Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (638)

Search Parameters:
Keywords = strain gauges sensor

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 3478 KB  
Article
Measurement of Force and Position Using a Cantilever Beam and Multiple Strain Gauges: Sensing Principles and Design Considerations
by Carter T. Noh, Kenneth Smith, Christian L. Shamo, Jordan Porter, Kirsten Steele, Nathan D. Ludlow, Ryan W. Hall, Maeson G. Holst, Alex R. Williams and Douglas D. Cook
Sensors 2025, 25(21), 6561; https://doi.org/10.3390/s25216561 (registering DOI) - 24 Oct 2025
Viewed by 261
Abstract
Simultaneous measurement of force and position often relies on delicate tactile sensing systems that only measure small forces at discrete positions. This study proposes a compact, durable sensor which can provide simultaneous and continuous measurements of force and position using multiple strain gauges [...] Read more.
Simultaneous measurement of force and position often relies on delicate tactile sensing systems that only measure small forces at discrete positions. This study proposes a compact, durable sensor which can provide simultaneous and continuous measurements of force and position using multiple strain gauges mounted on a cantilever beam. When a point force is applied to the cantilever, the strain gauges are used to determine the magnitude of the applied force and its position along the beam. A major advantage of the force-position sensor concept is its compact electronics and durable sensing surface. We designed, tested, and evaluated three different prototypes for the force-position sensor concept. The prototypes achieved an average percent error of 1.71% and were highly linear. We also conducted a thorough analysis of design variables and their effects on performance. The force and position measurement ranges can be adjusted by tuning the material and geometric properties of the beam and the spacing of the strain gauges. The accuracy of force measurements is dependent upon applied load, but insensitive to the location of the applied load. Accuracy of position measurements is also dependent upon applied load and weakly dependent upon position of the applied load. Full article
(This article belongs to the Collection Tactile Sensors, Sensing and Systems)
Show Figures

Figure 1

22 pages, 3906 KB  
Article
Design of a Modularized IoT Multi-Functional Sensing System and Data Pipeline for Digital Twin-Oriented Real-Time Aircraft Structural Health Monitoring
by Shengkai Guo, Andrew West, Jan Papuga, Stephanos Theodossiades and Jingjing Jiang
Sensors 2025, 25(21), 6531; https://doi.org/10.3390/s25216531 - 23 Oct 2025
Viewed by 259
Abstract
A modular, multi-functional (encompassing data acquisition, management, preprocessing, and transmission) sensing (MMFS) system based upon the Internet of Things (IoT) paradigm is discussed in this paper with the goal of continuous real-time, multi-sensor and multi-location monitoring of aircraft (including drones) structural performances during [...] Read more.
A modular, multi-functional (encompassing data acquisition, management, preprocessing, and transmission) sensing (MMFS) system based upon the Internet of Things (IoT) paradigm is discussed in this paper with the goal of continuous real-time, multi-sensor and multi-location monitoring of aircraft (including drones) structural performances during flight. According to industrial and system requirements, a microcontroller and four sensors (strain, acceleration, vibration, and temperature) were selected and integrated into the system. To enable the determination of potential in-flight failures and estimates of the remaining useful service life of the aircraft, resistance strain gauge networks, piezoelectric sensors for capturing structural vibrations and impact, accelerometers, and thermistors have been integrated into the MMFS system. Real flight tests with Evektor’s Cobra VUT100i and SportStar RTC aircraft have been undertaken to demonstrate the features of recorded data and provide requirements for the MMFS functional design. Real flight test data were analysed, indicating that a sampling rate of 1000 Hz is necessary to balance representation of relevant features within the data and potential loss of quality in fatigue life estimation. The design and evaluation of the performance of a prototype (evaluated via representative stress/strain experiments using an Instron Hydraulic 250 kN machine within laboratories) are detailed in this paper. Full article
Show Figures

