficient region on the halogen atom X opposite to the R–X covalent bond, where R is the remainder part of the molecule. However, it is not trivial to do so when secondary interactions are involved as the directionality of the interaction is significantly affected. We show, by providing some specific examples, that halogen bonds do not always follow the strict Type-II topology, and the occurrence of Type-I and -III halogen-centered contacts in crystals is very difficult to predict. In many instances, Type-I halogen-centered contacts appear simultaneously with Type-II halogen bonds. We employed the Independent Gradient Model, a recently proposed electron density approach for probing strong and weak interactions in molecular domains, to show that this is a very useful tool in unraveling the chemistry of halogen-assisted noncovalent interactions, especially in the weak bonding regime. Wherever possible, we have attempted to connect some of these results with those reported previously. Though useful for studying interactions of reasonable strength, IUPAC’s proposed “less than the sum of the van der Waals radii” criterion should not always be assumed as a necessary and sufficient feature to reveal weakly bound interactions, since in many crystals the attractive interaction happens to occur between the midpoint of a bond, or the junction region, and a positive or negative site. Full article
(This article belongs to the Special Issue Halogen Bonding: Fundamentals and Applications)
Show Figures

Graphical abstract

Back to TopTop