Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (89)

Search Parameters:
Keywords = sulfur distribution ratio

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2851 KiB  
Article
Enhanced Degradation of Phenol in Aqueous Solution via Persulfate Activation by Sulfur-Doped Biochar: Insights into Catalytic Mechanisms and Structural Properties
by Guanyu Wang, Lihong Kou, Chenghao Li, Bing Xu and Yuanfeng Wu
Nanomaterials 2025, 15(13), 979; https://doi.org/10.3390/nano15130979 - 24 Jun 2025
Viewed by 319
Abstract
In this study, sulfur-doped biochar (SBC) was successfully synthesized using peanut shells as the raw material and sulfur powder as the sulfur source. The composition, structural characteristics, and catalytic performance of SBC in the degradation of phenol via persulfate (PDS) activation were systematically [...] Read more.
In this study, sulfur-doped biochar (SBC) was successfully synthesized using peanut shells as the raw material and sulfur powder as the sulfur source. The composition, structural characteristics, and catalytic performance of SBC in the degradation of phenol via persulfate (PDS) activation were systematically investigated. Characterization results demonstrate that the prepared SBC exhibited a typical lamellar structure with abundant pores and fissures on its surface. XPS analysis confirmed the successful incorporation of sulfur into the biochar matrix, primarily in the form of thiophene. Under the optimized condition of a 20% sulfur doping ratio, the SBC exhibited high efficiency in activating PDS, achieving a phenol degradation rate of 97%. Remarkably, the removal rate remained at 81% even after the fifth cycle, indicating excellent cyclic stability. Density functional theory (DFT) calculations and electrochemical impedance spectroscopy (EIS) measurements further revealed that sulfur doping significantly modified the electron density distribution of the biochar, reducing its surface electrochemical impedance from 32.88 Ω to 13.64 Ω. This reduction facilitated efficient electron transfer during the catalytic process. This study provides both experimental and theoretical insights into the charge distribution characteristics of sulfur-doped biochar, offering valuable references for understanding the mechanism of PDS activation by SBC. Full article
Show Figures

Graphical abstract

17 pages, 1042 KiB  
Article
Experimental and Theoretical Study of the Synthesis of a Deep Eutectic Solvent Based on Protonated Caffeine, Ethylene Glycol, and ZnCl2
by Laura Sofía Benavides-Maya, Manuel Felipe Torres-Perdomo, Luz M. Ocampo-Carmona and Luver Echeverry-Vargas
Molecules 2025, 30(7), 1557; https://doi.org/10.3390/molecules30071557 - 31 Mar 2025
Cited by 1 | Viewed by 934
Abstract
In this study, a deep eutectic solvent (DES) incorporating protonated caffeine (CafCl), ethylene glycol (EG), and zinc chloride (ZnCl2) was synthesized and characterized for the first time. Caffeine was protonated using an optimized procedure in an anhydrous medium to enhance [...] Read more.
In this study, a deep eutectic solvent (DES) incorporating protonated caffeine (CafCl), ethylene glycol (EG), and zinc chloride (ZnCl2) was synthesized and characterized for the first time. Caffeine was protonated using an optimized procedure in an anhydrous medium to enhance its interaction with the system, and its structure was confirmed by FTIR spectroscopy, NMR, and thermogravimetric analysis (TGA), evidencing the formation of the N-H bond in the imidazole ring. A eutectic mixture with a molar ratio of ETG:ZnCl2:CafCl of 1:2:0.1 was synthesized, and its characterization confirmed the formation of hydrogen bonds and the coordinative interaction between the components. Additionally, computational simulations based on COSMO-RS and ab initio molecular dynamics (AIMD) were conducted to analyze the charge distribution and the stability of the hydrogen bond network in the eutectic mixture. Sigma profiles revealed that protonated caffeine possesses highly polar regions capable of establishing strong interactions with EG and ZnCl2, enhancing the system’s stability. Furthermore, radial distribution functions (RDFs) showed a decrease in the interaction distance between key atoms after incorporating protonated caffeine. The results suggest that this novel DES has promising potential for industrial applications, especially in the extraction of sulfur compounds from fossil fuels due to the activation of the imidazole ring of caffeine. However, further studies are needed to optimize its operating conditions and evaluate its performance on an industrial scale. Full article
Show Figures