Figure 1

18 pages, 2771 KB  
Article
Investigation of the Influence of Sensorized Tool Holders on Dynamic Properties and Manufacturing Results During Milling
by Markus Friedrich, Benjamin Thorenz and Frank Doepper
J. Manuf. Mater. Process. 2025, 9(10), 342; https://doi.org/10.3390/jmmp9100342 - 19 Oct 2025
Viewed by 214
Abstract
Monitoring process stability and tool condition is essential for ensuring machining quality and efficiency. This study investigates the influence of sensorized tool holders on dynamic properties and machining results. Three clamping conditions, one conventional and two different sensor-integrated tool holders (equipped with strain [...] Read more.
Monitoring process stability and tool condition is essential for ensuring machining quality and efficiency. This study investigates the influence of sensorized tool holders on dynamic properties and machining results. Three clamping conditions, one conventional and two different sensor-integrated tool holders (equipped with strain gauges or piezoelectric force sensors), are compared. Experimental modal analyses are carried out to determine the frequency-dependent dynamic compliance of the systems. Machining tests using a developed reference workpiece enable the investigation of process forces, wear development, and the surface quality achieved under real conditions. The results show that the dynamic behavior of the tools varies significantly depending on the respective excitation frequency, whereby the different structural properties of the tool holders have a clearly measurable influence on their dynamic properties, particularly near process-relevant excitation frequencies. However, no clear deterioration in terms of process stability or machining performance can be determined. In some cases, the sensorized tool holders can contribute to reduced tool wear and improved process stability. These findings emphasize that sensorized tool holders do not necessarily worsen the machining results and can be applied without negative effects when aligned with the system’s modal characteristics. Full article
Show Figures

Figure 1

29 pages, 6302 KB  
Article
Measurement of Strain and Vibration, at Ambient Conditions, on a Dynamically Pressurised Aircraft Fuel Pump Using Optical Fibre Sensors
by Edmond Chehura, Stephen W. James, Jarryd Braithwaite, James H. Barrington, Stephen Staines, Andrew Keil, Martin Yates, Nicholas John Lawson and Ralph P. Tatam
Sensors 2025, 25(20), 6407; https://doi.org/10.3390/s25206407 - 17 Oct 2025
Viewed by 347
Abstract
Ever-increasing demands to improve fuel burn efficiency of aero gas turbines lead to rises in fuel system pressures and temperatures, posing challenges for the structural integrity of the pump housing and creating internal deflections that can adversely affect volumetric efficiency. Non-invasive strain and [...] Read more.
Ever-increasing demands to improve fuel burn efficiency of aero gas turbines lead to rises in fuel system pressures and temperatures, posing challenges for the structural integrity of the pump housing and creating internal deflections that can adversely affect volumetric efficiency. Non-invasive strain and vibration measurements could allow transient effects to be quantified and considered during the design process, leading to more robust fuel pumps. Fuel pumps used on a high bypass turbofan engine were instrumented with optical fibre Bragg grating (FBG) sensors, strain gauges and thermocouples. A hydraulic hand pump was used to facilitate measurements under static conditions, while dynamic measurements were performed on a dedicated fuel pump test rig. The experimental data were compared with the outputs from a finite element (FE) model and, in general, good agreement was observed. Where differences were observed, it was concluded that they arose from the sensitivity of the model to the selection of nodes that best matched the sensor location. Strain and vibration measurements were performed over the frequency range of 0 to 2.5 kHz and demonstrated the ability of surface-mounted FBGs to characterise vibrations originating within the internal sub-components of the pump, offering potential for condition monitoring. Full article
(This article belongs to the Special Issue Feature Papers in Optical Sensors 2025)
Show Figures

