Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (10)

Search Parameters:
Keywords = stomatin

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 20342 KiB  
Article
The Effect of Prohibitins on Mitochondrial Function during Octopus tankahkeei Spermiogenesis
by Jingqian Wang, Xinming Gao, Chen Du, Daojun Tang, Congcong Hou and Junquan Zhu
Int. J. Mol. Sci. 2023, 24(12), 10030; https://doi.org/10.3390/ijms241210030 - 12 Jun 2023
Cited by 2 | Viewed by 1958
Abstract
Mitochondria are essential for spermiogenesis. Prohibitins (PHBs; prohibitin 1, PHB1 or PHB, and prohibitin 2, PHB2) are evolutionarily conserved and ubiquitously expressed mitochondrial proteins that act as scaffolds in the inner mitochondrial membrane. In this study, we analyzed the molecular structure and dynamic [...] Read more.
Mitochondria are essential for spermiogenesis. Prohibitins (PHBs; prohibitin 1, PHB1 or PHB, and prohibitin 2, PHB2) are evolutionarily conserved and ubiquitously expressed mitochondrial proteins that act as scaffolds in the inner mitochondrial membrane. In this study, we analyzed the molecular structure and dynamic expression characteristics of Ot-PHBs, observed the colocalization of Ot-PHB1 with mitochondria and polyubiquitin, and studied the effect of phb1 knockdown on mitochondrial DNA (mtDNA) content, reactive oxygen species (ROS) levels, and apoptosis-related gene expression in spermatids. Our aim was to explore the effect of Ot-PHBs on mitochondrial function during the spermiogenesis of Octopus tankahkeei (O. tankahkeei), an economically important species in China. The predicted Ot-PHB1/PHB2 proteins contained an N-terminal transmembrane, a stomatin/prohibitin/flotillin/HflK/C (SPFH) domain (also known as the prohibitin domain), and a C-terminal coiled-coil domain. Ot-phb1/phb2 mRNA were widely expressed in the different tissues, with elevated expression in the testis. Further, Ot-PHB1 and Ot-PHB2 were highly colocalized, suggesting that they may function primarily as an Ot-PHB compiex in O. tankahkeei. Ot-PHB1 proteins were mainly expressed and localized in mitochondria during spermiogenesis, implying that their function may be localized to the mitochondria. In addition, Ot-PHB1 was colocalized with polyubiquitin during spermiogenesis, suggesting that it may be a polyubiquitin substrate that regulates mitochondrial ubiquitination during spermiogenesis to ensure mitochondrial quality. To further investigate the effect of Ot-PHBs on mitochondrial function, we knocked down Ot-phb1 and observed a decrease in mtDNA content, along with increases in ROS levels and the expressions of mitochondria-induced apoptosis-related genes bax, bcl2, and caspase-3 mRNA. These findings indicate that PHBs might influence mitochondrial function by maintaining mtDNA content and stabilizing ROS levels; in addition, PHBs might affect spermatocyte survival by regulating mitochondria-induced apoptosis during spermiogenesis in O. tankahkeei. Full article
(This article belongs to the Collection Feature Paper Collection in Biochemistry)
Show Figures

Figure 1

15 pages, 8711 KiB  
Article
Disorder of Golgi Apparatus Precedes Anoxia-Induced Pathology of Mitochondria
by Yury M. Morozov and Pasko Rakic
Int. J. Mol. Sci. 2023, 24(5), 4432; https://doi.org/10.3390/ijms24054432 - 23 Feb 2023
Cited by 3 | Viewed by 2436
Abstract
Mitochondrial malfunction and morphologic disorganization have been observed in brain cells as part of complex pathological changes. However, it is unclear what may be the role of mitochondria in the initiation of pathologic processes or if mitochondrial disorders are consequences of earlier events. [...] Read more.
Mitochondrial malfunction and morphologic disorganization have been observed in brain cells as part of complex pathological changes. However, it is unclear what may be the role of mitochondria in the initiation of pathologic processes or if mitochondrial disorders are consequences of earlier events. We analyzed the morphologic reorganization of organelles in an embryonic mouse brain during acute anoxia using an immunohistochemical identification of the disordered mitochondria, followed by electron microscopic three-dimensional (3D) reconstruction. We found swelling of the mitochondrial matrix after 3 h anoxia and probable dissociation of mitochondrial stomatin-like protein 2 (SLP2)-containing complexes after 4.5 h anoxia in the neocortex, hippocampus, and lateral ganglionic eminence. Surprisingly, deformation of the Golgi apparatus (GA) was detected already after 1 h of anoxia, when the mitochondria and other organelles still had a normal ultrastructure. The disordered GA showed concentrical swirling of the cisternae and formed spherical onion-like structures with the trans-cisterna in the center of the sphere. Such disturbance of the Golgi architecture likely interferes with its function for post-translational protein modification and secretory trafficking. Thus, the GA in embryonic mouse brain cells may be more vulnerable to anoxic conditions than the other organelles, including mitochondria. Full article
Show Figures