Figure 1

16 pages, 20714 KiB  
Article
Physicochemical Characteristics of Individual Indoor Airborne Particles in the High Lung Cancer Rate Area in Xuanwei, China
by Ying Hu, Longyi Shao, Kelly BéruBé, Ningping Wang, Cong Hou, Jingsen Fan and Tim Jones
Atmosphere 2025, 16(2), 187; https://doi.org/10.3390/atmos16020187 - 6 Feb 2025
Viewed by 635
Abstract
Emissions from domestic coal burning are generally recognized as the cause of the lung cancer epidemic in Xuanwei City, Yunnan Province, China. To examine the physicochemical characteristics of airborne particles emitted from burning this locally sourced coal, PM2.5 samples were collected from [...] Read more.
Emissions from domestic coal burning are generally recognized as the cause of the lung cancer epidemic in Xuanwei City, Yunnan Province, China. To examine the physicochemical characteristics of airborne particles emitted from burning this locally sourced coal, PM2.5 samples were collected from Hutou village which has high levels of lung cancer, and Xize village located approximately 30 km from Hutou without lung cancer cases. Transmission Electron Microscopy-Energy Dispersive X-ray (TEM-EDX) analysis was employed to study the physiochemical features and chemistry of individual particles. Sulfur and silica are the most abundant elements found in the airborne particles in both of the two villages. Fewer elements in aerosol particles were found in Xize village compared with Hutou village. Based on the morphologies and chemical compositions, the particles in Xuanwei can be classified into five types including composite particles (38.6%); organic, soot, tar balls, and biologicals (28.3%); sulfate (14.1%); fly ash (9.8%); and minerals (9.2%). The particles in Hutou village are abundant in the size range of 0.4–0.8 μm while that in Xize is 0.7–0.8 μm. Composite particles are the most common types in all the size ranges. The percentage of composite particles shows two peaks in the small size range (0.1–0.2 μm) and the large size ranges (2–2.3 μm) in Hutou village while that shows an even distribution in all size ranges in Xize village. Core-shell particles are typical types of composite particles, with the solid ‘core’ consisting of materials such as fly ash or mineral grains, and the shell or surface layer being an adhering soluble compound such as sulfates or organics. The heterogeneous reactions of particles with acidic liquid layers produce the core-shell structures. Typically, the equivalent diameter of the core-shell particles is in the range of 0.5–2.5 μm, averaging 1.6 μm, and the core-shell ratio is usually between 0.4 and 0.8, with an average of 0.6. Regardless of the sizes of the particles, the relatively high core-shell ratios imply a less aging state, which suggests that the core-shell particles were relatively recently formed. Once the coal-burning particles are inhaled into the human deep lung, they can cause damage to lung cells and harm to human health. Full article
(This article belongs to the Special Issue Sources Influencing Air Pollution and Their Control)
Show Figures

Figure 1

24 pages, 22130 KiB  
Article
Interpreting the Complexity of Sulfur, Carbon, and Oxygen Isotopes from Sulfides and Carbonates in a Precious Metal Epithermal Field: Insights from the Permian Drake Epithermal Au-Ag Field of Northern New South Wales, Australia
by Hongyan Quan, Ian Graham, Rohan Worland, Lewis Adler, Christian Dietz, Emmanuel Madayag, Huixin Wang and David French
Minerals 2025, 15(2), 134; https://doi.org/10.3390/min15020134 - 29 Jan 2025
Cited by 1 | Viewed by 977
Abstract
The Drake Goldfield, also known as Mount Carrington, is located in north-eastern New South Wales, Australia. It contains a number of low–intermediate-sulfidation epithermal precious metal deposits with a current total resource of 724.51 metric tons of Ag and 10.95 metric tons of Au. [...] Read more.
The Drake Goldfield, also known as Mount Carrington, is located in north-eastern New South Wales, Australia. It contains a number of low–intermediate-sulfidation epithermal precious metal deposits with a current total resource of 724.51 metric tons of Ag and 10.95 metric tons of Au. These deposits occur exclusively within the Drake Volcanics, a 60 × 20 km NW-SE trending sequence of Late Permian volcanics and related epiclastics. Drilling of the Copper Deeps geochemical anomaly suggests that the volcanics are over 600 m thick. The Drake Volcanics are centered upon a geophysical anomaly called “the Drake Quiet Zone” (DQZ), interpreted to be a collapsed volcanic caldera structure. A total of 105 fresh carbonate samples were micro-drilled from diamond drillcores from across the field and at various depths. A pXRD analysis of these carbonates identified five types as follows: ankerite, calcite, dolomite, magnesite, and siderite. Except for three outlier values (i.e., −21.32, −19.48, and 1.42‰), the δ13CVPDB generally ranges from−15.06 to −5.00‰, which is less variable compared to the δ18OVSMOW, which varies from −0.92 to 17.94‰. μ-XRF was used to analyze the elemental distribution, which indicated both syngenetic/epigenetic relationships between calcite and magnesite. In addition, a total of 53 sulfide samples (primarily sphalerite and pyrite) from diamond drillcores from across the Drake Goldfield were micro-drilled for S isotope analysis. Overall, these have a wide range in δ34SCDT values from −16.54 to 2.10‰. The carbon and oxygen isotope results indicate that the fluids responsible for the precipitation of carbonates from across the Drake Goldfield had complex origins, involving extensive mixing of hydrothermal fluids from several sources including those of magmatic origin, meteoric fluids and fluids associated with low-temperature alteration processes. Sulfur isotope ratios of sulfide minerals indicate that although the sulfur was most likely derived from at least two different sources; magmatic sulfur was the dominant source while sedimentary-derived sulfur was more significant for the deposits distal from the DQZ, with the relative importance of each varying from one deposit to another. Our findings contribute to a greater understanding of Au-Ag formation in epithermal environments, particularly in collapsed calderas, enhancing exploration strategies and models for ore deposition. Full article
Show Figures