Figure 1

26 pages, 6031 KB  
Article
Model-Based Design and Sensitivity Optimization of Frequency-Output Pressure Sensors for Real-Time Monitoring in Intelligent Rowing Systems
by Iaroslav Osadchuk, Oleksandr Osadchuk, Serhii Baraban, Andrii Semenov and Mariia Baraban
Electronics 2025, 14(20), 4049; https://doi.org/10.3390/electronics14204049 - 15 Oct 2025
Viewed by 285
Abstract
This study presents a model-driven approach to the design, calibration, and application of frequency-output pressure sensors integrated within an intelligent system for real-time monitoring of rowing performance. The proposed system captures biomechanical parameters of the “boat–rower” complex across 50 parallel channels with a [...] Read more.
This study presents a model-driven approach to the design, calibration, and application of frequency-output pressure sensors integrated within an intelligent system for real-time monitoring of rowing performance. The proposed system captures biomechanical parameters of the “boat–rower” complex across 50 parallel channels with a temporal resolution of 8–12 ms. At the core of the sensing architecture are parametric pressure transducers incorporating strain-gauge primary elements and microelectronic auto-generator circuits featuring negative differential resistance (NDR). These oscillating circuits convert mechanical stress into high-frequency output signals in the 1749.9–1751.9 MHz range, with pressure sensitivities from 0.365 kHz/kPa to 1.370 kHz/kPa. The sensor models are derived using physical energy conversion principles, enabling the formulation of analytical expressions for transformation and sensitivity functions. These models simplify sensitivity tuning and allow clear interpretation of how structural and electronic parameters influence output frequency. The system architecture eliminates the need for analog-to-digital converters and signal amplifiers, reducing cost and power consumption, while enabling wireless ultra high frequency (UHF) transmission of sensor data. Integrated algorithms analyze the influence of biomechanical variables on athlete performance, enabling real-time diagnostics. The proposed model-based methodology offers a scalable and accurate solution for intelligent sports instrumentation and beyond. Full article
(This article belongs to the Special Issue Wearable Sensors for Human Position, Attitude and Motion Tracking)
Show Figures

Figure 1

27 pages, 4892 KB  
Review
Progress in Cellulose-Based Polymer Ionic Conductors: From Performance Optimization to Strain-Sensing Applications
by Rouyi Lu, Yinuo Wang, Hao Pang, Panpan Zhang and Qilin Hua
Nanoenergy Adv. 2025, 5(4), 12; https://doi.org/10.3390/nanoenergyadv5040012 - 28 Sep 2025
Viewed by 398
Abstract
Intrinsically stretchable polymer ionic conductors (PICs) hold significant application prospects in fields such as flexible sensors, energy storage devices, and wearable electronic devices, serving as promising solutions to prevent mechanical failure in flexible electronics. However, the development of PICs is hindered by an [...] Read more.
Intrinsically stretchable polymer ionic conductors (PICs) hold significant application prospects in fields such as flexible sensors, energy storage devices, and wearable electronic devices, serving as promising solutions to prevent mechanical failure in flexible electronics. However, the development of PICs is hindered by an inherent trade-off between mechanical robust and electrical properties. Cellulose, renowned for its high mechanical strength, tunable chemical groups, abundant resources, excellent biocompatibility, and remarkable recyclability and biodegradability, offers a powerful strategy to decouple and enhance mechanical and electrical properties. This review presents recent advances in cellulose-based polymer ionic conductors (CPICs), which exhibit exceptional design versatility for flexible electrodes and strain sensors. We systematically discuss optimization strategies to improve their mechanical properties, electrical conductivity, and environmental stability while analyzing the key factors such as sensitivity, gauge factor, strain range, response time, and cyclic stability, where strain sensing refers to a technique that converts tiny deformations (i.e., strain) of materials or structures under external forces into measurable physical signals (e.g., electrical signals) for real-time monitoring of their deformation degree or stress state. Full article
Show Figures

Figure 1

13 pages, 4071 KB  
Article
Synthesis and Studies of PAM-Ag-g/WS2/Ti3C2Tx Hydrogel and Its Possible Applications
by Anar Arinova, Danil W. Boukhvalov, Arman Umirzakov, Ekaterina Bondar, Aigul Shongalova, Laura Mustafa, Ainagul Kemelbekova and Elena Dmitriyeva
Polymers 2025, 17(19), 2588; https://doi.org/10.3390/polym17192588 - 24 Sep 2025
Viewed by 318
Abstract
In this study, a new hybrid hydrogel based on PAM (polyacrylamide)-Ag-g/WS2/Ti3C2Tx was synthesized by radical polymerization using a conductive heterostructural nanocomposite WS2/Ti3C2Tx. The synergy between the polymer matrix [...] Read more.
In this study, a new hybrid hydrogel based on PAM (polyacrylamide)-Ag-g/WS2/Ti3C2Tx was synthesized by radical polymerization using a conductive heterostructural nanocomposite WS2/Ti3C2Tx. The synergy between the polymer matrix and the interface between two-dimensional nanomaterials ensured the production of a hydrogel with high extensibility and conductivity, as well as sensory characteristics. The composite hydrogel exhibited excellent strain-sensing capabilities, with gauge factors of 1.4 at low strain and 2.8 at higher strain levels. In addition, the material showed a fast response time of 2.17 s and a short recovery time of 0.46 s under cyclic stretching, which confirms its high reliability and reproducibility. The integration of Ti3C2Tx and WS2 promoted the formation of a conductive network in the hydrogel structure, which simultaneously increased its mechanical strength and signal stability under variable loads. Measurements confirm some potential of the PAM-Ag-g/WS2/Ti3C2Tx composite hydrogel as a flexible wearable strain sensor. Based on measured numbers, we discussed the impact of the WS2/Ti3C2Tx interface on the Gauge factor and conductivity of the composite. Theoretical modeling demonstrates significant changes in the electronic structure of the WS2/Ti3C2Tx interface, and especially the WS2 surface, induced by substrate strain. Possible applications of the peculiar properties of PAM-Ag-g/WS2/Ti3C2Tx composite were proposed. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Figure 1

