Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (101)

Search Parameters:
Keywords = strip cooling

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 1023 KiB  
Article
Research on the Solidification Structure of the Zn-19Al-6Mg Alloy
by Jianhua Wei, Jun Xiao, Shaoguang Yang, Kuo Cao, Di Wang and Aimin Zhao
Metals 2025, 15(7), 769; https://doi.org/10.3390/met15070769 - 8 Jul 2025
Viewed by 233
Abstract
This paper deals with “Zn-19Al-6Mg” coatings and their solidification structure is the basis for the study of the alloy’s properties. The solidification equilibrium phase diagram of this alloy was calculated using thermodynamic software. Samples were taken from the billets of this alloy for [...] Read more.
This paper deals with “Zn-19Al-6Mg” coatings and their solidification structure is the basis for the study of the alloy’s properties. The solidification equilibrium phase diagram of this alloy was calculated using thermodynamic software. Samples were taken from the billets of this alloy for differential thermal analysis experiments. By combining the phase diagram and the experimental results of differential thermal analysis, the solidification structure of the Zn-19Al-6Mg alloy was obtained. The phases in the solidified structure were identified by means of SEM, EDS, XRD, etc. The research finds that the solidification structure of the Zn-19Al-6Mg alloy is composed of the β-Al phase, the α-Al phase, the MgZn2 phase, and the Mg2Zn11 phase. During the actual solidification process of the alloy, due to the large cooling rate, Zn-rich phases will appear in the microstructure. The research results provide a basis for the regulation of the coating structure when preparing Zn-19Al-6Mg-coated sheets and strips. Full article
Show Figures

Figure 1

15 pages, 5932 KiB  
Article
Numerical Simulation of Fluid Flow, Heat Transfer, and Solidification in AISI 304 Stainless Steel Twin-Roll Strip Casting
by Jingzhou Lu, Wanlin Wang and Kun Dou
Metals 2025, 15(7), 749; https://doi.org/10.3390/met15070749 - 2 Jul 2025
Viewed by 316
Abstract
The production of AISI 304 stainless steel (a corrosion-resistant alloy prone to solidification defects from high alloy content) particularly benefits from twin-roll strip casting—a short-process green technology enabling sub-rapid solidification (the maximum cooling rate exceeds 1000 °C/s) control for high-performance steels. However, the [...] Read more.
The production of AISI 304 stainless steel (a corrosion-resistant alloy prone to solidification defects from high alloy content) particularly benefits from twin-roll strip casting—a short-process green technology enabling sub-rapid solidification (the maximum cooling rate exceeds 1000 °C/s) control for high-performance steels. However, the internal phenomena within its molten pool remain exceptionally challenging to monitor. This study developed a multiscale numerical model to simulate coupled fluid flow, heat transfer, and solidification in AISI 304 stainless steel twin-roll strip casting. A quarter-symmetry 3D model captured macroscopic transport phenomena, while a slice model resolved mesoscopic solidification structure. Laboratory experiments had verified that the deviation between the predicted temperature field and the measured average value (1384.3 °C) was less than 5%, and the error between the solidification structure simulation and the electron backscatter diffraction (EBSD) data was within 5%. The flow field and flow trajectory showed obvious recirculation zones: the center area was mainly composed of large recirculation zones, and many small recirculation zones appeared at the edges. Parameter studies showed that, compared with the high superheat (110 °C), the low superheat (30 °C) increased the total solid fraction by 63% (from 8.3% to 13.6%) and increased the distance between the kiss point and the bottom of the molten pool by 154% (from 6.2 to 15.8 mm). The location of the kiss point is a key industrial indicator for assessing solidification integrity and the risk of strip fracture. In terms of mesoscopic solidification structure, low superheat promoted the formation of coarse columnar crystals (equiaxed crystals accounted for 8.9%), while high superheat promoted the formation of equiaxed nucleation (26.5%). The model can be used to assist in the setting of process parameters and process optimization for twin-roll strip casting. Full article
(This article belongs to the Special Issue Advances in Metal Rolling Processes)
Show Figures

