Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (31)

Search Parameters:
Keywords = straight-ahead

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2879 KiB  
Article
Study on the Eye Movement Transfer Characteristics of Drivers Under Different Road Conditions
by Zhenxiang Hao, Jianping Hu, Xiaohui Sun, Jin Ran, Yuhang Zheng, Binhe Yang and Junyao Tang
Appl. Sci. 2025, 15(15), 8559; https://doi.org/10.3390/app15158559 - 1 Aug 2025
Viewed by 166
Abstract
Given the severe global traffic safety challenges—including threats to human lives and socioeconomic impacts—this study analyzes visual behavior to promote sustainable transportation, improve road safety, and reduce resource waste and pollution caused by accidents. Four typical road sections, namely, turning, straight ahead, uphill, [...] Read more.
Given the severe global traffic safety challenges—including threats to human lives and socioeconomic impacts—this study analyzes visual behavior to promote sustainable transportation, improve road safety, and reduce resource waste and pollution caused by accidents. Four typical road sections, namely, turning, straight ahead, uphill, and downhill, were selected, and the eye movement data of 23 drivers in different driving stages were collected by aSee Glasses eye-tracking device to analyze the visual gaze characteristics of the drivers and their transfer patterns in each road section. Using Markov chain theory, the probability of staying at each gaze point and the transfer probability distribution between gaze points were investigated. The results of the study showed that drivers’ visual behaviors in different road sections showed significant differences: drivers in the turning section had the largest percentage of fixation on the near front, with a fixation duration and frequency of 29.99% and 28.80%, respectively; the straight ahead section, on the other hand, mainly focused on the right side of the road, with 31.57% of fixation duration and 19.45% of frequency of fixation; on the uphill section, drivers’ fixation duration on the left and right roads was more balanced, with 24.36% of fixation duration on the left side of the road and 25.51% on the right side of the road; drivers on the downhill section looked more frequently at the distance ahead, with a total fixation frequency of 23.20%, while paying higher attention to the right side of the road environment, with a fixation duration of 27.09%. In terms of visual fixation, the fixation shift in the turning road section was mainly concentrated between the near and distant parts of the road ahead and frequently turned to the left and right sides; the straight road section mainly showed a shift between the distant parts of the road ahead and the dashboard; the uphill road section was concentrated on the shift between the near parts of the road ahead and the two sides of the road, while the downhill road section mainly occurred between the distant parts of the road ahead and the rearview mirror. Although drivers’ fixations on the front of the road were most concentrated under the four road sections, with an overall fixation stability probability exceeding 67%, there were significant differences in fixation smoothness between different road sections. Through this study, this paper not only reveals the laws of drivers’ visual behavior under different driving environments but also provides theoretical support for behavior-based traffic safety improvement strategies. Full article
Show Figures

Figure 1

17 pages, 3055 KiB  
Article
Characterization of Driver Dynamic Visual Perception Under Different Road Linearity Conditions
by Zhenxiang Hao, Jianping Hu, Jin Ran, Xiaohui Sun, Yuhang Zheng and Chengzhang Li
Appl. Sci. 2025, 15(11), 6076; https://doi.org/10.3390/app15116076 - 28 May 2025
Viewed by 385
Abstract
Drivers’ visual characteristics have an important impact on traffic safety, but existing studies are mostly limited to single-scene analyses and lack a systematic study on the dynamic changes in drivers’ eye tracking characteristics on different road sections. In this study, 23 drivers were [...] Read more.
Drivers’ visual characteristics have an important impact on traffic safety, but existing studies are mostly limited to single-scene analyses and lack a systematic study on the dynamic changes in drivers’ eye tracking characteristics on different road sections. In this study, 23 drivers were recruited to wear the aSee Glasses eye tracking device and driving tests were conducted on four typical road sections, namely, straight ahead, turning, climbing, and downhill. The average fixation duration, pupil diameter, and the saccade amplitude of the eye tracking were collected, one-way analysis of variance (ANOVA) was used to explore the differences between the different road sections, and a mathematical model of changes in the visual characteristics over time was constructed, based on the fitting of the data. Computerized fitting models of changes over time were also constructed using the Origin 2021 software. The results show that different road sections had significant effects on drivers’ visual tasks: the longest average fixation duration was found in the straight road section, the largest pupil diameter was found in the curved road section, and the highest saccade amplitude was found in the downhill road section, reflecting the influence of the complexity of the driving task on the cognitive load. The fitted model further reveals the dynamic change law of eye tracking indicators over time, providing a quantitative basis for modeling driving behavior and visual tasks. This study provides a theoretical basis and practical reference for the optimal design of advanced driver assistance systems, traffic safety management, and road planning. Full article
Show Figures