Figure 1

16 pages, 6705 KiB  
Article
Investigation of Gallium(III) Complexes with Thiouracil Derivatives: Effects of pH on Coordination and Stability
by Monika Skrobanska, Michał Zabiszak, Anita M. Grześkiewicz, Malgorzata T. Kaczmarek and Renata Jastrzab
Int. J. Mol. Sci. 2024, 25(23), 12869; https://doi.org/10.3390/ijms252312869 - 29 Nov 2024
Viewed by 977
Abstract
This study explores the formation and properties of new complexes involving gallium(III) and thiouracil derivatives—2-thiouracil (TU), 6-methyl-2-thiouracil (MTU), 6-propyl-2-thiouracil (PTU), 5-carboxy-2-thiouracil (CTU), and 6-methoxymethyl-2-thiouracil (MMTU). Conducted in aqueous solutions at relatively low concentrations, this research enabled the formation of soluble complexes, identified and [...] Read more.
This study explores the formation and properties of new complexes involving gallium(III) and thiouracil derivatives—2-thiouracil (TU), 6-methyl-2-thiouracil (MTU), 6-propyl-2-thiouracil (PTU), 5-carboxy-2-thiouracil (CTU), and 6-methoxymethyl-2-thiouracil (MMTU). Conducted in aqueous solutions at relatively low concentrations, this research enabled the formation of soluble complexes, identified and described here for the first time. The influence of metal-to-ligand ratios on species distribution and their fluorescence properties was examined through potentiometric titration, alongside visible and fluorescence spectroscopy. Stability constants were determined, revealing that coordination mode and complex stability are pH-dependent, and nitrogen, sulfur, and oxygen atoms are involved in higher pH coordination. Additionally, the structure of the ligand 6-methoxymethyl-2-thiouracil was characterized. The findings suggest that these complexes hold potential for future biomedical applications, particularly as antibacterial and anticancer agents, warranting further studies under physiological conditions. Full article
(This article belongs to the Special Issue Novel Metal Complexes for Biomedical Applications)
Show Figures

Figure 1

17 pages, 1954 KiB  
Article
Modeling the Production Process of Lignin Nanoparticles Through Anti-Solvent Precipitation for Properties Prediction
by Victor Girard, Laurent Marchal-Heussler, Hubert Chapuis, Nicolas Brosse, Nadia Canilho and Isabelle Ziegler-Devin
Nanomaterials 2024, 14(22), 1786; https://doi.org/10.3390/nano14221786 - 6 Nov 2024
Cited by 2 | Viewed by 2383
Abstract
Global warming has recently intensified research interest in renewable polymer chemistry, with significant attention directed towards lignin nanoparticle (LNP) synthesis. Despite progress, LNP industrial application faces challenges: (1) reliance on kraft lignin from declining raw biomass processes, (2) sulfur-rich and condensed lignin use, [...] Read more.
Global warming has recently intensified research interest in renewable polymer chemistry, with significant attention directed towards lignin nanoparticle (LNP) synthesis. Despite progress, LNP industrial application faces challenges: (1) reliance on kraft lignin from declining raw biomass processes, (2) sulfur-rich and condensed lignin use, (3) complex lignin macroparticles to LNP conversion, using harmful and toxic solvents, and, above all, (4) lack of control over the LNP production process (i.e., anti-solvent precipitation parameters), resulting in excessive variability in properties. In this work, eco-friendly LNPs with tailored properties were produced from a semi-industrial organosolv process by studying anti-solvent precipitation variables. Using first a parametric and then a Fractional Factorial Design, predictions of LNP sizes and size distribution, as well as zeta-potential, were derived from a model over beech by-products organosolv lignin, depending on initial lignin concentration (x1, g/L), solvent flow rate (x2, mL/min), antisolvent composition (x3, H2O/EtOH v/v), antisolvent ratio (x4, solvent/antisolvent v/v), and antisolvent stirring speed (x5, rpm). This novel chemical engineering approach holds promise for overcoming the challenges inherent in industrial lignin nanoparticle production, thereby accelerating the valorization of lignin biopolymers for high value-added applications such as cosmetics (sunscreen or emulsion) and medicine (encapsulation, nanocarriers), a process currently constrained by significant limitations. Full article
(This article belongs to the Special Issue Morphological Design and Synthesis of Nanoparticles (Second Edition))
Show Figures

