Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (8)

Search Parameters:
Keywords = subchondral bone microarchitecture

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2779 KB  
Article
Osteochondral Alterations in Patients Treated with Total Knee Arthroplasty Due to Rheumatoid Arthritis and Primary Osteoarthritis: Cross-Sectional Study with Focus on Elucidating Effects of Knee Malalignment
by Andreja Baljozovic, Aleksa Lekovic, Slobodan Nikolic, Danijela Djonic, Marija Djuric, Zoran Bascarevic and Jelena Jadzic
Life 2025, 15(5), 818; https://doi.org/10.3390/life15050818 - 20 May 2025
Cited by 1 | Viewed by 604
Abstract
Micro-computed tomography assessment of osteochondral microstructural properties of the distal femur and proximal tibia was comprehensively conducted to compare adult patients with knee rheumatoid arthritis (RA) and primary knee osteoarthritis (KOA), with special focus on the effects of knee malalignment. This study encompassed [...] Read more.
Micro-computed tomography assessment of osteochondral microstructural properties of the distal femur and proximal tibia was comprehensively conducted to compare adult patients with knee rheumatoid arthritis (RA) and primary knee osteoarthritis (KOA), with special focus on the effects of knee malalignment. This study encompassed 402 bone samples divided into three groups: the RA group [patients who were subjected to total knee arthroplasty (TKA) due to RA, n = 23, age: 61 ± 10 years], the KOA group [individuals subjected to TKA due to KOA, n = 24, age: 71 ± 9 years] and the control group [sex-matched cadavers without degenerative knee diseases, n = 20, age: 67 ± 11 years]. Our data revealed that the RA, KOA, and control groups differ significantly in osteochondral microstructural properties depending on the knee alignment. Specifically, increasing femoral and tibial cortical porosity, coupled with thinner articular cartilage, were noted in the RA and KOA groups, compared to the controls. Furthermore, larger femoral and tibial cortical pores, lower tibial and femoral subchondral trabecular bone fraction, and thinner tibial articular cartilage were noted in the RA group in comparison to the KOA group, implying that the medial-to-lateral load distribution in the knee joint could be most affected in these patients. Our data illustrated that the thinnest cartilage, a thicker and less porous cortex, along with lower trabecular bone volume, were present in the lateral femoral and tibial condyles of RA individuals with valgus knee alignment. Observed subchondral trabecular microarchitectural alterations could be morphological factors contributing to different effects of surgical treatment and variable implant stability in individuals with RA, warranting further research. Full article
(This article belongs to the Special Issue Reconstruction of Bone Defects)
Show Figures

Graphical abstract

14 pages, 2484 KB  
Article
A Nutritional Supplement Containing Curcumin C3 Complex, Glucosamine, and Chondroitin Alleviates Osteoarthritis in Mice and Canines
by Enpei Zheng, Ting Cen, Ye Ma, Ziyuan Weng, Chuanheng Jiang, Luxi Hou, Jun Leng and Changmin Hu
Vet. Sci. 2025, 12(5), 462; https://doi.org/10.3390/vetsci12050462 - 12 May 2025
Viewed by 2206
Abstract
Osteoarthritis (OA) is a chronically progressive degenerative arthropathy characterized by the loss of cartilage, changes in subchondral architecture, and ongoing inflammation resulting in reduced mobility and pain. This study assessed the treatment potential of a combination of chondroitin and glucosamine enriched with Curcumin [...] Read more.
Osteoarthritis (OA) is a chronically progressive degenerative arthropathy characterized by the loss of cartilage, changes in subchondral architecture, and ongoing inflammation resulting in reduced mobility and pain. This study assessed the treatment potential of a combination of chondroitin and glucosamine enriched with Curcumin C3 Complex (C3GC) in modulating the pathophysiological features in mouse models with surgically induced OA and in dogs with naturally occurring OA. A cohort of 24 male C57BL/6 mice aged 3 months old were surgically destabilized with medial meniscus (DMM) to cause osteoarthritis. These animals underwent a nutritional intervention with C3GC or with GC over a course of 8 weeks. In order to evaluate cartilage health and subchondral bone structure, we carried out a combination of behavioral tests, micro-computed tomography (micro-CT), and histopathological examinations. In addition, a cohort of 12 OA-diagnosed retired police dogs were administered C3GC supplements or conventional care over a course of 30 days, with pain measurement and serum concentrations of MMP-3 and TNF-α determined before and after treatment. According to our findings, the administration of C3GC was determined to preserve subchondral microarchitectural structure integrity (p < 0.05) and resulted in better motor function in comparison with GC. In animals taking nutritional supplements, the OARSI scores of joint tissue sections were reduced, with the medial tibial plateau OARSI score being particularly low in the C3GC group (p < 0.0001). In dogs, treatment with C3GC resulted in a 24.5% reduction in serum MMP-3 levels (p < 0.01), and there was also a 20.8% decrease in serum TNF-α levels (p < 0.05), along with a decrease in subjective pain assessment. The results are in support of the chondroprotective, anti-inflammatory, and analgesic properties of C3GC and justify future research on the potential utility of C3GC in treating osteoarthritis. Full article
(This article belongs to the Special Issue Advanced Therapy in Companion Animals)
Show Figures