Figure 1

23 pages, 9976 KiB  
Article
Path Tracking Control of a Large Rear-Wheel–Steered Combine Harvester Using Feedforward PID and Look-Ahead Ackermann Algorithms
by Shaocen Zhang, Qingshan Liu, Haihui Xu, Zhang Yang, Xinyu Hu, Qi Song and Xinhua Wei
Agriculture 2025, 15(7), 676; https://doi.org/10.3390/agriculture15070676 - 22 Mar 2025
Cited by 2 | Viewed by 861
Abstract
Autonomous driving solutions for agricultural machinery have advanced rapidly; however, large-wheeled harvesters present unique challenges compared to traditional vehicles. Specifically, the 5.4 m cutting width, 9.2 m minimum turning diameter, and rear-wheel–steered configuration demand specialized path tracking and steering methods. To address these [...] Read more.
Autonomous driving solutions for agricultural machinery have advanced rapidly; however, large-wheeled harvesters present unique challenges compared to traditional vehicles. Specifically, the 5.4 m cutting width, 9.2 m minimum turning diameter, and rear-wheel–steered configuration demand specialized path tracking and steering methods. To address these challenges, this study developed an integrated system combining feedforward PID and Look-Ahead Ackermann (LAA) algorithms with sensors, actuators, and an embedded control platform. Field experiments indicated that the system maintained an average lateral deviation of approximately 5 cm on straight-line paths, with slightly larger errors observed only during turning or alignment maneuvers. Additionally, a “three-cut” steering method was implemented, which enhanced path tracking accuracy and prevented crop damage at headland turns. Successful field tests confirmed the robustness of the developed system, highlighting its practical potential for production-level autonomous harvesting. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

13 pages, 4997 KiB  
Article
Numerical Study on the Influence of Drift Angle on Wave Properties in a Two-Layer Flow
by Xiaoxing Zhao, Liuliu Shi and Eryun Chen
J. Mar. Sci. Eng. 2024, 12(12), 2139; https://doi.org/10.3390/jmse12122139 - 23 Nov 2024
Viewed by 843
Abstract
This study examines the influence of drift angle on the wave and flow field generated by a submarine navigating through a density-stratified fluid. Employing a numerical methodology, this research computed the viscous flow field around the SUBOFF bare hull under conditions of oblique [...] Read more.
This study examines the influence of drift angle on the wave and flow field generated by a submarine navigating through a density-stratified fluid. Employing a numerical methodology, this research computed the viscous flow field around the SUBOFF bare hull under conditions of oblique shipping maneuvers. The analytical framework relies on the Reynolds-Averaged Navier–Stokes (RANS) equations, supplemented by the Re-Normalization Group (RNG) k-ε turbulence model and the Volume of Fluid (VOF) method. The initial phases of this study involved verifying grid convergence and the accuracy of the numerical methods used. Subsequently, numerical simulations were performed across a spectrum of drift angles while maintaining a fixed Froude number of Fn = 0.5, with submergence depths set at 1.1 D and 2.0 D. The analysis focused on the wave profiles at both the free surface and the internal surface. The results indicate that the presence of a drift angle produces significant alterations in the characteristics of the free surface and internal surface when compared with straight-ahead motion. Specifically, the asymmetry in the flow field is enhanced, and the variability in the roughness of the free surface is pronounced. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