Figure 1

14 pages, 2861 KiB  
Article
Changes in Caprine Milk Fat Globule Membrane Proteins after Heat Treatment Using a Label-Free Proteomics Technique
by Daomin Yan, Lina Zhang, Yixuan Zhu, Mengyu Han, Yancong Wang, Jun Tang and Peng Zhou
Foods 2022, 11(17), 2705; https://doi.org/10.3390/foods11172705 - 5 Sep 2022
Cited by 11 | Viewed by 2852
Abstract
Milk proteins are prone to changes during the heat treatment process. Here, we aimed to study the changes in caprine milk fat globule membrane (MFGM) proteins with three heat treatment processes—ultra-pasteurization (85 °C, 30 min), ultra-high-temperature instant sterilization (135 °C, 5 s), and [...] Read more.
Milk proteins are prone to changes during the heat treatment process. Here, we aimed to study the changes in caprine milk fat globule membrane (MFGM) proteins with three heat treatment processes—ultra-pasteurization (85 °C, 30 min), ultra-high-temperature instant sterilization (135 °C, 5 s), and spray-drying (inlet, 160 °C and outlet, 80 °C)—using the label-free proteomics technique. A total of 1015, 637, 508, and 738 proteins were identified in the raw milk, ultra-pasteurized milk, ultra-high-temperature instant sterilized milk, and spray-dried reconstituted milk by using label-free proteomics techniques, respectively. Heat treatment resulted in a significant decrease in the relative intensity of MFGM proteins, such as xanthine dehydrogenase/oxidase, butyrophilin subfamily 1 member A, stomatin, and SEA domain-containing protein, which mainly come from the membrane, while the proteins in skimmed milk, such as β-lactoglobulin, casein, and osteopontin, increased in MFGM after heat treatment. Among these different heat treatment groups, the procedure of spray-drying resulted in the least abundance reduction of caprine milk MFGM proteins. Additionally, it showed heating is the key process affecting the stability of caprine MFGM protein rather than the spray-drying process. These findings provide new insights into the effects of heat treatment on caprine MFGM protein composition and potential biological functions. Full article
Show Figures

Figure 1

19 pages, 2787 KiB  
Article
Mechanosensitive Pannexin 1 Activity Is Modulated by Stomatin in Human Red Blood Cells
by Sarah Rougé, Sandrine Genetet, Maria Florencia Leal Denis, Michael Dussiot, Pablo Julio Schwarzbaum, Mariano Anibal Ostuni and Isabelle Mouro-Chanteloup
Int. J. Mol. Sci. 2022, 23(16), 9401; https://doi.org/10.3390/ijms23169401 - 20 Aug 2022
Cited by 4 | Viewed by 2521
Abstract
Pannexin 1 (PANX1) was proposed to drive ATP release from red blood cells (RBCs) in response to stress conditions. Stomatin, a membrane protein regulating mechanosensitive channels, has been proposed to modulate PANX1 activity in non-erythroid cells. To determine whether stomatin modulates PANX1 activity [...] Read more.
Pannexin 1 (PANX1) was proposed to drive ATP release from red blood cells (RBCs) in response to stress conditions. Stomatin, a membrane protein regulating mechanosensitive channels, has been proposed to modulate PANX1 activity in non-erythroid cells. To determine whether stomatin modulates PANX1 activity in an erythroid context, we have (i) assessed the in situ stomatin-PANX1 interaction in RBCs, (ii) measured PANX1-stimulated activity in RBCs expressing stomatin or from OverHydrated Hereditary Stomatocytosis (OHSt) patients lacking stomatin, and in erythroid K562 cells invalidated for stomatin. Proximity Ligation Assay coupled with flow imaging shows 27.09% and 6.13% positive events in control and OHSt RBCs, respectively. The uptake of dyes 5(6)-Carboxyfluorescein (CF) and TO-PRO-3 was used to evaluate PANX1 activity. RBC permeability for CF is 34% and 11.8% in control and OHSt RBCs, respectively. PANX1 permeability for TO-PRO-3 is 35.72% and 18.42% in K562 stom+ and stom clones, respectively. These results suggest an interaction between PANX1 and stomatin in human RBCs and show a significant defect in PANX1 activity in the absence of stomatin. Based on these results, we propose that stomatin plays a major role in opening the PANX1 pore by being involved in a caspase-independent lifting of autoinhibition. Full article
Show Figures