Figure 1

15 pages, 14092 KB  
Article
Effect of Moderate Exercise on the Superficial Zone of Articular Cartilage in Age-Related Osteoarthritis
by Yukun Yin, Yuanyu Zhang, Li Guo, Pengcui Li, Dongming Wang, Lingan Huang, Xiaoqin Zhao, Gaige Wu, Lu Li and Xiaochun Wei
Diagnostics 2023, 13(20), 3193; https://doi.org/10.3390/diagnostics13203193 - 12 Oct 2023
Cited by 4 | Viewed by 2642
Abstract
This study aimed to evaluate the effect of exercise on the superficial zone of the osteoarticular cartilage during osteoarthritis progression. Three-month-old, nine-month-old, and eighteen-month-old Sprague Dawley rats were randomly divided into two groups, moderate exercise and no exercise, for 10 weeks. Histological staining, [...] Read more.
This study aimed to evaluate the effect of exercise on the superficial zone of the osteoarticular cartilage during osteoarthritis progression. Three-month-old, nine-month-old, and eighteen-month-old Sprague Dawley rats were randomly divided into two groups, moderate exercise and no exercise, for 10 weeks. Histological staining, immunostaining, and nanoindentation measurements were conducted to detect changes in the superficial zone. X-ray and micro-CT were quantitated to detect alterations in the microarchitecture of the tibial subchondral bone. Cells were extracted from the superficial zone of the cartilage under fluid-flow shear stress conditions to further verify changes in vitro. The number of cells and proteoglycan content in the superficial zone increased more in the exercise group than in the control group. Exercise can change the content and distribution of collagen types I and III in the superficial layer. In addition, TGFβ/pSmad2/3 and Prg4 expression levels increased under the intervention of exercise on the superficial zone. Exercise can improve the Young’s modulus of the cartilage and reduce the abnormal subchondral bone remodeling which occurs after superficial zone changes. Moderate exercise delays the degeneration of the articular cartilage by its effect on the superficial zone, and the TGFβ/pSmad2/3 signaling pathways and Prg4 play an important role. Full article
(This article belongs to the Section Pathology and Molecular Diagnostics)
Show Figures

Figure 1

17 pages, 2504 KB  
Review
Subchondral Bone Cyst Development in Osteoarthritis: From Pathophysiology to Bone Microarchitecture Changes and Clinical Implementations
by Angelos Kaspiris, Argyris C. Hadjimichael, Ioanna Lianou, Ilias D. Iliopoulos, Dimitrios Ntourantonis, Dimitra Melissaridou, Olga D. Savvidou, Evangelia Papadimitriou and Efstathios Chronopoulos
J. Clin. Med. 2023, 12(3), 815; https://doi.org/10.3390/jcm12030815 - 19 Jan 2023
Cited by 17 | Viewed by 8936
Abstract
Osteoarthritis is a degenerative joint disease affecting middle-aged and elderly patients. It mainly involves weight-bearing joints such as the hip, knee and spine as well as the basilar joint of the thumb, causing dysfunction and painful symptoms. Often, joint arthritis is accompanied by [...] Read more.
Osteoarthritis is a degenerative joint disease affecting middle-aged and elderly patients. It mainly involves weight-bearing joints such as the hip, knee and spine as well as the basilar joint of the thumb, causing dysfunction and painful symptoms. Often, joint arthritis is accompanied by cartilage defects, joint space narrowing, osteophytes, bone sclerosis and subchondral bone cysts (SBC). The aim of the present study was to explore the pathophysiology responsible for the development of SBCs as well as the association between SBCs and disease progress, the level of clinical symptoms and their impact on postoperative outcomes and risk of possible complications following joint replacements if left untreated. A literature review on PubMed articles was conducted to retrieve and evaluate all available evidence related to the main objective mentioned above. A few theories have been put forth to explain the formation process of SBCs. These involve MMPs secretion, angiogenesis, and enhanced bone turnover as a biological response to abnormal mechanical loads causing repeated injuries on cartilage and subchondral tissue during the development of arthritis. However, the application of novel therapeutics, celecoxib-coated microspheres, local administration of IGF-1 and activated chondrocytes following surgical debridement of SBCs hinders the expansion of SBCs and prevents the progression of osteoarthritis. Full article
(This article belongs to the Special Issue Osteoarthritis: Diagnosis and Therapeutic Approaches)
Show Figures