20 pages, 9991 KiB  
Article
Required Field of View of a Sensor for an Advanced Driving Assistance System to Prevent Heavy-Goods-Vehicle to Bicycle Accidents
by Ernst Tomasch, Heinz Hoschopf, Karin Ausserer and Jannik Rieß
Vehicles 2024, 6(4), 1922-1941; https://doi.org/10.3390/vehicles6040094 - 19 Nov 2024
Cited by 1 | Viewed by 1100
Abstract
Accidents involving cyclists and trucks are among the most severe road accidents. In 2021, 199 cyclists were killed in accidents involving a truck in the EU. The main accident situation is a truck turning right and a cyclist going straight ahead. A large [...] Read more.
Accidents involving cyclists and trucks are among the most severe road accidents. In 2021, 199 cyclists were killed in accidents involving a truck in the EU. The main accident situation is a truck turning right and a cyclist going straight ahead. A large proportion of these accidents are caused by the inadequate visibility in an HGV (Heavy Goods Vehicle). The blind spot, in particular, is a significant contributor to these accidents. A BSD (Blind Spot Detection) system is expected to significantly reduce these accidents. There are only a few studies that estimate the potential of assistance systems, and these studies include a combined assessment of cyclists and pedestrians. In the present study, accident simulations are used to assess a warning and an autonomously intervening assistance system that could prevent truck to cyclist accidents. The main challenges are local sight obstructions such as fences, hedges, etc., rule violations by cyclists, and the complexity of correctly predicting the cyclist’s intentions, i.e., detecting the trajectory. Taking these accident circumstances into consideration, a BSD system could prevent between 26.3% and 65.8% of accidents involving HGVs and cyclists. Full article
(This article belongs to the Special Issue Emerging Transportation Safety and Operations: Practical Perspectives)
Show Figures

Figure 1

16 pages, 790 KiB  
Article
Eigenvalue −1 of the Vertex Quadrangulation of a 4-Regular Graph
by Vladimir R. Rosenfeld
Axioms 2024, 13(1), 72; https://doi.org/10.3390/axioms13010072 - 22 Jan 2024
Viewed by 1832
Abstract
The vertex quadrangulation QG of a 4-regular graph G visually looks like a graph whose vertices are depicted as empty squares, and the connecting edges are attached to the corners of the squares. In a previous work [JOMC 59, 1551–1569 (2021)], the [...] Read more.
The vertex quadrangulation QG of a 4-regular graph G visually looks like a graph whose vertices are depicted as empty squares, and the connecting edges are attached to the corners of the squares. In a previous work [JOMC 59, 1551–1569 (2021)], the question was posed: does the spectrum of an arbitrary unweighted graph QG include the full spectrum {3,(1)3} of the tetrahedron graph (complete graph K4)? Previously, many bipartite and nonbipartite graphs QG with such a subspectrum have been found; for example, a nonbipartite variant of the graph QK5. Here, we present one of the variants of the nonbipartite vertex quadrangulation QO of the octahedron graph O, which has eigenvalue (1) of multiplicity 2 in the spectrum, while the spectrum of the bipartite variant QO contains eigenvalue (1) of multiplicity 3. Thus, in the case of nonbipartite graphs, the answer to the question posed depends on the particular graph QG. Here, we continue to explore the spectrum of graphs QG. Some possible connections of the mathematical theme to chemistry are also noted. Full article
(This article belongs to the Special Issue Spectral Graph Theory, Molecular Graph Theory and Their Applications)
Show Figures