Figure 1

18 pages, 4036 KiB  
Article
Development of Oil-Free Lubricants for Cold Rolling of Low-Carbon Steel
by Leon Jacobs, Delphine Rèche, Andreas Bán, Valentina Colla, Orlando Toscanelli, Martin Raulf, Martin Schlupp, Bas Smeulders, Mike Cook and Wim Filemon
Processes 2025, 13(4), 1234; https://doi.org/10.3390/pr13041234 - 18 Apr 2025
Viewed by 567
Abstract
Oil-in-water emulsions (O/W emulsions) are generally used to lubricate the cold rolling process of low-carbon steel. In addition to the obvious advantages of efficient lubrication and cooling of the process, there are also some disadvantages, mainly related to emulsion bath maintenance, subsequent production [...] Read more.
Oil-in-water emulsions (O/W emulsions) are generally used to lubricate the cold rolling process of low-carbon steel. In addition to the obvious advantages of efficient lubrication and cooling of the process, there are also some disadvantages, mainly related to emulsion bath maintenance, subsequent production steps and waste disposal. In some application areas, Oil-Free Lubricants (OFL’s) have been shown to be at least equally effective in decreasing friction and wear as conventional oil-based lubricants, while resulting in benefits related to waste disposal. In 2023, a project named “Transfer of aqueous oil free lubricants into steel cold rolling practice” (acronym ‘RollOilFreeII’) began, with it receiving funding from the Research Fund for Coal and Steel (RFCS). This project aims at an industrial application of Oil-Free Lubricants in the steel cold rolling process. The project builds on the work of the ‘RollOilFree’ project (also carried out in the RFCS-framework). This article briefly recapitulates the findings in the RollOilFree project and describes the objectives, benefits, activities and first results of the RollOilFreeII project. Notably, a pilot mill trial at high speed has been carried out, showing a good performance of the investigated OFLs. Back-calculated friction values were equal to, or even slightly lower than, reference O/W emulsions. The strip cleanliness with OFLs is much better than it is with the reference O/W emulsions. Only for a very thin product, as is the case in tinplate rolling, does the direct application of a conventional O/W dispersion (a high-particle-sized O/W emulsion) give a better performance than the investigated OFLs. Further development of OFLs should focus on this aspect. Full article
Show Figures

Figure 1

13 pages, 8991 KiB  
Article
Effect of In Situ Al Roll Coating on Strip Surface Quality in Traditional Twin-Roll Casting of Aluminum Alloys
by Han-Gyoung Cho, Young Do Kim and Min-Seok Kim
Metals 2025, 15(4), 377; https://doi.org/10.3390/met15040377 - 28 Mar 2025
Viewed by 548
Abstract
The twin-roll casting (TRC) process is widely used in the aluminum industry due to its cost efficiency and continuous production capability. However, maintaining consistently high surface quality remains challenging due to complex heat transfer behavior at the roll/strip interface. This study examines the [...] Read more.
The twin-roll casting (TRC) process is widely used in the aluminum industry due to its cost efficiency and continuous production capability. However, maintaining consistently high surface quality remains challenging due to complex heat transfer behavior at the roll/strip interface. This study examines the critical influence of roll surface conditions, especially the formation of an Al coating layer, on solidification behavior and resulting strip quality in the TRC of an Al-5Mg alloy. Experimental results demonstrated that casting without an Al coating layer led to surface defects such as hot tears and porosity due to insufficient cooling. In contrast, strips produced with a stable Al coating layer exhibited excellent surface quality with no surface defects. Numerical simulations further indicated that a stable Al coating enhanced the interfacial heat transfer coefficient (up to 30,000 W/m2K), ensuring effective cooling and complete solidification before the strip exited the roll nip. Moreover, simulations validated the feasibility of using steel rolls in industrial applications, provided the coating layer was consistently maintained. This research highlights the significance of roll surface control in improving TRC product quality. Full article
(This article belongs to the Special Issue Special and Short Processes of Aluminum Alloys)
Show Figures