Figure 1

21 pages, 2761 KB  
Article
Ontogenetic Patterning of Human Subchondral Bone Microarchitecture in the Proximal Tibia
by Jesse R. Goliath, James H. Gosman, Sam D. Stout and Timothy M. Ryan
Biology 2022, 11(7), 1002; https://doi.org/10.3390/biology11071002 - 1 Jul 2022
Cited by 8 | Viewed by 3429
Abstract
High-resolution computed tomography images were acquired for 31 proximal human tibiae, age 8 to 37.5 years, from Norris Farms #36 cemetery site (A.D. 1300). Morphometric analysis of subchondral cortical and trabecular bone architecture was performed between and within the tibial condyles. Kruskal–Wallis and [...] Read more.
High-resolution computed tomography images were acquired for 31 proximal human tibiae, age 8 to 37.5 years, from Norris Farms #36 cemetery site (A.D. 1300). Morphometric analysis of subchondral cortical and trabecular bone architecture was performed between and within the tibial condyles. Kruskal–Wallis and Wilcoxon signed-rank tests were used to examine the association between region, age, body mass, and each morphometric parameter. The findings indicate that age-related changes in mechanical loading have varied effects on subchondral bone morphology. With age, trabecular microstructure increased in bone volume fraction (p = 0.033) and degree of anisotropy (p = 0.012), and decreased in connectivity density (p = 0.001). In the subchondral cortical plate, there was an increase in thickness (p < 0.001). When comparing condylar regions, only degree of anisotropy differed (p = 0.004) between the medial and lateral condyles. Trabeculae in the medial condyle were more anisotropic than in the lateral region. This research represents an innovative approach to quantifying both cortical and trabecular subchondral bone microarchitecture in archaeological remains. Full article
Show Figures

Figure 1

15 pages, 2690 KB  
Article
Subchondral Bone Microarchitectural and Mineral Properties and Expression of Key Degradative Proteinases by Chondrocytes in Human Hip Osteoarthritis
by Yunfei Li, Yulia Liem, Zaitunnatakhin Zamli, Niall Sullivan, Enrico Dall’Ara, Haroon Ahmed, Grace Matilda Sellers, Ashley Blom and Mohammed Sharif
Biomedicines 2021, 9(11), 1593; https://doi.org/10.3390/biomedicines9111593 - 1 Nov 2021
Cited by 1 | Viewed by 2387
Abstract
Background: The purpose of this study was to investigate the relationship between the expression of key degradative enzymes by chondrocytes and the microarchitectural and mineral properties of subchondral bone across different stages of cartilage degradation in human hip osteoarthritis (OA). Methods: Osteochondral samples [...] Read more.
Background: The purpose of this study was to investigate the relationship between the expression of key degradative enzymes by chondrocytes and the microarchitectural and mineral properties of subchondral bone across different stages of cartilage degradation in human hip osteoarthritis (OA). Methods: Osteochondral samples at different stages of cartilage degradation were collected from 16 femoral heads with OA. Osteochondral samples with normal cartilage were collected from seven femoral heads with osteoporosis. Microcomputed tomography was used for the investigation of subchondral bone microarchitecture and mineral densities. Immunohistochemistry was used to study the expression and distribution of MMP13 and ADAMTS4 in cartilage. Results: The microarchitecture and mineral properties of the subchondral plate and trabecular bone in OA varied with the severity of the degradation of the overlying cartilage. Chondrocytes expressing MMP13 and ADAMTS4 are mainly located in the upper zone(s) of cartilage regardless of the histopathological grades. The zonal expression of these enzymes in OA (i.e., the percentage of positive cells in the superficial, middle, and deep zones), rather than their overall expression (the percentage of positive cells in the full thickness of the cartilage), exhibited significant variation in relation to the severity of cartilage degradation. The associations between the subchondral bone properties and zonal and overall expression of these enzymes in the cartilage were generally weak or nonsignificant. Conclusions: Phenotypic changes in chondrocytes and remodelling of subchondral bone proceed at different rates throughout the process of cartilage degradation. Biological influences are more important for cartilage degradation at early stages, while biomechanical damage to the compromised tissue may outrun the phenotypic change of chondrocytes and is critical in the advanced stages. Full article
(This article belongs to the Section Molecular and Translational Medicine)
Show Figures