Figure 1

15 pages, 954 KiB  
Article
Assessing Gait & Balance in Adults with Mild Balance Impairment: G&B App Reliability and Validity
by Hina Shafi, Waqar Ahmed Awan, Sharon Olsen, Furqan Ahmed Siddiqi, Naureen Tassadaq, Usman Rashid and Imran Khan Niazi
Sensors 2023, 23(24), 9718; https://doi.org/10.3390/s23249718 - 8 Dec 2023
Cited by 3 | Viewed by 2415
Abstract
Smartphone applications (apps) that utilize embedded inertial sensors have the potential to provide valid and reliable estimations of different balance and gait parameters in older adults with mild balance impairment. This study aimed to assess the reliability, validity, and sensitivity of the Gait&Balance [...] Read more.
Smartphone applications (apps) that utilize embedded inertial sensors have the potential to provide valid and reliable estimations of different balance and gait parameters in older adults with mild balance impairment. This study aimed to assess the reliability, validity, and sensitivity of the Gait&Balance smartphone application (G&B App) for measuring gait and balance in a sample of middle- to older-aged adults with mild balance impairment in Pakistan. Community-dwelling adults over 50 years of age (N = 83, 50 female, range 50–75 years) with a Berg Balance Scale (BBS) score between 46/56 and 54/56 were included in the study. Data collection involved securing a smartphone to the participant’s lumbosacral spine. Participants performed six standardized balance tasks, including four quiet stance tasks and two gait tasks (walking looking straight ahead and walking with head turns). The G&B App collected accelerometry data during these tasks, and the tasks were repeated twice to assess test-retest reliability. The tasks in quiet stance were also recorded with a force plate, a gold-standard technology for measuring postural sway. Additionally, participants completed three clinical measures, the BBS, the Functional Reach Test (FRT), and the Timed Up and Go Test (TUG). Test-retest reliability within the same session was determined using intraclass correlation coefficients (ICCs) and the standard error of measurement (SEM). Validity was evaluated by correlating the G&B App outcomes against both the force plate data and the clinical measures using Pearson’s product-moment correlation coefficients. To assess the G&B App’s sensitivity to differences in balance across tasks and repetitions, one-way repeated measures analyses of variance (ANOVAs) were conducted. During quiet stance, the app demonstrated moderate reliability for steadiness on firm (ICC = 0.72) and compliant surfaces (ICC = 0.75) with eyes closed. For gait tasks, the G&B App indicated moderate to excellent reliability when walking looking straight ahead for gait symmetry (ICC = 0.65), walking speed (ICC = 0.93), step length (ICC = 0.94), and step time (ICC = 0.84). The TUG correlated with app measures under both gait conditions for walking speed (r −0.70 and 0.67), step length (r −0.56 and −0.58), and step time (r 0.58 and 0.50). The BBS correlated with app measures of walking speed under both gait conditions (r 0.55 and 0.51) and step length when walking with head turns (r = 0.53). Force plate measures of total distance wandered showed adequate to excellent correlations with G&B App measures of steadiness. Notably, G&B App measures of walking speed, gait symmetry, step length, and step time, were sensitive to detecting differences in performance between standard walking and the more difficult task of walking with head turns. This study demonstrates the G&B App’s potential as a reliable and valid tool for assessing some gait and balance parameters in middle-to-older age adults, with promise for application in low-income countries like Pakistan. The app’s accessibility and accuracy could enhance healthcare services and support preventive measures related to fall risk. Full article
(This article belongs to the Special Issue Sensors in Neurophysiology and Neurorehabilitation (2nd Edition))
Show Figures