16 pages, 5288 KB  
Article
Development of a Load Monitoring Sensor for the Wire Tightener
by Yuxiong Zhang, Qikun Yuan, Tao Shui, Gang Hu, Xuanlin Chen and Yan Shi
Electronics 2025, 14(18), 3716; https://doi.org/10.3390/electronics14183716 - 19 Sep 2025
Viewed by 362
Abstract
The wire tightener is a critical tool in the construction and maintenance of power lines. Failure to detect tension overload in a timely manner may lead to plastic deformation or even breakage of the tool, potentially causing serious safety accidents. To address this [...] Read more.
The wire tightener is a critical tool in the construction and maintenance of power lines. Failure to detect tension overload in a timely manner may lead to plastic deformation or even breakage of the tool, potentially causing serious safety accidents. To address this issue, a force monitoring sensor was developed to track the real-time load on wire tighteners. In terms of hardware design, a foil strain gauge was integrated with an ultra-low-power mixed-signal microcontroller based on the mechanical characteristics of the wire tightener, enabling accurate acquisition and processing of load data. Low-power LoRa technology was employed for wireless data transmission, and an adaptive sleep–wake strategy was implemented to optimize power efficiency during data collection. The sensor’s material, geometry, and structure were tailored to the tool’s composition and working environment. Experimental results showed that the average relative error between the sensor readings and the reference values was less than 0.5%. The sensor has been successfully deployed in practical engineering applications, consuming approximately 4500 mWh over an 8 h continuous monitoring period. Full article
Show Figures

Figure 1

14 pages, 3180 KB  
Article
Real-Time Structural Health Monitoring of Reinforced Concrete Under Seismic Loading Using Dynamic OFDR
by Jooyoung Lee, Hyoyoung Jung, Myoung Jin Kim and Young Ho Kim
Sensors 2025, 25(18), 5818; https://doi.org/10.3390/s25185818 - 18 Sep 2025
Viewed by 540
Abstract
This paper presents a compact dynamic optical frequency domain reflectometry (D-OFDR) platform enabling millimeter-scale, distributed strain sensing for real-time structural health monitoring (SHM) of reinforced concrete subjected to seismic loading. The proposed D-OFDR interrogator employs a dual-interferometer architecture: a main interferometer for strain [...] Read more.
This paper presents a compact dynamic optical frequency domain reflectometry (D-OFDR) platform enabling millimeter-scale, distributed strain sensing for real-time structural health monitoring (SHM) of reinforced concrete subjected to seismic loading. The proposed D-OFDR interrogator employs a dual-interferometer architecture: a main interferometer for strain sensing and an auxiliary interferometer for nonlinear frequency sweep compensation. Both signals are detected by photodetectors and digitized via a dual-channel FPGA-based DAQ board, enabling high-speed embedded signal processing. A dual-edge triggering scheme exploits both the up-chirp and down-chirp of a 50 Hz bidirectional sweep to achieve a 100 Hz interrogation rate without increasing the sweep speed. Laboratory validation tests on stainless steel cantilever beams showed sub-hertz frequency fidelity (an error of 0.09 Hz) relative to conventional strain gauges. Shake-table tests on a 2 m RC column under incremental seismic excitations (scaled 10–130%, peak acceleration 0.864 g) revealed distinct damage regimes. Distributed strain data and frequency-domain analysis revealed a clear frequency reduction from approximately 3.82 Hz to 1.48 Hz, signifying progressive stiffness degradation and structural yielding prior to visible cracking. These findings demonstrate that the bidirectional sweep-triggered D-OFDR method offers enhanced real-time monitoring capabilities, substantially outperforming traditional point sensors in the early and precise detection of seismic-induced structural damage. Full article
(This article belongs to the Special Issue Sensor-Based Structural Health Monitoring of Civil Infrastructure)
Show Figures