Figure 1

17 pages, 3222 KiB  
Article
Isolation and Characterization of Extracellular Vesicles from Gastric Juice
by Gleb O. Skryabin, Svetlana V. Vinokurova, Sergey A. Galetsky, Danila S. Elkin, Alexey M. Senkovenko, Darya A. Denisova, Andrey V. Komelkov, Ivan S. Stilidi, Ivan N. Peregorodiev, Olga A. Malikhova, Oiatiddin T. Imaraliev, Adel D. Enikeev and Elena M. Tchevkina
Cancers 2022, 14(14), 3314; https://doi.org/10.3390/cancers14143314 - 7 Jul 2022
Cited by 12 | Viewed by 3092
Abstract
EVs are involved in local and distant intercellular communication and play a vital role in cancer development. Since EVs have been found in almost all body fluids, there are currently active attempts for their application in liquid diagnostics. Blood is the most commonly [...] Read more.
EVs are involved in local and distant intercellular communication and play a vital role in cancer development. Since EVs have been found in almost all body fluids, there are currently active attempts for their application in liquid diagnostics. Blood is the most commonly used source of EVs for the screening of cancer markers, although the percentage of tumor-derived EVs in the blood is extremely low. In contrast, GJ, as a local biofluid, is expected to be enriched with GC-associated EVs. However, EVs from GJ have never been applied for the screening and are underinvestigated overall. Here we show that EVs can be isolated from GJ by ultracentrifugation. TEM analysis showed high heterogeneity of GJ-derived EVs, including those with exosome-like size and morphology. In addition to morphological diversity, EVs from individual GJ samples differed in the composition of exosomal markers. We also show the presence of stomatin within GJ-derived EVs for the first time. The first conducted comparison of miRNA content in EVs from GC patients and healthy donors performed using a pilot sampling revealed the significant differences in several miRNAs (-135b-3p, -199a-3p, -451a). These results demonstrate the feasibility of the application of GJ-derived EVs for screening for miRNA GC markers. Full article
Show Figures

Figure 1

17 pages, 5774 KiB  
Article
The Mitochondrial PHB2/OMA1/DELE1 Pathway Cooperates with Endoplasmic Reticulum Stress to Facilitate the Response to Chemotherapeutics in Ovarian Cancer
by Meiyu Cheng, Huimei Yu, Qinghuan Kong, Bingrong Wang, Luyan Shen, Delu Dong and Liankun Sun
Int. J. Mol. Sci. 2022, 23(3), 1320; https://doi.org/10.3390/ijms23031320 - 25 Jan 2022
Cited by 25 | Viewed by 5877
Abstract
Interactions between the mitochondrial inner and outer membranes and between mitochondria and other organelles closely correlates with the sensitivity of ovarian cancer to cisplatin and other chemotherapeutic drugs. However, the underlying mechanism remains unclear. Recently, the mitochondrial protease OMA1, which regulates internal and [...] Read more.
Interactions between the mitochondrial inner and outer membranes and between mitochondria and other organelles closely correlates with the sensitivity of ovarian cancer to cisplatin and other chemotherapeutic drugs. However, the underlying mechanism remains unclear. Recently, the mitochondrial protease OMA1, which regulates internal and external signals in mitochondria by cleaving mitochondrial proteins, was shown to be related to tumor progression. Therefore, we evaluated the effect of OMA1 on the response to chemotherapeutics in ovarian cancer cells and the mouse subcutaneous tumor model. We found that OMA1 activation increased ovarian cancer sensitivity to cisplatin in vivo and in vitro. Mechanistically, in ovarian cancer, OMA1 cleaved optic atrophy 1 (OPA1), leading to mitochondrial inner membrane cristae remodeling. Simultaneously, OMA1 induced DELE1 cleavage and its cytoplasmic interaction with EIF2AK1. We also demonstrated that EIF2AK1 cooperated with the ER stress sensor EIF2AK3 to amplify the EIF2S1/ATF4 signal, resulting in the rupture of the mitochondrial outer membrane. Knockdown of OMA1 attenuated these activities and reversed apoptosis. Additionally, we found that OMA1 protease activity was regulated by the prohibitin 2 (PHB2)/stomatin-like protein 2 (STOML2) complex. Collectively, OMA1 coordinates the mitochondrial inner and outer membranes to induce ovarian cancer cell death. Thus, activating OMA1 may be a novel treatment strategy for ovarian cancer. Full article
(This article belongs to the Special Issue Molecular Advances in Cancer Therapy)
Show Figures