Figure 1

22 pages, 10796 KiB  
Article
Large Eddy Simulation of the Flow around a Generic Submarine under Straight-Ahead and 10° Yaw Conditions
by Mo Chen, Nan Zhang, Hailang Sun and Xuan Zhang
J. Mar. Sci. Eng. 2023, 11(12), 2286; https://doi.org/10.3390/jmse11122286 - 1 Dec 2023
Cited by 4 | Viewed by 1975
Abstract
Aiming towards a better understanding of the flow field around a fully appended Joubert BB2 submarine model, and in order to complement the experimental investigations of the wake of the hydroplanes and sail, large eddy simulation (LES) with the dynamic Smagorinsky model was [...] Read more.
Aiming towards a better understanding of the flow field around a fully appended Joubert BB2 submarine model, and in order to complement the experimental investigations of the wake of the hydroplanes and sail, large eddy simulation (LES) with the dynamic Smagorinsky model was conducted. Three sets of grids with a maximum grid number of up to 228 million were designed to perform the LES simulation for the Joubert BB2 under 10° yaw conditions, with a freestream Reynolds number based on the local freestream velocity and a hull length of ReL = 2.2 × 107. Comparisons of the wake of the cruciform appendage were made with experiments to verify the computational accuracy and to examine the influence of the spatial resolution. A satisfactory result was more representative of the experiments with the improvement in grid spatial resolution. The evolution characteristics of three co-rotating vortices originating from the cruciform appendage under the most refined grid arrangement are further described in detail under straight-ahead and 10° yaw conditions. The comparison results show that, in the core-flow region, the resultant velocity, vorticity magnitude, and TKE were stronger and the wake was more complicated under 10° yaw conditions. Tip vortex tracking under 10° yaw conditions exhibited significant three-dimensional characteristics as the wake developed downstream. Full article
(This article belongs to the Special Issue Application of CFD Simulations to Marine Hydrodynamic Problems)
Show Figures

Figure 1

15 pages, 4387 KiB  
Article
Synthetic Drivers’ Performance Measures Related to Vehicle Dynamics to Control Road Safety in Curves
by Gaetano Bosurgi, Orazio Pellegrino, Alessia Ruggeri and Giuseppe Sollazzo
Vehicles 2023, 5(4), 1656-1670; https://doi.org/10.3390/vehicles5040090 - 9 Nov 2023
Cited by 4 | Viewed by 1951
Abstract
The road alignment design relies on the knowledge of vehicle dynamics variables. However, it assumes that drivers faithfully follow the lane axis on straights and curves. Deviating from this assumption leads to unexpected outcomes and can significantly impact users’ safety. In this context, [...] Read more.
The road alignment design relies on the knowledge of vehicle dynamics variables. However, it assumes that drivers faithfully follow the lane axis on straights and curves. Deviating from this assumption leads to unexpected outcomes and can significantly impact users’ safety. In this context, vehicle speed and longitudinal acceleration play a crucial role as key references in the international standards. They provide insights into critical driving aspects; therefore, it is essential to thoroughly analyze their real trends. Broad data collection campaigns should derive synthetic indicators in order to highlight eventual significant deviations between the ideal and real dynamics. To achieve this objective, the authors propose some indexes deduced during an experimental study with a Sim-Easy driving simulator, by AVSimulation. Importantly, these indicators can be freely applied in real driving scenarios without limitations. These indexes were tested on four different horizontal curves and proved effective in identifying relevant characteristics related to longitudinal acceleration and speed. Looking ahead, by analyzing similar data for numerous driving contexts on real roads, infrastructure managers could use this methodology to identify those sections with increased vulnerability for users’ safety. Moreover, the collected data from sensors, processed using these indicators, can be filtered and transmitted to users (via ADAS tools) while driving on a specific road to provide timely warnings about potential difficulties. The indicators control the physical variable (acceleration or speed) on a certain geometric element with reference to what is prescribed by the standard. For example, the acceleration indicators are normalized with respect to a threshold value while for speed indexes, the result depends on the difference between the end control points of the geometrical element. In both cases, international regulations report prescribed or recommended reference values, so the analyst is immediately aware of any critical issues in the maneuver. Full article
(This article belongs to the Topic Vehicle Dynamics and Control)
Show Figures

