Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (78)

Search Parameters:
Keywords = sterilizing filtration

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 1714 KB  
Article
Elimination of Airborne Microorganisms Using Compressive Heating Air Sterilization Technology (CHAST): Laboratory and Nursing Home Setting
by Pritha Sharma, Supriya Mahajan, Gene D. Morse, Rolanda L. Ward, Satish Sharma, Stanley A. Schwartz and Ravikumar Aalinkeel
Microorganisms 2025, 13(10), 2299; https://doi.org/10.3390/microorganisms13102299 - 3 Oct 2025
Viewed by 200
Abstract
Background: Airborne transmission of bacteria, viruses, and fungal spores poses a major threat in enclosed settings, particularly nursing homes where residents are highly vulnerable. Compressive Heating Air Sterilization Technology (CHAST) applies compressive heating to inactivate microorganisms without reliance on filtration or chemicals. Methods: [...] Read more.
Background: Airborne transmission of bacteria, viruses, and fungal spores poses a major threat in enclosed settings, particularly nursing homes where residents are highly vulnerable. Compressive Heating Air Sterilization Technology (CHAST) applies compressive heating to inactivate microorganisms without reliance on filtration or chemicals. Methods: CHAST efficacy was evaluated in laboratory and deployed for a feasibility and performance validation study of air sterilization in a nursing home environment. Laboratory studies tested prototypes (300–5000 CFM; 220–247 °C) against aerosolized surrogates including Bacillus globigii (Bg), B. stearothermophilus (Bst), B. thuringiensis (Bt), Escherichia coli, and MS2 bacteriophage. Viral inactivation thresholds were further assessed by exposing MS2 to progressively lower treatment temperatures (64.5–143 °C). Feasibility and performance validation evaluation involved continuous operation of two CHAST units in a nursing home, with pre- and post-treatment air samples analyzed for bacterial and fungal burden. Results: Laboratory testing demonstrated consistent microbial inactivation, with most prototypes achieving > 6-log (99.9999%) reductions across bacterial spores, vegetative bacteria, and viruses. A 5000 CFM prototype achieved > 7-log (99.99999%) elimination of B. globigii. MS2 was completely inactivated at 240 °C, with modeling suggesting a threshold for total viral elimination near 170 °C. In the feasibility study, baseline sampling revealed bacterial (35 CFU/m3) and fungal (17 CFU/m3) contamination, dominated by Bacillus, Staphylococcus, Cladosporium, and Penicillium. After 72 h of CHAST operation, discharge air contained no detectable viable organisms, and fungal spore counts showed a 93% reduction relative to baseline return air. Units maintained stable operation (464 °F ± 2 °F; 329–335 CFM) throughout deployment. Conclusion: CHAST reproducibly and scalably inactivated airborne bacteria, viruses, and fungi under laboratory and feasibility field studies, supporting its potential as a chemical-free strategy to improve infection control and indoor air quality in healthcare facilities. Full article
(This article belongs to the Section Public Health Microbiology)
Show Figures

Figure 1

15 pages, 1655 KB  
Article
Sterilization Effects on Liposomes with Varying Lipid Chains
by Sarocha Cherdchom, Krit Pongpirul, Natchanon Rimsueb, Prompong Pienpinijtham and Amornpun Sereemaspun
Nanomaterials 2025, 15(19), 1478; https://doi.org/10.3390/nano15191478 - 27 Sep 2025
Viewed by 315
Abstract
Liposomes, nanoscale vesicles with distinct structural and functional properties, are widely utilized in drug delivery due to their biocompatibility and ability to encapsulate diverse therapeutic agents. Effective sterilization is essential to ensure the safety and efficacy of liposomal formulations in biomedical applications, yet [...] Read more.
Liposomes, nanoscale vesicles with distinct structural and functional properties, are widely utilized in drug delivery due to their biocompatibility and ability to encapsulate diverse therapeutic agents. Effective sterilization is essential to ensure the safety and efficacy of liposomal formulations in biomedical applications, yet its impact on liposome integrity and functionality remains inadequately studied. This work systematically evaluates the effects of three sterilization methods: autoclaving, UV radiation, and filtration—on liposomes composed of dipalmitoylphosphatidylcholine (DPPC) and distearoylphosphatidylcholine (DSPC), two phospholipids differing in lipid chain length. Sterilization altered liposome properties in a lipid chain length-dependent manner, affecting particle size, zeta potential, and phospholipid content. Filtration caused significant hydrocarbon loss, confirmed by Fourier-transform infrared spectroscopy (FTIR) and Raman spectroscopy, and led to a higher reduction in phospholipid content in DPPC liposomes compared to DSPC liposomes. Biological evaluations showed that autoclaved and UV-irradiated DPPC liposomes exhibited higher cytotoxic and lower stability than their DSPC counterparts. While autoclaving and UV irradiation resulted in minimal chemical alterations, both methods significantly influenced biological properties. Filtration, although less disruptive to biocompatibility, also reduced key liposomal integrity and efficacy. This study underscores the critical importance of post-sterilization evaluation to optimize liposomal formulations for clinical and biomedical use. Full article
(This article belongs to the Special Issue Toxicology of Nanoparticles)
Show Figures