Figure 1

10 pages, 1173 KiB  
Review
The SPFH Protein Superfamily in Fungi: Impact on Mitochondrial Function and Implications in Virulence
by Marienela Y. Heredia and Jason M. Rauceo
Microorganisms 2021, 9(11), 2287; https://doi.org/10.3390/microorganisms9112287 - 3 Nov 2021
Cited by 4 | Viewed by 3362
Abstract
Integral membrane proteins from the ancient SPFH (stomatin, prohibitin, flotillin, HflK/HflC) protein superfamily are found in nearly all living organisms. Mammalian SPFH proteins are primarily associated with mitochondrial functions but also coordinate key processes such as ion transport, signaling, and mechanosensation. In addition, [...] Read more.
Integral membrane proteins from the ancient SPFH (stomatin, prohibitin, flotillin, HflK/HflC) protein superfamily are found in nearly all living organisms. Mammalian SPFH proteins are primarily associated with mitochondrial functions but also coordinate key processes such as ion transport, signaling, and mechanosensation. In addition, SPFH proteins are required for virulence in parasites. While mitochondrial functions of SPFH proteins are conserved in fungi, recent evidence has uncovered additional roles for SPFH proteins in filamentation and stress signaling. Inhibitors that target SPFH proteins have been successfully used in cancer and inflammation treatment. Thus, SPFH proteins may serve as a potential target for novel antifungal drug development. This review article surveys SPFH function in various fungal species with a special focus on the most common human fungal pathogen, Candida albicans. Full article
(This article belongs to the Special Issue Stress Signaling in Pathogenic Fungi)
Show Figures

Figure 1

28 pages, 6083 KiB  
Article
Injectable Thermo-Sensitive Chitosan Hydrogel Containing CPT-11-Loaded EGFR-Targeted Graphene Oxide and SLP2 shRNA for Localized Drug/Gene Delivery in Glioblastoma Therapy
by Yu-Jen Lu, Yu-Hsiang Lan, Chi-Cheng Chuang, Wan-Ting Lu, Li-Yang Chan, Peng-Wei Hsu and Jyh-Ping Chen
Int. J. Mol. Sci. 2020, 21(19), 7111; https://doi.org/10.3390/ijms21197111 - 26 Sep 2020
Cited by 69 | Viewed by 5339
Abstract
In this study, we aimed to develop a multifunctional drug/gene delivery system for the treatment of glioblastoma multiforme by combining the ligand-mediated active targeting and the pH-triggered drug release features of graphene oxide (GO). Toward this end, we load irinotecan (CPT-11) to cetuximab [...] Read more.
In this study, we aimed to develop a multifunctional drug/gene delivery system for the treatment of glioblastoma multiforme by combining the ligand-mediated active targeting and the pH-triggered drug release features of graphene oxide (GO). Toward this end, we load irinotecan (CPT-11) to cetuximab (CET)-conjugated GO (GO-CET/CPT11) for pH-responsive drug release after endocytosis by epidermal growth factor receptor (EGFR) over-expressed U87 human glioblastoma cells. The ultimate injectable drug/gene delivery system was designed by co-entrapping stomatin-like protein 2 (SLP2) short hairpin RNA (shRNA) and GO-CET/CPT11 in thermosensitive chitosan-g-poly(N-isopropylacrylamide) (CPN) polymer solution, which offers a hydrogel depot for localized, sustained delivery of the therapeutics after the in situ formation of CPN@GO-CET/CPT11@shRNA hydrogel. An optimal drug formulation was achieved by considering both the loading efficiency and loading content of CPT-11 on GO-CET. A sustained and controlled release behavior was found for CPT-11 and shRNA from CPN hydrogel. Confocal microscopy analysis confirmed the intracellular trafficking for the targeted delivery of CPT-11 through interactions of CET with EGFR on the U87 cell surface. The efficient transfection of U87 using SLP2 shRNA was achieved using CPN as a delivery milieu, possibly by the formation of shRNA/CPN polyplex after hydrogel degradation. In vitro cell culture experiments confirmed cell apoptosis induced by CPT-11 released from acid organelles in the cytoplasm by flow cytometry, as well as reduced SLP2 protein expression and inhibited cell migration due to gene silencing. Finally, in vivo therapeutic efficacy was demonstrated using the xenograft of U87 tumor-bearing nude mice through non-invasive intratumoral delivery of CPN@GO-CET/CPT11@shRNA by injection. Overall, we have demonstrated the novelty of this thermosensitive hydrogel to be an excellent depot for the co-delivery of anticancer drugs and siRNA. The in situ forming hydrogel will not only provide extended drug release but also combine the advantages offered by the chitosan-based copolymer structure for siRNA delivery to broaden treatment modalities in cancer therapy. Full article
Show Figures