Figure 1

35 pages, 20432 KiB  
Article
Effects of Street Spatial Structure on Micrometeorological Condition and Air Quality—A Case Study of Taipei City
by Bau-Show Lin, Han-Chin Chang, Ching-Wen Chen, I-Hang Huang, Liwa Pardthaisong and Cheng-I Hsieh
Forests 2024, 15(12), 2221; https://doi.org/10.3390/f15122221 - 16 Dec 2024
Cited by 2 | Viewed by 1161
Abstract
This study conducted field measurements to explore the effects of street spatial structure on micrometeorological condition and air quality on both hot and cool days in Taipei City. Six street canyons with an aspect ratio of one, but varied in street orientation, street [...] Read more.
This study conducted field measurements to explore the effects of street spatial structure on micrometeorological condition and air quality on both hot and cool days in Taipei City. Six street canyons with an aspect ratio of one, but varied in street orientation, street width, sky view factor, and number of planting strips, were selected for observations. In this case study, it was observed that, as well as the meso-scale phenomena, the local and micro-scale (street canyon structure) had influences on street air temperature, mean radiant temperature, and wind velocity. However, the local and micro-scales only had minor effects on relative humidity for both hot and cool days. Shade effect on temperature by street trees was observed; this effect could cause 2 degrees drop on mean radiant temperature and about 0.5 degree drop on air temperature. Our analyses and field measurements also revealed that, in some cases, concentrations of PM2.5 and PM10 were found to be correlated with local street canopy structure; however, in some cases, the meso-scale process was found to be the dominant factor. We also found that concentrations of CO and O3 were inversely correlated in the street canyon. The findings of this study provide introductory scientific data and guidelines for urban street designers to improve thermal comfort and air quality. Full article
(This article belongs to the Section Urban Forestry)
Show Figures

Figure 1

14 pages, 2329 KiB  
Article
PSO-FDM (Particle Swarm Optimization-Finite Difference Method)-Based Simulation Model of Temperature and Velocity of Full-Scale Continuous Annealing Furnace
by Yang Liu, Qiang Guo, Tieheng Yuan, Yingrui Han, Chao Liu and Wenquan Sun
Metals 2024, 14(11), 1204; https://doi.org/10.3390/met14111204 - 23 Oct 2024
Viewed by 1046
Abstract
Improving the accuracy of the temperature field prediction model for continuous annealing line strips and enhancing the model’s adaptability to full-size strips are key technical challenges in continuous annealing lines. This paper developed a continuous annealing temperature prediction model based on a variable [...] Read more.
Improving the accuracy of the temperature field prediction model for continuous annealing line strips and enhancing the model’s adaptability to full-size strips are key technical challenges in continuous annealing lines. This paper developed a continuous annealing temperature prediction model based on a variable step-size strategy for the heating section, even-heat section, slow-cooling section, and fast-cooling section of the continuous annealing line. To improve the prediction accuracy for different strip sizes, the PSO optimization algorithm was employed to determine the optimal heat transfer coefficient for each strip size. Additionally, due to the limited production of certain strip gauges, providing insufficient data for optimization, this study introduces a combined file approach to address gauge vacancies. The experimental results indicate that the optimized model with variable step size can control the absolute prediction error to less than 4 °C, improving prediction accuracy by 61.9% and prediction speed by 26.8% compared to the traditional equal-step prediction model. This study verified that the merger method is effective for addressing side gauge vacancies, while the proposed method is suitable for resolving middle gauge vacancies. The main technical contribution of this study is the establishment of a high-precision prediction model for continuous annealing temperature of variable step length strips, ensuring high temperature control accuracy for full-gauge strips when passing through the continuous annealing production line. Full article
(This article belongs to the Section Metal Casting, Forming and Heat Treatment)
Show Figures