Figure 1

11 pages, 5682 KiB  
Article
The Gypsum Influence on the Formation of Secondary Phases During Autoclave Leaching of Gold-Bearing Concentrates and the Silver Recovery Using Cyanidation
by Kirill Karimov, Denis Rogozhnikov, Ilia Fomenko, Alexander Zavalyuev, Maksim Tretiak and Oleg Dizer
Materials 2024, 17(21), 5245; https://doi.org/10.3390/ma17215245 - 28 Oct 2024
Viewed by 816
Abstract
Autoclave leaching of sulfide concentrates may produce various ferric secondary phases, depending on the arsenic content and temperature. Silver is converted to argentojarosite, from which it is not recoverable by standard cyanidation methods. To increase silver recovery, it is necessary to reduce the [...] Read more.
Autoclave leaching of sulfide concentrates may produce various ferric secondary phases, depending on the arsenic content and temperature. Silver is converted to argentojarosite, from which it is not recoverable by standard cyanidation methods. To increase silver recovery, it is necessary to reduce the argentojarosite formation during autoclave leaching. This study was devoted to the influence of gypsum on the formation of secondary phases of ferric arsenate and the subsequent recovery of gold and silver by cyanidation. The addition of gypsum at a consumption of 0.1 g/g(concentrate) helped to increase silver extraction from 13.4 to 98% at cyanidation. Gold recovery was 99%. An increase in gypsum consumption contributed to the ferric arsenate sulfate formation with an increased sulfate sulfur content, and a decrease in the As/S(sulfate) molar ratio in the cake from 3.7 to 0.88 contributed to an increase in silver extraction at cyanidation of up to 98%. Basic ferric sulfate is not formed in this case, since according to EDS mapping, the distribution of arsenic and sulfur over ferric-containing particles is uniform. According to TCLP, stable, sparingly soluble ferric arsenate phases are formed and the cake obtained after cyanidation is stable and suitable for disposal, since the final arsenic concentration in the solution was 0.45 mg/dm3. Full article
Show Figures

Figure 1

15 pages, 2285 KiB  
Article
Efficient Impurity Removal from Model FCC Fuel in Millireactors Using Deep Eutectic Solvents
by Anamarija Mitar, Jasna Prlić Kardum and Marija Lukić
ChemEngineering 2024, 8(5), 102; https://doi.org/10.3390/chemengineering8050102 - 9 Oct 2024
Viewed by 1288
Abstract
The goal of strict fuel quality regulations is to decrease the levels of sulfur, nitrogen, and aromatic chemicals in gasoline, thereby enhancing environmental safety. Due to the high costs of hydrodenitrification and hydrodesulfurization, many studies are looking for alternative fuel-purifying processes. The straightforward [...] Read more.
The goal of strict fuel quality regulations is to decrease the levels of sulfur, nitrogen, and aromatic chemicals in gasoline, thereby enhancing environmental safety. Due to the high costs of hydrodenitrification and hydrodesulfurization, many studies are looking for alternative fuel-purifying processes. The straightforward extraction approach using deep eutectic solvents (DESs) has proven to result in the removal of impurities and the enhancement of gasoline quality. Seven DESs were employed in a batch extraction process to purify the model fuel. The TbabFa-0 solvent was chosen for extraction in millireactors with different lengths, volume flows, and solvent ratios. In the millireactor, a slug regime and a laminar flow pattern were established for every process condition. For the chosen process conditions, the diffusion coefficient, volumetric mass transfer coefficient, and distribution ratio were determined. Better separation of all three key components was achieved during extraction in a millireactor using TbabFa-0. The efficiency of extraction with regenerated solvent was lowered by a maximum of 8%, showing the possibility of performing extraction in a millireactor with solvent recirculation. Full article
(This article belongs to the Collection Green and Environmentally Sustainable Chemical Processes)
Show Figures