Figure 1

25 pages, 1684 KB  
Review
Advanced Fiber Optic Sensing Technology in Aerospace: Packaging, Bonding, and Calibration Review
by Zhen Ma, Xiyuan Chen, Bingbo Cui and Xinzhong Wang
Aerospace 2025, 12(9), 827; https://doi.org/10.3390/aerospace12090827 - 15 Sep 2025
Viewed by 1320
Abstract
With the continuous development of science and technology, aircraft structural health monitoring (SHM) has become increasingly important in the aviation field. As a key component of SHM, wing deformation monitoring is of great significance for ensuring flight safety and reducing maintenance costs. The [...] Read more.
With the continuous development of science and technology, aircraft structural health monitoring (SHM) has become increasingly important in the aviation field. As a key component of SHM, wing deformation monitoring is of great significance for ensuring flight safety and reducing maintenance costs. The traditional strain gauge measurement method can no longer meet the needs of modern aeronautical engineering. Fiber Bragg grating (FBG) sensors have been widely used in the engineering field due to their unique advantages, and have shown great potential in aircraft wing deformation monitoring. In the context of SHM in the aircraft field, this article provides an overview of four aspects: classification and principles of fiber optic sensors, packaging forms of FBG sensors, bonding technology, and calibration technology. The packaging forms includes tube-packaged, embedded package and surface-attached package. It then discuss the bonding technology of FBG sensors, and the principle and influencing factors of fiber optic bonding technology are analyzed. Finally, it conducts in-depth research on the calibration technology of FBG sensors. Through comprehensive analysis of these four aspects, the suggestions for optical fiber sensing technology in aircraft wing deformation measurement are summarized and put forward. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

16 pages, 3705 KB  
Article
Anti-Swelling Antibacterial Hydrogels Based on Electrostatic Repulsion and Hydrophobic Interactions for Human Motion Sensing
by Zexing Deng, Litong Shen, Qiwei Cheng, Ying Li, Tianming Du and Xin Zhao
J. Funct. Biomater. 2025, 16(9), 346; https://doi.org/10.3390/jfb16090346 - 14 Sep 2025
Viewed by 721
Abstract
The development of high-performance sensing materials is critical for advancing bioelectronics. Conductive hydrogels, with their unique flexibility, are promising candidates for biomedical sensors. However, traditional conductive hydrogels often suffer from excessive swelling and undesirable antibacterial activity, limiting their practical use. To overcome these [...] Read more.
The development of high-performance sensing materials is critical for advancing bioelectronics. Conductive hydrogels, with their unique flexibility, are promising candidates for biomedical sensors. However, traditional conductive hydrogels often suffer from excessive swelling and undesirable antibacterial activity, limiting their practical use. To overcome these challenges, anti-swelling, antibacterial, and ionically conductive hydrogels were built through free radical polymerization. The preparation was conducted using a monomer mixture comprising acrylic acid (AA), the antibacterial zwitterionic compound [2-(methacryloyloxy)ethyl]dimethyl-(3-sulfopropyl)ammonium hydroxide (SBMA), and the hydrophobic monomer lauryl methacrylate (LMA). The protonation of SBMA by AA enables electrostatic repulsion, thereby imparting anti-swelling properties to the hydrogel. The introduction of hydrophobic LMA components further enhances the anti-swelling and mechanical performance of hydrogel. The resulting hydrogel exhibits excellent anti-swelling property with a swelling ratio of 59.36% after 120 h and good mechanical performance with a tensile strength of 158 kPa, an elongation at break of 176%, and a compressive strength of 0.37 MPa at 80% strain. In addition, hydrogels possess superior sensing performance for strain sensing with a gauge factor of 1.315 within 40–60% of strain, 330 ms of response time, and 177 ms of recovery time. Furthermore, the hydrogel is capable of monitoring human motion and physiological signals. These attributes make it highly suitable for wearable sensors and biomedical monitoring applications. Full article
Show Figures