Figure 1

23 pages, 26849 KiB  
Article
Research on Temperature Change Law and Non-Uniform Distribution Characteristics of Electromagnetic Control Roll Based on Rotating Heat Flow
by Shuaishuai Zheng, Tingsong Yang, Tieheng Yuan, Wenquan Sun, Ankang Shen and Shuo Fan
Machines 2024, 12(10), 727; https://doi.org/10.3390/machines12100727 - 14 Oct 2024
Viewed by 1019
Abstract
The uniform temperature distribution on the surface of the electromagnetic control roll (ECR) has a great impact on the quality of the strip; therefore, temperature control is essential. In order to study this issue, a two-dimensional volume of fluid (VOF) model was established [...] Read more.
The uniform temperature distribution on the surface of the electromagnetic control roll (ECR) has a great impact on the quality of the strip; therefore, temperature control is essential. In order to study this issue, a two-dimensional volume of fluid (VOF) model was established using the simulation software FLUENT (2024 R1) to analyze the radial cooling capacity and surface temperature uniformity of the ECR under different process parameters, and an experimental validation was carried out at the same time. The error between the experiment and the model was less than 5% of the maximum temperature, proving the model is accurate. The results of the analysis show that the use of a controlled temperature mode has an effect on the cooling capacity and the speed has no effect on the cooling capacity. The temperature difference between the two sides of the ECR is too large, which will make the uniformity of the ECR surface temperature worse. While too high or too low, a roll speed and coolant injection speed will increase the non-uniformity of the ECR surface temperature; when the roll speed is 12 rad/s or coolant injection speed is 5 m/s, the ECR surface temperature distribution uniformity is the best. Properly adjusted process parameters can improve the cooling performance and ECR surface temperature uniformity. Full article
(This article belongs to the Section Advanced Manufacturing)
Show Figures

Figure 1

17 pages, 5041 KiB  
Article
Inclined Installation Effect on the Offset Strip Finned Heat Exchanger Designed for a Hybrid Electric Propulsion System in Electric Vertical Take-Off and Landing
by Sangyoon Lee, Sangook Jun, Jae-Sung Huh, Poomin Park and Byeung-Jun Lim
Energies 2024, 17(19), 4960; https://doi.org/10.3390/en17194960 - 3 Oct 2024
Viewed by 1551
Abstract
The plate-fin heat exchanger was designed for the liquid cooling thermal management system of the hybrid electric propulsion system for an electric vertical take-off and landing (eVTOL) vehicle. The offset-strip fin design was applied, and the performance of the heat exchanger was evaluated, [...] Read more.
The plate-fin heat exchanger was designed for the liquid cooling thermal management system of the hybrid electric propulsion system for an electric vertical take-off and landing (eVTOL) vehicle. The offset-strip fin design was applied, and the performance of the heat exchanger was evaluated, particularly with respect to the inclination of the airflow entering the heat exchanger. The estimated performance during the design phase matched well with the experimental results. The inclination of the heat exchanger had a minimal effect on thermal performance, with a slight increase in performance as the inclination increased. However, the pressure difference along the airflow was affected, likely increasing as the inclination increased. The sensitivity of various parameters on coolant temperature was also investigated. The air inlet temperature had a significant effect on coolant temperature, followed by the coolant flow rate. Therefore, when designing the thermal management system, careful consideration should be given to the ambient air temperature and coolant flow rate. Full article
Show Figures

Figure 1

19 pages, 2882 KiB  
Article
Liquid Overlay-Induced Donor Plant Vigor and Initial Ammonium-Free Regrowth Medium Are Critical to the Cryopreservation of Scrophularia kakudensis
by Hyoeun Lee, Hana Park, Sang-Un Park and Haenghoon Kim
Plants 2024, 13(17), 2408; https://doi.org/10.3390/plants13172408 - 28 Aug 2024
Viewed by 1270
Abstract
Cryopreservation, storing biological material in liquid nitrogen (LN, −196 °C), offers a valuable option for the long-term conservation of non-orthodox seeds and vegetatively propagated species in the sector of agrobiodiversity and wild flora. Although the large-scale cryobanking of germplasm collections has been increasing [...] Read more.
Cryopreservation, storing biological material in liquid nitrogen (LN, −196 °C), offers a valuable option for the long-term conservation of non-orthodox seeds and vegetatively propagated species in the sector of agrobiodiversity and wild flora. Although the large-scale cryobanking of germplasm collections has been increasing worldwide, the wide application of cryopreservation protocols in wild flora is hampered by difficulties in vitro propagation and a lack of universal cryopreservation protocols, among others. This study established a systematic approach to developing an in vitro culture and droplet-vitrification cryopreservation procedure for shoot tips of Scrophularia kakudensis. The standard procedure includes a two-step preculture with 10% sucrose for 31 h and with 17.5% sucrose for 16 h, osmoprotection with loading solution C4-35% (17.5% glycerol + 17.5% sucrose, w/v) for 30 min, cryoprotection with A3-80% (33.3% glycerol + 13.3% dimethyl sulfoxide + 13.3% ethylene glycol + 20.1% sucrose, w/v) at 0 °C for 60 min, and cooling and rewarming using aluminum foil strips. After unloading, a three-step regrowth procedure starting with an ammonium-free medium with growth regulators was essential for developing normal plantlets from cryopreserved shoot tips. Liquid overlay on the gelled medium two weeks after inoculation resulted in vigorous growth during subcultures. Moreover, liquid overlay increased LN regeneration by up to 80%, i.e., 23% higher than no liquid overlay. Full article
(This article belongs to the Special Issue In Vitro Propagation and Cryopreservation of Plants)
Show Figures