Figure 1

25 pages, 4865 KiB  
Article
Spatial Analysis of Air Pollutants in an Industrial City Using GIS-Based Techniques: A Case Study of Pavlodar, Kazakhstan
by Ruslan Safarov, Zhanat Shomanova, Yuriy Nossenko, Eldar Kopishev, Zhuldyz Bexeitova and Ruslan Kamatov
Sustainability 2024, 16(17), 7834; https://doi.org/10.3390/su16177834 - 9 Sep 2024
Cited by 5 | Viewed by 4389
Abstract
The given research employs high-resolution air quality monitoring and contemporary statistical methods to address gaps in understanding the urban air pollution in Pavlodar, a city with a significant industrial presence and promising touristic potential. Using mobile air quality sensors for detailed spatial data [...] Read more.
The given research employs high-resolution air quality monitoring and contemporary statistical methods to address gaps in understanding the urban air pollution in Pavlodar, a city with a significant industrial presence and promising touristic potential. Using mobile air quality sensors for detailed spatial data collection, the research aims to quantify concentrations of particulate matter (PM2.5, PM10), carbon monoxide (CO), nitrogen dioxide (NO2), sulfur dioxide (SO2), and ground-level ozone (O3); assess their distribution; and identify key influencing factors. In this study, we employed Geographic Information Systems (GISs) for spatial analysis, integrating multi-level B-spline interpolation to model spatial variability. Correlation analysis and structural equation modeling were utilized to explore the relationships between variables, while regression analysis was conducted to quantify these relationships. These techniques were crucial for accurately mapping and interpreting spatial patterns and their underlying factors. The study identifies PM2.5 and NO2 as the primary contributors to air pollution in Pavlodar, with NO2 exceeding the 24 h threshold in 87.38% of locations and PM2.5 showing the highest individual air quality index (AQI) in 75.7% of cases. Correlation analysis reveals a positive association between PM2.5 and AQI and a negative correlation between NO2 and AQI, likely due to the dominant influence of PM2.5 in AQI calculations. Structural equation modeling (SEM) further underscores PM2.5 as the most significant impactor on AQI, while NO2 shows no significant direct impact. Humidity is positively correlated with AQI, though this relationship is context-specific to seasonal patterns observed in May. The sectoral analysis of landscape indices reveals weak correlations between the green space ratio (GSR) and air quality, indicating that while vegetation reduces pollutants, its impact is minimal due to urban planting density. The road ratio (RR) lacks sufficient statistical evidence to draw conclusions about its effect on air quality, possibly due to the methodology used. Spatial variability in pollutant concentrations is evident, with increasing PM2.5, PM10, and AQI towards the east-northeast, likely influenced by industrial activities and prevailing wind patterns. In contrast, NO2 pollution does not show a clear geographic pattern, indicating vehicular emissions as its primary source. Spatial interpolation highlights pollution hotspots near industrial zones, posing health risks to vulnerable populations. While the city’s overall AQI is considered “moderate”, the study highlights the necessity of implementing measures to improve air quality in Pavlodar. This will not only enhance the city’s attractiveness to tourists but also support its sustainable development as an industrial center. Full article
(This article belongs to the Special Issue Infrastructure, Transport and Logistics for Sustainability in Tourism)
Show Figures

Figure 1

11 pages, 4043 KiB  
Article
Characterizing Normal Upper Extremity Lymphatic Flow with 99mTc In-House Dextran: A Retrospective Study
by Wiroj Katiyarangsan, Putthiporn Charoenphun, Krisanat Chuamsaamarkkee, Suchawadee Musikarat, Kidakorn Kiranantawat, Chaninart Sakulpisuti, Kanungnij Thamnirat, Arpakorn Kositwattanarerk, Chanika Sritara and Wichana Chamroonrat
Diagnostics 2024, 14(17), 1960; https://doi.org/10.3390/diagnostics14171960 - 5 Sep 2024
Viewed by 1943
Abstract
Lymphoscintigraphy evaluates the lymphatic system using radiocolloid compounds like 99mTc-sulfur colloid and 99mTc-nanocolloid, which vary in particle size and distribution timing. A local in-house Dextran kit (15–40 nm) was developed in 2005 and began clinical use in 2008 to localize sentinel [...] Read more.
Lymphoscintigraphy evaluates the lymphatic system using radiocolloid compounds like 99mTc-sulfur colloid and 99mTc-nanocolloid, which vary in particle size and distribution timing. A local in-house Dextran kit (15–40 nm) was developed in 2005 and began clinical use in 2008 to localize sentinel lymph nodes; diagnose lymphedema; and detect lymphatic leakage. The normal drainage pattern remains unexplored. We retrospectively analyzed 84 upper extremity lymphoscintigraphies from 2008 to 2021. 99mTc in-house Dextran was intradermally injected into both hands, followed by whole-body imaging at specified intervals (≤15 min; 16–30 min; 31–45 min; 46–60 min), with some receiving delayed imaging. Visual and quantitative analyses recorded axillary and forearm lymph nodes and liver, kidney, and urinary bladder activity. Results showed 92% (77/84) upper extremity lymphatic tract visualization within 45 min. Axillary node detection rates increased from 46% (≤15 min) to 86% (46–60 min). Delayed imaging further revealed nodes. Epitrochlear or brachial node visualization was rare (4%, 3/84). Hepatic, renal, and urinary bladder activity was noted in 54%, 71%, and 93% at 1 h, respectively. The axillary node uptake ratio was minimal (<2.5% of injection site activity; median 0.33%). This study characterizes normal upper extremity lymphatic drainage using 99mTc in-house Dextran, offering insights into its clinical application Full article
(This article belongs to the Special Issue Research Update on Nuclear Medicine)
Show Figures