Figure 1

13 pages, 3349 KB  
Article
Magnetostrictive Behavior of Metglas® 2605SC and Acoustic Sensing Optical Fiber for Distributed Static Magnetic Field Detection
by Zach Dejneka, Daniel Homa, Logan Theis, Anbo Wang and Gary Pickrell
Photonics 2025, 12(9), 914; https://doi.org/10.3390/photonics12090914 - 12 Sep 2025
Viewed by 677
Abstract
Fiber optic technologies have strong potential to augment and improve existing areas of sensor performance across many applications. Magnetic sensing, in particular, has attracted significant interest in structural health monitoring and ferromagnetic object detection. However, current technologies such as fluxgate magnetometers and inspection [...] Read more.
Fiber optic technologies have strong potential to augment and improve existing areas of sensor performance across many applications. Magnetic sensing, in particular, has attracted significant interest in structural health monitoring and ferromagnetic object detection. However, current technologies such as fluxgate magnetometers and inspection gauges rely on measuring magnetic fields as single-point sensors. By using fiber optic distributed strain sensors in tandem with magnetically biased magnetostrictive material, static and dynamic magnetic fields can be detected across long lengths of sensing fiber. This paper investigates the relationship between Fiber Bragg Grating (FBG)-based strain sensors and the magnetostrictive alloy Metglas® 2605SC for the distributed detection of static fields for use in a compact cable design. Sentek Instrument’s picoDAS system is used to interrogate the FBG based sensors coupled with Metglas® that is biased with an alternating sinusoidal magnetic field. The sensing system is then exposed to varied external static magnetic field strengths, and the resultant strain responses are analyzed. A minimum magnetic field strength on the order of 300 nT was able to be resolved and a variety of sensing configurations and conditions were also tested. The sensing system is compact and can be easily cabled as both FBGs and Metglas® are commercialized and readily acquired. In combination with the robust and distributed nature of fiber sensors, this demonstrates strong promise for new means of magnetic characterization. Full article
(This article belongs to the Special Issue Optical Fiber Sensors: Design and Application)
Show Figures

Figure 1

24 pages, 10004 KB  
Article
Deposition-Induced Thermo-Mechanical Strain Behaviour of Magnetite-Filled PLA Filament in Fused Filament Fabrication Under Varying Printing Conditions
by Boubakeur Mecheri and Sofiane Guessasma
Polymers 2025, 17(17), 2430; https://doi.org/10.3390/polym17172430 - 8 Sep 2025
Viewed by 541
Abstract
Residual stresses and internal strains in 3D printing can lead to issues such as cracking, warping, and delamination—challenges that are amplified when using functional composite materials like magnetic PLA filaments. This study investigates the thermo-mechanical strain evolution during fused filament fabrication (FFF) of [...] Read more.
Residual stresses and internal strains in 3D printing can lead to issues such as cracking, warping, and delamination—challenges that are amplified when using functional composite materials like magnetic PLA filaments. This study investigates the thermo-mechanical strain evolution during fused filament fabrication (FFF) of magnetite-filled PLA using an integrated methodology combining strain gauge sensors, high-resolution infrared thermal imaging, and synchrotron X-ray microtomography. Printing parameters, including nozzle temperature (190–220 °C), build platform temperature (30–100 °C), printing speed (30–60 mm/s), and cooling strategy (fan on/off) were systematically varied to evaluate their influence. Results reveal steep thermal gradients along the build direction (up to −1 °C/µm), residual strain magnitudes reaching 0.1 µε, and enhanced viscoelastic creep at elevated platform temperatures. The addition of magnetic particles modifies heat distribution and strain evolution, leading to strong sensitivity to process conditions. These findings provide valuable insight into the complex thermo-mechanical interactions governing the structural integrity of magnetically functionalized PLA composites in additive manufacturing. Full article
(This article belongs to the Section Polymer Processing and Engineering)
Show Figures