Figure 1

15 pages, 1795 KiB  
Article
The Influence of the Process Conditions on the Thermo-Mechanical Fatigue Damage of the Rolls in the Twin-Roll Casting Process of Aluminum Alloys
by Ratibor Shevchenko, Nicola Zani and Angelo Mazzù
J. Manuf. Mater. Process. 2024, 8(4), 149; https://doi.org/10.3390/jmmp8040149 - 12 Jul 2024
Cited by 2 | Viewed by 1309
Abstract
Twin-roll casting is a technology for the production of thin strips directly from liquid metal by combining continuous casting with hot rolling in a single step. The thermo-mechanical cyclic interaction with the solidifying strip causes fatigue crack formation at the outer surface of [...] Read more.
Twin-roll casting is a technology for the production of thin strips directly from liquid metal by combining continuous casting with hot rolling in a single step. The thermo-mechanical cyclic interaction with the solidifying strip causes fatigue crack formation at the outer surface of the rolls. A 2D FEM model with Eulerian boundary conditions and the interference fit load on the rolls was defined. The influence of the roll–strip thermal contact, the inlet temperature of the liquid aluminum, the efficiency of the water cooling and the production rate on the fatigue damage of the rolls was analyzed with a parametric study. The maximum temperature of the rolls, the maximum contact pressure, the accumulated plastic strain and the equivalent strain computed (considering a multiaxial out-of-phase fatigue criterion) were considered to investigate the thermo-mechanical fatigue load on the rolls. The results showed that, in the considered range, the most influential parameters on the fatigue mechanism are the heat contact conductance coefficient, which dominates the thermo-mechanical load, and the tangential velocity of the rolls, which contributes to the thermal field and determines the roll–strip mechanical contact interaction. Full article
Show Figures

Figure 1

20 pages, 9554 KiB  
Article
Resistance of External Thermal Insulation Systems with Fire Barriers to Long-Lasting Weathering
by Ewa Sudoł, Artur Piekarczuk, Ewelina Kozikowska and Aleksandra Mazurek
Materials 2024, 17(13), 3113; https://doi.org/10.3390/ma17133113 - 25 Jun 2024
Cited by 1 | Viewed by 1318
Abstract
Fire barriers are used to reduce the risk of fire spreading over façades. External thermal insulation composite systems consist of mineral wool strips embedded in a layer of another thermal insulation material. A system configured in this manner, beyond standard solutions, can be [...] Read more.
Fire barriers are used to reduce the risk of fire spreading over façades. External thermal insulation composite systems consist of mineral wool strips embedded in a layer of another thermal insulation material. A system configured in this manner, beyond standard solutions, can be more susceptible to environmental factors. In this study, an expanded polystyrene-based system with a mineral wool fire barrier was subjected to weathering conditions. In view of climate change, nonconventional long-lasting exposure simulating the effects of intensive atmospheric factors was applied. Two exposure sequences were used, each covering 80 cycles of heating and wetting, five cycles of heating and cooling, and 30 cycles of wetting, freezing, and thawing. Significant changes were observed in the first sequence. The second sequence caused rendering system cracks wider than 0.2 mm. This indicated a loss of watertightness. A new approach of 3D scanning with inspection analysis was used to assess the deformations. It showed deformation amounted to 0.7 mm within the MW strip. The methods used previously did not allow this level of deformation to be recorded. Full article
(This article belongs to the Special Issue Experimental Tests and Numerical Analysis of Construction Materials)
Show Figures