Figure 1

14 pages, 14341 KiB  
Article
Sulfidation of Smithsonite via Microwave Roasting under Low-Temperature Conditions
by Jiawei Kang, Shubiao Yin, Mingxiao Li, Xingzhi Zhang, Xujie Wen, Hanping Zhang, Qi Nie and Ting Lei
Minerals 2024, 14(9), 855; https://doi.org/10.3390/min14090855 - 23 Aug 2024
Cited by 1 | Viewed by 965
Abstract
This study employs microwave roasting to decompose smithsonite mineral (zinc carbonate) into zinc oxide, which then reacts with pyrite to sulfurize its surface, forming zinc sulfide. This process is beneficial for the flotation recovery of zinc oxide minerals. The surface sulfidation behavior of [...] Read more.
This study employs microwave roasting to decompose smithsonite mineral (zinc carbonate) into zinc oxide, which then reacts with pyrite to sulfurize its surface, forming zinc sulfide. This process is beneficial for the flotation recovery of zinc oxide minerals. The surface sulfidation behavior of smithsonite under low-temperature microwave roasting conditions is examined through X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and thermodynamic calculations. XRD and thermodynamic analysis indicate that smithsonite completely decomposes into zinc oxide at 400 °C. Introducing a small amount of pyrite as a sulfidizing reagent leads to the formation of sulfides on the surface of decomposed smithsonite. XPS analysis confirms that the sulfide formed on the surface is zinc sulfide. SEM analysis reveals that sulfides are distributed on the surface of smithsonite, and the average sulfur concentration increases with the pyrite dosage. Microwave-assisted sulfurization of smithsonite (ZnCO3) was found to significantly enhance its floatability compared to conventional sulfurization methods. The optimal mass ratio of ZnCO3 to FeS2 is approximately 1:1.5, with the best temperature being 400 °C. These findings provide a technical solution for the application of microwave roasting in the efficient recovery of smithsonite through flotation. Full article
(This article belongs to the Section Mineral Processing and Extractive Metallurgy)
Show Figures

Figure 1

15 pages, 1246 KiB  
Article
Biodiesel Production from Waste Frying Oil (WFO) Using a Biomass Ash-Based Catalyst
by Benjamín Nahuelcura, María Eugenia González, Nicolas Gutierrez, Jaime Ñanculeo and Juan Miguel Romero-García
Catalysts 2024, 14(8), 553; https://doi.org/10.3390/catal14080553 - 22 Aug 2024
Cited by 4 | Viewed by 2031
Abstract
Biodiesel, an eco-friendly alternative to conventional fossil fuels, offers reduced emissions like carbon dioxide, sulfur oxides, and soot. This study explores biodiesel production from a blend of waste oils using a novel biomass-based catalyst derived from the bottom ash of a biomass boiler. [...] Read more.
Biodiesel, an eco-friendly alternative to conventional fossil fuels, offers reduced emissions like carbon dioxide, sulfur oxides, and soot. This study explores biodiesel production from a blend of waste oils using a novel biomass-based catalyst derived from the bottom ash of a biomass boiler. Catalyst synthesis involved wet impregnation, a unique approach using previously unreported bottom ash. Characterization via SEM-EDS, BET, FTIR, and XRD revealed its composition and structure. Optimization of biodiesel production involved assessing alcohol molar ratio, catalyst concentration, and reaction time, achieving a maximum FAME concentration of 95% under specific conditions. Blending residual palm oil with waste frying oil enhanced biodiesel properties, demonstrating a maximum FAME concentration at specific catalyst concentration (8%), molar ratio (1:10), and reaction time (2 h). Catalyst reusability, up to three cycles without significant yield variation, showcased its sustainability. The catalyst, primarily composed of calcium, a characteristic biomass bottom ash component, exhibited mesoporous features. Impregnation with eggshells not only altered composition but also ensured a uniform particle size distribution. FTIR and XRD analyses indicated calcium in hydroxide and crystallized forms. Effective catalyst separation methods included decanting or water washing, with optimal biodiesel purity achieved through 3% phosphoric acid washing at 60 °C. Various recovery methods were assessed, highlighting hexane washing as the most efficient, enabling up to three catalyst reuse cycles without substantial efficiency loss. Full article
Show Figures