Figure 1

15 pages, 4152 KB  
Article
Mg-BGNs/DCECM Composite Scaffold for Cartilage Regeneration: A Preliminary In Vitro Study
by Zhiguo Yuan, Zhuocheng Lyu, Xin Liu, Jue Zhang and You Wang
Pharmaceutics 2021, 13(10), 1550; https://doi.org/10.3390/pharmaceutics13101550 - 24 Sep 2021
Cited by 17 | Viewed by 3012
Abstract
Cartilage lesions can lead to progressive cartilage degeneration; moreover, they involve the subchondral bone, resulting in osteoarthritis (OA) onset and progression. Bioactive glasses, with the dual function of supporting both bone and cartilage regeneration, have become a promising biomaterial for cartilage/bone engineering applications. [...] Read more.
Cartilage lesions can lead to progressive cartilage degeneration; moreover, they involve the subchondral bone, resulting in osteoarthritis (OA) onset and progression. Bioactive glasses, with the dual function of supporting both bone and cartilage regeneration, have become a promising biomaterial for cartilage/bone engineering applications. This is especially true for those containing therapeutic ions, which act as ion delivery systems and may further promote cartilage repair. In this study, we successfully fabricated Mg-containing bioactive glass nanospheres (Mg-BGNs) and constructed three different scaffolds, DCECM, Mg-BGNs-1/DCECM (1% Mg-BGNs), and Mg-BGNs-2/DCECM (10% Mg-BGNs) scaffold, by incorporating Mg-BGNs into decellularized cartilage extracellular matrix (DCECM). All three scaffolds showed favorable microarchitectural and ion controlled-release properties within the ideal range of pore size for tissue engineering applications. Furthermore, all scaffolds showed excellent biocompatibility and no signs of toxicity. Most importantly, the addition of Mg-BGNs to the DCECM scaffolds significantly promoted cell proliferation and enhanced chondrogenic differentiation induction of mesenchymal stem cells (MSCs) in pellet culture in a dose-dependent manner. Collectively, the multifunctional Mg-BGNs/DCECM composite scaffold not only demonstrated biocompatibility but also a significant chondrogenic response. Our study suggests that the Mg-BGNs/DCECM composite scaffold would be a promising tissue engineering tool for osteochondral lesions, with the ability to simultaneously stimulate articular cartilage and subchondral bone regeneration. Full article
Show Figures

Figure 1

17 pages, 4040 KB  
Article
Subchondral Bone Relative Area and Density in Human Osteoarthritic Femoral Heads Assessed with Micro-CT before and after Mechanical Embedding of the Innovative Multi-Spiked Connecting Scaffold for Resurfacing THA Endoprostheses: A Pilot Study
by Mikołaj Dąbrowski, Piotr Rogala, Ryszard Uklejewski, Adam Patalas, Mariusz Winiecki and Bartosz Gapiński
J. Clin. Med. 2021, 10(13), 2937; https://doi.org/10.3390/jcm10132937 - 30 Jun 2021
Cited by 6 | Viewed by 3578
Abstract
The multi-spiked connecting scaffold (MSC-Scaffold) prototype is the essential innovation in the fixation of components of resurfacing total hip arthroplasty (THRA) endoprostheses in the subchondral trabecular bone. We conducted the computed micro-tomography (micro-CT) assessment of the subchondral trabecular bone microarchitecture before and after [...] Read more.
The multi-spiked connecting scaffold (MSC-Scaffold) prototype is the essential innovation in the fixation of components of resurfacing total hip arthroplasty (THRA) endoprostheses in the subchondral trabecular bone. We conducted the computed micro-tomography (micro-CT) assessment of the subchondral trabecular bone microarchitecture before and after the MSC-Scaffold embedding in femoral heads removed during long-stem endoprosthesis total hip arthroplasty (THA) of different bone densities from 4 patients with hip osteoarthritis (OA). The embedding of the MSC-Scaffold in subchondral trabecular bone causes the change in its relative area (BA/TA, bone area/total area ratio) ranged from 18.2% to 24.7% (translating to the calculated density ρB relative change 11.1–14.4%, and the compressive strength S relative change 75.3–122.7%) regardless of its initial density (before the MSC-Scaffold embedding). The densification of the trabecular microarchitecture of subchondral trabecular bone due to the MSC-Scaffold initial embedding gradually decreases with the increasing distance from the apexes of the MSC-Scaffold’s spikes while the spatial extent of this subchondral trabecular bone densification ranged from 1.5 to 2.5 mm (which is about half the height of the MSC-Scaffold’s spikes). It may be suggested, despite the limited number of examined femoral heads, that: (1) the magnitude of the effect of the MSC-Scaffold embedding on subchondral trabecular bone densification may be a factor contributing to the maintenance of the MSC-Scaffold also for decreased initial bone density values, (2) the deeper this effect of the subchondral trabecular bone densification, the better strength of subchondral trabecular bone, and as consequence, the better post-operative embedding of the MSC-Scaffold in the bone should be expected. Full article
Show Figures

Figure 1

Back to TopTop