Figure 1

18 pages, 1568 KiB  
Review
Function of Platelet Glycosphingolipid Microdomains/Lipid Rafts
by Keisuke Komatsuya, Kei Kaneko and Kohji Kasahara
Int. J. Mol. Sci. 2020, 21(15), 5539; https://doi.org/10.3390/ijms21155539 - 2 Aug 2020
Cited by 35 | Viewed by 6949
Abstract
Lipid rafts are dynamic assemblies of glycosphingolipids, sphingomyelin, cholesterol, and specific proteins which are stabilized into platforms involved in the regulation of vital cellular processes. The rafts at the cell surface play important functions in signal transduction. Recent reports have demonstrated that lipid [...] Read more.
Lipid rafts are dynamic assemblies of glycosphingolipids, sphingomyelin, cholesterol, and specific proteins which are stabilized into platforms involved in the regulation of vital cellular processes. The rafts at the cell surface play important functions in signal transduction. Recent reports have demonstrated that lipid rafts are spatially and compositionally heterogeneous in the single-cell membrane. In this review, we summarize our recent data on living platelets using two specific probes of raft components: lysenin as a probe of sphingomyelin-rich rafts and BCθ as a probe of cholesterol-rich rafts. Sphingomyelin-rich rafts that are spatially and functionally distinct from the cholesterol-rich rafts were found at spreading platelets. Fibrin is translocated to sphingomyelin-rich rafts and platelet sphingomyelin-rich rafts act as platforms where extracellular fibrin and intracellular actomyosin join to promote clot retraction. On the other hand, the collagen receptor glycoprotein VI is known to be translocated to cholesterol-rich rafts during platelet adhesion to collagen. Furthermore, the functional roles of platelet glycosphingolipids and platelet raft-binding proteins including G protein-coupled receptors, stomatin, prohibitin, flotillin, and HflK/C-domain protein family, tetraspanin family, and calcium channels are discussed. Full article
(This article belongs to the Special Issue Roles of Glycosphingolipids in Metabolism)
Show Figures

Graphical abstract

14 pages, 3044 KiB  
Article
The Lipid Raft Component Stomatin Interacts with the Na+ Taurocholate Cotransporting Polypeptide (NTCP) and Modulates Bile Salt Uptake
by Monique D. Appelman, Marion J.D. Robin, Esther W.M. Vogels, Christie Wolzak, Winnie G. Vos, Harmjan R. Vos, Robert M. Van Es, Boudewijn M.T. Burgering and Stan F.J. Van de Graaf
Cells 2020, 9(4), 986; https://doi.org/10.3390/cells9040986 - 16 Apr 2020
Cited by 10 | Viewed by 3892
Abstract
The sodium taurocholate cotransporting polypeptide (NTCP) is expressed at the basolateral membrane of hepatocytes, where it mediates the uptake of conjugated bile acids and forms the hepatocyte entry receptor for the hepatitis B and D virus. Here, we aimed to identify novel protein–protein [...] Read more.
The sodium taurocholate cotransporting polypeptide (NTCP) is expressed at the basolateral membrane of hepatocytes, where it mediates the uptake of conjugated bile acids and forms the hepatocyte entry receptor for the hepatitis B and D virus. Here, we aimed to identify novel protein–protein interactions that could play a role in the regulation of NTCP. To this end, NTCP was precipitated from HA-tagged hNTCP-expressing HepG2 cells, and chloride channel CLIC-like 1 (CLCC1) and stomatin were identified as interacting proteins by mass spectrometry. Interaction was confirmed by co-immunoprecipitation. NTCP, CLCC1 and stomatin were found at the plasma membrane in lipid rafts, as demonstrated by a combination of immunofluorescence, cell surface biotinylation and isolation of detergent-resistant membranes. Neither CLCC1 overexpression nor its knockdown had an effect on NTCP function. However, both stomatin overexpression and knockdown increased NTCP-mediated taurocholate uptake while NTCP abundance at the plasma membrane was only increased in stomatin depleted cells. These findings identify stomatin as an interactor of NTCP and show that the interaction modulates bile salt transport. Full article
Show Figures

Figure 1

Back to TopTop