Figure 1

29 pages, 5576 KB  
Article
Optimisation of Sensor and Sensor Node Positions for Shape Sensing with a Wireless Sensor Network—A Case Study Using the Modal Method and a Physics-Informed Neural Network
by Sören Meyer zu Westerhausen, Imed Hichri, Kevin Herrmann and Roland Lachmayer
Sensors 2025, 25(17), 5573; https://doi.org/10.3390/s25175573 (registering DOI) - 6 Sep 2025
Viewed by 1306 | Correction
Abstract
Data of operational conditions of structural components, acquired, e.g., in structural health monitoring (SHM), is of great interest to optimise products from one generation to the next, for example, by adapting them to occurring operational loads. To acquire data for this purpose in [...] Read more.
Data of operational conditions of structural components, acquired, e.g., in structural health monitoring (SHM), is of great interest to optimise products from one generation to the next, for example, by adapting them to occurring operational loads. To acquire data for this purpose in the desired quality, an optimal sensor placement for so-called shape and load sensing is required. In the case of large-scale structural components, wireless sensor networks (WSN) could be used to process and transmit the acquired data for real-time monitoring, which furthermore requires an optimisation of sensor node positions. Since most publications focus only on the optimal sensor placement or the optimisation of sensor node positions, a methodology for both is implemented in a Python tool, and an optimised WSN is realised on a demonstration part, loaded at a test bench. For this purpose, the modal method is applied for shape sensing as well as a physics-informed neural network for solving inverse problems in shape sensing (iPINN). The WSN is realised with strain gauges, HX711 analogue-digital (A/D) converters, and Arduino Nano 33 IoT microprocessors for data submission to a server, which allows real-time visualisation and data processing on a Python Flask server. The results demonstrate the applicability of the presented methodology and its implementation in the Python tool for achieving high-accuracy shape sensing with WSNs. Full article
Show Figures

Figure 1

24 pages, 19377 KB  
Article
ECL5/CATANA: Comparative Analysis of Advanced Blade Vibration Measurement Techniques
by Christoph Brandstetter, Alexandra P. Schneider, Anne-Lise Fiquet, Benoit Paoletti, Kevin Billon and Xavier Ottavy
Int. J. Turbomach. Propuls. Power 2025, 10(3), 29; https://doi.org/10.3390/ijtpp10030029 - 4 Sep 2025
Viewed by 584
Abstract
A comprehensive understanding of aerodynamic instabilities, such as flutter, non-synchronous vibration (NSV), rotating stall, and forced response, is crucial for the safe and efficient operation of turbomachinery, particularly fans and compressors. These instabilities impose significant limitations on the operating envelope, necessitating precise monitoring [...] Read more.
A comprehensive understanding of aerodynamic instabilities, such as flutter, non-synchronous vibration (NSV), rotating stall, and forced response, is crucial for the safe and efficient operation of turbomachinery, particularly fans and compressors. These instabilities impose significant limitations on the operating envelope, necessitating precise monitoring and accurate quantification of vibration amplitudes during experimental investigations. This study addresses the challenge of measuring these amplitudes by comparing multiple measurement systems applied to the open-test case of the ultra-high bypass ratio (UHBR) fan ECL5. During part-speed operation, the fan exhibited a complex aeromechanical phenomenon, where an initial NSV of the second blade eigenmode near peak pressure transitioned to a dominant first-mode vibration. This mode shift was accompanied by substantial variations in blade vibration patterns, as evidenced by strain gauge data and unsteady wall pressure measurements. These operating conditions provided an optimal test environment for evaluating measurement systems. A comprehensive and redundant experimental setup was employed, comprising telemetry-based strain gauges, capacitive tip timing sensors, and a high-speed camera, to capture detailed aeroelastic behaviour. This paper presents a comparative analysis of these measurement systems, emphasizing their ability to capture high-resolution, accurate data in aeroelastic experiments. The results highlight the critical role of rigorous calibration procedures and the complementary use of multiple measurement technologies in advancing the understanding of turbomachinery instabilities. The insights derived from this investigation shed light on a complex evolution of instability mechanisms and offer valuable recommendations for future experimental studies. The open-test case has been made accessible to the research community, and the presented data can be used directly to validate coupled aeroelastic simulations under challenging operating conditions, including non-linear blade deflections. Full article
Show Figures

Figure 1

Back to TopTop