Figure 1

16 pages, 19644 KiB  
Article
Analysis of Adolescents’ Head to Shoulder Region during Tablet Use from Sagittal and Frontal RGB Images
by Ivanna Kramer and Sabine Bauer
Appl. Biosci. 2023, 2(3), 421-436; https://doi.org/10.3390/applbiosci2030027 - 4 Aug 2023
Viewed by 2250
Abstract
As schools go digital, the use of tablet computers is increasing. Concerns are raised that the extensive use of tablets and the associated bent-over posture may negatively affect the individual’s health. In order to analyse the possible effects of prolonged tablet use on [...] Read more.
As schools go digital, the use of tablet computers is increasing. Concerns are raised that the extensive use of tablets and the associated bent-over posture may negatively affect the individual’s health. In order to analyse the possible effects of prolonged tablet use on physical health, a detailed analysis of the posture during tablet use is needed so that appropriate preventive measures can be taken to prevent degenerative changes. Therefore, the aim of this study was to measure and report the posture of 56 students while working with a tablet computer and compare it with an upright posture. Sagittal and frontal images were used for measurements of the subjects’ postures while seated, using the tablet, and in a neutral sitting position looking straight ahead. The body position during tablet use was recorded in two different user configurations: tablet flat on the table and tablet in individual freely chosen user configuration. After appropriate annotation of the data, the following parameters were evaluated in different planes. The craniovertebral angle (CVA), head tilt angle (HTA), and forward shoulder angle (FSA) are measurements that describe the extent to which the head bends forward and downward and how the shoulders are aligned in the sagittal plane. On the other hand, the head shoulder angle (HSA), lateral head tilt angle (LHTA), and trunk flexion angle (TFA) are angles measured in the frontal plane, which indicate the degree of head tilt and trunk bending to the right or left side. The measurement results clearly showed that the use of a tablet had a pronounced effect on the positions and rotations of the participants’ head, neck, and shoulders. This was evident through strong deviations observed in the angles measured between the sitting straight posture and the postures while using the tablet. For example, depending on the body posture class, the mean CVA values were 45.76° for straight sitting posture, 28.25° for holding the tablet individually posture, and 26.04° for the posture adopted while using a tablet placed flat on the table. Full article
Show Figures

Figure 1

16 pages, 1015 KiB  
Article
Assisting Drivers at Stop Signs in a Connected Vehicle Environment
by Maram Bani Younes
Future Internet 2023, 15(7), 238; https://doi.org/10.3390/fi15070238 - 8 Jul 2023
Cited by 1 | Viewed by 2016
Abstract
Road intersections are shared among several conflicted traffic flows. Stop signs are used to control competing traffic flows at road intersections safely. Then, driving rules are constructed to control the competing traffic flows at these stop sign road intersections. Vehicles must apply a [...] Read more.
Road intersections are shared among several conflicted traffic flows. Stop signs are used to control competing traffic flows at road intersections safely. Then, driving rules are constructed to control the competing traffic flows at these stop sign road intersections. Vehicles must apply a complete stop with no motion in front of stop signs. First to arrive, first to go, straight before turns, and right then left are the main driving rules at stop sign intersections. Drivers must be aware of the stop sign’s existence, the architecture of the road intersection, and traffic distribution in the competing traffic flows. This is to make the best decision to pass the intersection or wait for other conflicted flows to pass according to the current situation. Due to bad weather conditions, obstacles, or existing heavy vehicles, drivers may miss capturing the stop sign. Moreover, the architecture of the road intersection and the characteristics of the competing traffic flows are not always clear to the drivers. In this work, we aim to keep the driver aware ahead of time of the existing stop signs, the architecture of the road intersection, and the traffic characteristics of the competing traffic flow at the targeted destination. Moreover, the best speed and driving behaviors are recommended to each driver. This is based on his/her position and the distribution of the existing traffic there. A driving assistance protocol is presented in this paper based on vehicular network technology. Real-time traffic characteristics are gathered and analyzed of vehicles around the intersections. Then, the best action for each vehicle is recommended accordingly. The experimental results show that the proposed driving assistant protocol successfully enhances the safety conditions around road intersections controlled by stop signs. This is by reducing the percentage of accident occurrences. Fortunately, the traffic efficiency of these road intersections is also enhanced; the accident percentage is decreased by 25% upon using the proposed protocol. Full article
Show Figures