Figure 1

14 pages, 5682 KiB  
Article
Strip Casting of Sm2TM17-Type Alloys for Production of the Metastable SmTM7 Phase
by Richard Sheridan, Joseph Gresle-Farthing, Alice Appleby and Mangaliso Brown
Metals 2024, 14(5), 517; https://doi.org/10.3390/met14050517 - 29 Apr 2024
Viewed by 1594
Abstract
Conventional book casting of Sm2TM17-type alloys (where TM = Co, Fe, Cu, Zr) leads to a coarse, highly segregated microstructure, predominantly due to the slow, variable cooling rate from the mould surface towards the centre of the ingot. These [...] Read more.
Conventional book casting of Sm2TM17-type alloys (where TM = Co, Fe, Cu, Zr) leads to a coarse, highly segregated microstructure, predominantly due to the slow, variable cooling rate from the mould surface towards the centre of the ingot. These cast alloys require a long homogenisation treatment to remove this segregation and develop a super-saturated, metastable SmTM7-type hexagonal phase. This SmTM7 phase is a vital precursor phase required during magnet production to develop the complex cellular structure responsible for high magnetic properties. In this work, strip casting was employed to facilitate rapid solidification to develop thin flakes (<0.5 mm thick) with a columnar grain structure. Rapid cooling has the potential to produce a homogenous microstructure consisting predominantly of the metastable SmTM7 phase. This could remove or significantly reduce the need for the energy-intensive homogenisation treatment usually required in conventional magnet manufacture. This paper investigates the effect of wheel speed (and hence cooling rate) on flake thickness, microstructure, and phase balance of the cast alloys. It was shown that for wheel speeds between 1.1 and 3.0 m/s, the microstructure showed large variation; however, in all cases, evidence of the columnar SmTM7 phase was presented. The adhesion between the melt and the wheel was deemed to be critical for the nucleation and subsequent columnar growth of SmTM7 grains, where the wheel speed controlled both the flow of the alloy onto the wheel and the thickness of the resultant flake. It was determined that in order to achieve a homogenous columnar SmTM7 structure, the maximum flake thickness should be limited to 270 μm to avoid the formation of equiaxed Sm2TM17 grains through insufficient cooling. Full article
(This article belongs to the Special Issue Solidification and Casting of Metals and Alloys)
Show Figures

Figure 1

17 pages, 11990 KiB  
Article
Simulation and Study of Influencing Factors on the Solidification Microstructure of Hazelett Continuous Casting Slabs Using CAFE Model
by Qiuhong Pan, Wei Jin, Shouzhi Huang, Yufeng Guo, Mingyuan Jiang and Xuan Li
Materials 2024, 17(8), 1869; https://doi.org/10.3390/ma17081869 - 18 Apr 2024
Cited by 6 | Viewed by 1440
Abstract
The Hazelett continuous casting and rolling process represents a leading-edge production method for cold-rolled aluminum sheet and strip billets in the world. Its solidification microstructure significantly influences the quality of billets produced for cold rolling of aluminum sheets and strips. In this study, [...] Read more.
The Hazelett continuous casting and rolling process represents a leading-edge production method for cold-rolled aluminum sheet and strip billets in the world. Its solidification microstructure significantly influences the quality of billets produced for cold rolling of aluminum sheets and strips. In this study, employing the CAFE (Cellular Automaton—Finite Element) method, we developed a coupled computational model to simulate the solidification microstructure in the Hazelett continuous casting process. We investigated the impact of nucleation parameters, casting temperature, and continuous casting speed on the microstructural evolution of the continuous casting billet. Through integrated metallographic analyses, we aimed to elucidate the controlling mechanisms underlying the Hazelett continuous casting process and its resultant microstructure. The results demonstrate that the equiaxed rate of grains increases with an increase in nucleation density, and the grain size decreases under constant cooling strength. With other nucleation parameters held constant, the grain size decreases as undercooling increases, and the columnar crystal zone expands. The nucleation density of the Hazelett continuous casting aluminum alloy has been determined to range between 1011 m−3 and 1013 m−3, and the undercooling ranges between 1 °C and 2.5 °C. The solidified grain structure can be controlled between 35 μm and 72 μm. The grain size of the continuous casting billet increases with an increase in pouring temperature and decreases as the casting speed increases. Elevating the pouring temperature positively impacts the fraction of high-angle grain boundaries and promotes the dendritic to equiaxed grain transition. Moreover, there exists potential for further optimization of continuous casting process parameters. Full article
(This article belongs to the Special Issue Modelling and Applications for Additive Manufacturing)
Show Figures