Graphical abstract

11 pages, 1551 KiB  
Article
Classification Method of Heavy Oil Based on Chemical Composition and Bulk Properties
by Weilai Zhang, Jianxun Wu, Shuofan Li, Yahe Zhang, Suoqi Zhao and Quan Shi
Energies 2024, 17(15), 3733; https://doi.org/10.3390/en17153733 - 29 Jul 2024
Viewed by 1558
Abstract
Heavy oil resources in the world are extremely abundant, and viscosity is currently the main reference index for heavy oil classification. However, the diversification of practical issues in heavy oil exploitation, and the refinement of processing and utilization urgently require the support of [...] Read more.
Heavy oil resources in the world are extremely abundant, and viscosity is currently the main reference index for heavy oil classification. However, the diversification of practical issues in heavy oil exploitation, and the refinement of processing and utilization urgently require the support of heavy oil classification with more reference indexes. In this study, the macroscopic properties of typical heavy oils in China were analyzed, and the semi-quantitative analysis of the molecular composition of different heavy oils was completed based on high-resolution mass spectrometry. The results show that heavy oils with similar viscosities can exhibit huge differences in macroscopic properties and chemical composition. According to the evaluation of the chemical composition and macroscopic properties of typical Chinese heavy oils, 12 types of compounds belonging to saturates, aromatics, resins, and asphaltenes (SARA) were identified, establishing a connection between the macroscopic fractions and molecular compositions of heavy oils. By summarizing the comparative results, a new classification criterion for heavy oils was established, focusing on the main parameters of H/C ratio and total acid number (TAN), with sulfur content as a supplementary indicator. H/C is the embodiment of the degree of molecular condensation in the macroscopic properties, reflecting the structural characteristics of the main molecules of the heavy oil. Chinese heavy oil is generally characterized by high TAN, which corresponds to the composition of petroleum acids, and it is also an important reference index for the exploitation and processing of heavy oils. Most Chinese heavy oils have a very low sulfur content, but the presence of sulfur compounds in high-sulfur heavy oils can lead to significant differences in the distribution of compound types among the SARA. This new classification method for heavy oil combines the characteristics of chemical composition of heavy oils, which is expected to provide valuable support for the extraction and processing of heavy oil. Full article
Show Figures