Figure 1

15 pages, 3143 KiB  
Article
Quantification and Rehabilitation of Unilateral Spatial Neglect in Immersive Virtual Reality: A Validation Study in Healthy Subjects
by Germain Faity, Yasmine Sidahmed, Isabelle Laffont and Jérôme Froger
Sensors 2023, 23(7), 3481; https://doi.org/10.3390/s23073481 - 27 Mar 2023
Cited by 2 | Viewed by 2607
Abstract
Unilateral spatial neglect is a common sensorimotor disorder following the occurrence of a stroke, for which prismatic adaptation is a promising rehabilitation method. However, the use of prisms for rehabilitation often requires the use of specific equipment that may not be available in [...] Read more.
Unilateral spatial neglect is a common sensorimotor disorder following the occurrence of a stroke, for which prismatic adaptation is a promising rehabilitation method. However, the use of prisms for rehabilitation often requires the use of specific equipment that may not be available in clinics. To address this limitation, we developed a new software package that allows for the quantification and rehabilitation of unilateral spatial neglect using immersive virtual reality. In this study, we compared the effects of virtual and real prisms in healthy subjects and evaluated the performance of our virtual reality tool (HTC Vive) against a validated motion capture tool. Ten healthy subjects were randomly exposed to virtual and real prisms, and measurements were taken before and after exposure. Our findings indicate that virtual prisms are at least as effective as real prisms in inducing aftereffects (4.39° ± 2.91° with the virtual prisms compared to 4.30° ± 3.49° with the real prisms), but that these effects were not sustained beyond 2 h regardless of exposure modality. The virtual measurements obtained with our software showed excellent metrological qualities (ICC = 0.95, error = 0.52° ± 1.18°), demonstrating its validity and reliability for quantifying deviation during pointing movements. Overall, our results suggest that our virtual reality software (Virtualis, Montpellier, France) could provide an easy and reliable means of quantifying and rehabilitating spatial neglect. Further validation of these results is required in individuals with unilateral spatial neglect. Full article
(This article belongs to the Section Biomedical Sensors)
Show Figures

Figure 1

27 pages, 5523 KiB  
Article
Design of a Telepresence Robot to Avoid Obstacles in IoT-Enabled Sustainable Healthcare Systems
by Ali A. Altalbe, Muhammad Nasir Khan and Muhammad Tahir
Sustainability 2023, 15(7), 5692; https://doi.org/10.3390/su15075692 - 24 Mar 2023
Cited by 4 | Viewed by 3132
Abstract
In the Internet of Things (IoT) era, telepresence robots (TRs) are increasingly a part of healthcare, academia, and industry due to their enormous benefits. IoT provides a sensor-based environment in which robots receive more precise information about their surroundings. The researchers work day [...] Read more.
In the Internet of Things (IoT) era, telepresence robots (TRs) are increasingly a part of healthcare, academia, and industry due to their enormous benefits. IoT provides a sensor-based environment in which robots receive more precise information about their surroundings. The researchers work day and night to reduce cost, duration, and complexity in all application areas. It provides tremendous benefits, such as sustainability, welfare improvement, cost-effectiveness, user-friendliness, and adaptability. However, it faces many challenges in making critical decisions during motion, which requires a long training period and intelligent motion planning. These include obstacle avoidance during movement, intelligent control in hazardous situations, and ensuring the right measurements. Following up on these issues requires a sophisticated control design and a secure communication link. This paper proposes a control design to normalize the integration process and offer an auto-MERLIN robot with cognitive and sustainable architecture. A control design is proposed through system identification and modeling of the robot. The robot control design was evaluated, and a prototype was prepared for testing in a hazardous environment. The robot was tested by considering various parameters: driving straight ahead, turning right, self-localizing, and receiving commands from a remote location. The maneuverability, controllability, and stability results show that the proposed design is well-developed and cost-efficient, with a fast response time. The experimental results show that the proposed method significantly minimizes the obstacle collisions. The results confirm the employability and sustainability of the proposed design and demonstrate auto-MERLIN’s capabilities as a sustainable robot ready to be deployed in highly interactive scenarios. Full article
(This article belongs to the Special Issue IoT Quality Assessment and Sustainable Optimization)
Show Figures