Figure 1

16 pages, 5160 KiB  
Article
A High-Resolution Method for the Experimental Determination of the Heat Transfer Coefficients of Industrial Nozzle Systems in Heat Treatment Plants
by Eileen Trampe, Nico Rademacher, Maximilian Wulfmeier, Dominik Büschgens and Herbert Pfeifer
Appl. Sci. 2024, 14(7), 3024; https://doi.org/10.3390/app14073024 - 3 Apr 2024
Cited by 2 | Viewed by 1575
Abstract
In industrial plants, metal strips are quenched using convective heat transfer. This involves accelerating gas through a nozzle system onto the material to be quenched, resulting in a fast and uniform cooling process. The efficiency of the heat transfer is determined by the [...] Read more.
In industrial plants, metal strips are quenched using convective heat transfer. This involves accelerating gas through a nozzle system onto the material to be quenched, resulting in a fast and uniform cooling process. The efficiency of the heat transfer is determined by the specific nozzle system. The presented work is focussed on the analysis of the heat transfer by forced convection through impingement jets both theoretically and experimentally. A unique method for determining the forced convective heat transfer coefficient is described and its application to industrial size nozzle arrays of annealing-line cooling sections is presented. Full article
(This article belongs to the Topic Applied Heat Transfer)
Show Figures

Figure 1

30 pages, 14678 KiB  
Article
Repairing of One-Way Solid Slab Exposed to Thermal Shock Using CFRP: Experimental and Analytical Study
by Mousa Shhabat, Ahmed Ashteyat and Mu’tasim Abdel-Jaber
Fibers 2024, 12(2), 18; https://doi.org/10.3390/fib12020018 - 19 Feb 2024
Cited by 6 | Viewed by 2159
Abstract
This research was conducted to investigate, experimentally, theoretically, and numerically, the use of CFRP materials for repairing a reinforced concrete one-way solid slab exposed to thermal shock. Nine slabs, measuring 1800 mm in length, 500 mm in width, and 100 mm in depth, [...] Read more.
This research was conducted to investigate, experimentally, theoretically, and numerically, the use of CFRP materials for repairing a reinforced concrete one-way solid slab exposed to thermal shock. Nine slabs, measuring 1800 mm in length, 500 mm in width, and 100 mm in depth, were cast. Seven of these slabs underwent thermal shock at a temperature of 600 °C, rapidly cooled by immersion in water for 15 min. Three primary parameters were examined: the type of CFRP (rope, strip, and sheet), spacing (100 and 200 mm), and the number of sheet layers (one and two). The experimental results revealed a significant decrease of approximately 45.4% in the compressive strength of the concrete after exposure to thermal shock. The thermally shocked RC slab showed a reduction in ultimate capacity by 15.4% and 38.5% in stiffness compared to the control slab. The results underscored the efficacy of CFRP materials, with all repair configurations exhibiting a substantial increase in maximum load capacity and stiffness. Capacity enhancement ranged from 23.7% to 53.4%, while stiffness improvement ranged from 27.6% to 57.1%. Notably, all repair configurations effectively minimized the maximum deflection. This reduction in deflection ranged from 5.2% to 26% compared to the control slab. Numerical results demonstrated strong concurrence with experimental results for both capacity and deflection. The enhancement in capacity ranged from 0.7% to 10.4%, while deflection decreased within a range from 0.95% to 14.16% compared to experimental results. Full article
Show Figures

Figure 1

Back to TopTop