Figure 1

33 pages, 3852 KiB  
Review
Chromite Composition and Platinum-Group Elements Distribution in Tethyan Chromitites of the Mediterranean Basin: An Overview
by Federica Zaccarini, Maria Economou-Eliopoulos, Basilios Tsikouras and Giorgio Garuti
Minerals 2024, 14(8), 744; https://doi.org/10.3390/min14080744 - 24 Jul 2024
Cited by 1 | Viewed by 1855
Abstract
This study provides a comprehensive literature review of the distribution, the platinum- group elements (PGE) composition, and mineral chemistry of chromitites associated with Mesozoic Tethyan ophiolites in the Mediterranean Basin. These suites outcrop in the northern Italian Apennines, the Balkans, Turkey, and Cyprus. [...] Read more.
This study provides a comprehensive literature review of the distribution, the platinum- group elements (PGE) composition, and mineral chemistry of chromitites associated with Mesozoic Tethyan ophiolites in the Mediterranean Basin. These suites outcrop in the northern Italian Apennines, the Balkans, Turkey, and Cyprus. Most chromitites occur in depleted mantle tectonites, with fewer found in the mantle-transition zone (MTZ) and supra-Moho cumulates. Based on their Cr# = (Cr/(Cr + Al)) values, chromitites are primarily classified as high-Cr, with a subordinate presence of high-Al chromitites. Occasionally, high-Al and high-Cr chromitites co-exist within the same ophiolite complex. High-Cr chromitites are formed in supra-subduction zone (SSZ) environments, where depleted mantle interacts with high-Mg boninitic melts. Conversely, high-Al chromitites are typically associated with extensional tectonic regimes and more fertile peridotites. The co-existence of high-Al and high-Cr chromitites within the same ophiolite is attributed to tectonic movements and separate magma intrusions from variably depleted mantle sources, such as mid-ocean ridge basalts (MORB) and back-arc basin basalts. These chromitites formed in different geodynamic settings during the transition of the oceanic lithosphere from a mid-ocean ridge (MOR) to a supra-subduction zone (SSZ) regime or, alternatively, within an SSZ during the differentiation of a single boninitic magma batch. Distinct bimodal distribution and vertical zoning were observed: high-Cr chromitites formed in the deep mantle, while Al-rich counterparts formed at shallower depths near the MTZ. Only a few of the aforementioned chromitites, particularly the high-Cr ones, are enriched in the refractory IPGE (iridium-group PGE: Os, Ir, Ru) relative to PPGE (palladium-group PGE: Rh, Pt, Pd), with an average PPGE/IPGE ratio of 0.66, resulting in well-defined negative slopes in PGE patterns. The IPGE enrichment is attributed to their compatible geochemical behavior during significant degrees of partial melting (up to 30%) of the host mantle. It is suggested that the boninitic melt, which crystallized the high-Cr chromitites, was enriched in IPGE during melt-rock reactions with the mantle source, thus enriching the chromitites in IPGE as well. High-Al chromitites generally exhibit high PPGE/IPGE ratios, up to 3.14, and strongly fractionated chondrite-normalized PGE patterns with positive slopes and significant enrichments in Pt and Pd. The PPGE enrichment in high-Al chromitites is attributed to the lower degree of partial melting of their mantle source and crystallization from a MOR-type melt, which contains fewer IPGE than the boninitic melt above. High-Al chromitites forming at higher stratigraphic levels in the host ophiolite likely derive from progressively evolving parental magma. Thus, the PPGE enrichment in high-Al chromitites is attributed to crystal fractionation processes that consumed part of the IPGE during the early precipitation of co-existing high-Cr chromitites in the deep mantle. Only a few high-Al chromitites show PPGE enrichment due to local sulfur saturation and the potential formation of an immiscible sulfide liquid, which could concentrate the remaining PPGE in the ore-forming system. Full article
Show Figures

Figure 1

22 pages, 4005 KiB  
Article
Assessing PM2.5 Dynamics and Source Contributions in Southwestern China: Insights from Winter Haze Analysis
by Hui Guan, Ziyun Chen, Jing Tian and Huayun Xiao
Atmosphere 2024, 15(7), 855; https://doi.org/10.3390/atmos15070855 - 19 Jul 2024
Cited by 3 | Viewed by 1243
Abstract
Despite enhancements in pollution control measures in southwestern China, detailed assessments of PM2.5 dynamics following the implementation of the Clean Air Action remain limited. This study explores the PM2.5 concentrations and their chemical compositions during the winter haze period of 2017 [...] Read more.
Despite enhancements in pollution control measures in southwestern China, detailed assessments of PM2.5 dynamics following the implementation of the Clean Air Action remain limited. This study explores the PM2.5 concentrations and their chemical compositions during the winter haze period of 2017 across four major urban centers—Chengdu, Chongqing, Guiyang, and Kunming. Significant variability in mean PM2.5 concentrations was observed: Chengdu (71.8 μg m−3) and Chongqing (53.3 μg m−3) recorded the highest levels, substantially exceeding national air quality standards, while Guiyang and Kunming reported lower concentrations, suggestive of comparatively milder pollution. The analysis revealed that sulfate, nitrate, and ammonium (collectively referred to as SNA) constituted a substantial portion of the PM2.5 mass—47.2% in Chengdu, 62.2% in Chongqing, 59.9% in Guiyang, and 32.0% in Kunming—highlighting the critical role of secondary aerosol formation. The ratio of NO3/SO42− and nitrogen oxidation ratio to sulfur oxidation ratio (NOR/SOR) indicate a significant transformation of NO2 under conditions of heavy pollution, with nitrate formation playing an increasingly central role in the haze dynamics, particularly in Chengdu and Chongqing. Utilizing PMF for source apportionment, in Chengdu, vehicle emissions were the predominant contributor, accounting for 33.1%. Chongqing showed a similar profile, with secondary aerosols constituting 36%, followed closely by vehicle emissions. In contrast, Guiyang’s PM2.5 burden was heavily influenced by coal combustion, which contributed 46.3%, reflecting the city’s strong industrial base. Kunming presented a more balanced source distribution. Back trajectory analysis further confirmed the regional transport of pollutants, illustrating the complex interplay between local and distant sources. These insights underscore the need for tailored, region-specific air quality management strategies in southwestern China, thereby enhancing our understanding of the multifaceted sources and dynamics of PM2.5 pollution amidst ongoing urban and industrial development. Full article
(This article belongs to the Special Issue Air Pollution in China (3rd Edition))
Show Figures

Figure 1

Back to TopTop