Figure 1

31 pages, 8720 KiB  
Article
Signal Control Study of Oversaturated Heterogeneous Traffic Flow Based on a Variable Virtual Waiting Zone in Dedicated CAV Lanes
by Haiyang Yu, Jixiang Wang, Yilong Ren, Siqi Chen and Chenglin Dong
Appl. Sci. 2023, 13(5), 3054; https://doi.org/10.3390/app13053054 - 27 Feb 2023
Cited by 6 | Viewed by 2499
Abstract
To meet the demand for cooperative signal control at oversaturated heterogeneous traffic flow intersections containing CAVs and HVs, cooperative control including dedicated CAV lanes has been explored to improve intersection safety capacity and reduce vehicle delays while avoiding uncertain HV driving behaviour. However, [...] Read more.
To meet the demand for cooperative signal control at oversaturated heterogeneous traffic flow intersections containing CAVs and HVs, cooperative control including dedicated CAV lanes has been explored to improve intersection safety capacity and reduce vehicle delays while avoiding uncertain HV driving behaviour. However, this approach does not fully exploit CAV network connectivity advantages and intersection spatial and temporal resources. Here, an oversaturated heterogeneous traffic flow signal control model based on a variable virtual waiting zone with a dedicated CAV lane is proposed. Within the model, CAVs going straight or left share a dedicated CAV lane, a CAV variable virtual waiting zone is within the intersection ahead of the dedicated CAV lane, and CAVs and HVs share the straight-through lane. The model framework has three layers. The upper layer optimizes the barrier time using a rolling time domain scheme. The middle layer optimizes the phase duration and variable virtual waiting zone switching time based on the fixed phase sequence, returning the vehicle delay to the upper optimization model. The lower layer performs CAV grouping and trajectory planning in the dedicated CAV lane based on signal timing and variable virtual waiting zone duration, returning the CAV delays to the middle level. Full article
Show Figures

Figure 1

12 pages, 1131 KiB  
Article
Positional End-Point Nystagmus during Positional Testing: Prevalence, Characteristics and Differences with Benign Paroxysmal Positional Vertigo
by Emilio Domínguez-Durán, Lucia Prieto-Sanchez-de-Puerta, Daniel Iván Martín-Jiménez and Serafin Sanchez-Gomez
J. Clin. Med. 2023, 12(1), 393; https://doi.org/10.3390/jcm12010393 - 3 Jan 2023
Cited by 2 | Viewed by 3300
Abstract
Background: Some individuals present positional end-point nystagmus when the Dix–Hallpike tests are performed on them if they unintentionally look towards the examined ear. Objective: To describe the prevalence and the characteristics of end-point nystagmus during positional testing in healthy subjects. Methods: Sixty healthy [...] Read more.
Background: Some individuals present positional end-point nystagmus when the Dix–Hallpike tests are performed on them if they unintentionally look towards the examined ear. Objective: To describe the prevalence and the characteristics of end-point nystagmus during positional testing in healthy subjects. Methods: Sixty healthy subjects were included. Eight positional tests were performed on them, two Pagnini–McClure tests and six Dix–Hallpike tests, while keeping the eyes in different positions; one on each side. Two independent observers filled in a questionnaire about the presence of positional nystagmus, its latency, duration, direction, and sense. Results and conclusions: Of the subjects, 65% showed positional end-point nystagmus. This nystagmus had a short latency and last for as long as the head is maintained in the test position. They can show any direction or sense, but the most common are torsional clockwise in left tests and anticlockwise in right tests. Unlike BPPV, this nystagmus did not appear with the eyes in the straight-ahead position, it is asymptomatic, and its intensity does not decline. Full article
(This article belongs to the Section Otolaryngology)
Show Figures

Figure 1

Back to TopTop