Figure 1

15 pages, 1361 KB  
Article
Biocontrol and Growth-Promoting Potential of Antagonistic Strain YL84 Against Verticillium dahliae
by Yuxin Tang, Qinyuan Xue, Jiahui Yu, Zhen Zhang, Zhe Wang, Lan Wang and Hongzu Feng
Agronomy 2025, 15(8), 1997; https://doi.org/10.3390/agronomy15081997 - 20 Aug 2025
Viewed by 547
Abstract
Cotton Verticillium wilt is a disease that significantly impacts the cotton industry, severely affecting cotton quality and the economic well-being of farmers. Bacillus atrophaeus YL84 is a biocontrol bacterium with broad-spectrum antagonistic and growth-promoting characteristics, previously isolated by our laboratory. This study aimed [...] Read more.
Cotton Verticillium wilt is a disease that significantly impacts the cotton industry, severely affecting cotton quality and the economic well-being of farmers. Bacillus atrophaeus YL84 is a biocontrol bacterium with broad-spectrum antagonistic and growth-promoting characteristics, previously isolated by our laboratory. This study aimed to elucidate the antagonistic effects of sterilized fermentation filtrate from Bacillus atrophaeus YL84 on cotton Verticillium wilt pathogen Verticillium dahliae and its growth-promoting effects on cotton. The experiments were conducted in vitro and in vivo to assess these effects comprehensively. Using the dual culture method, it was found that Bacillus atrophaeus YL84 exhibited a high inhibition rate on mycelial growth of V. dahliae, with an inhibition rate of 84.11%. The undiluted YL84 sterilized fermentation filtrate and its 10% volume fraction dilution (fermentation filtrate diluted to 10%) exhibited inhibition rates of 80.25% and 72.16% for conidial germination and mycelial growth of V. dahliae, respectively. Scanning electron microscopy showed increased branching, swelling, and shortened internodes in the antagonized mycelia. Conductivity measurements revealed a significant enhancement caused by the YL84 filtrate, with conductivity increasing by 8.94 times compared to the control at a 250 μg/mL concentration. Similarly, protein leakage peaked at 9.47 times the control level at 250 μg/mL, demonstrating the filtrate’s potent impact on mycelial cell membrane permeability. The enzymatic activities of polygalacturonase (PG), cellulase (CL), and β-glucosidase (β-GC) were significantly reduced following treatment with YL84 sterilized fermentation filtrate, with reductions from control levels of 15.78, 10.11, and 5.01 U/mL to treatment levels of 11.81, 6.96, and 1.44 U/mL, respectively. Indoor pot experiments demonstrated that different concentrations of YL84 sterilized fermentation filtrate significantly suppressed the occurrence of cotton Verticillium wilt while promoting plant growth. Compared to the control group, application of 250 μg/mL YL84 sterilized fermentation filtrate resulted in a control efficacy of 66.69% for cotton Verticillium wilt, with increases in plant height, root length, fresh weight, and dry weight of 9.36–33.85%, 17.33–29.49%, 16.79–28.24%, and 25–58.33%, respectively. These findings underscore the potential of the YL84 filtrate as both a biocontrol agent and a promoter of cotton plant growth in agricultural settings. These results indicate that Bacillus atrophaeus YL84 sterilized fermentation filtrate possesses both disease-suppressing and growth-promoting activities, making it a promising candidate for development and use as a biocontrol agent and plant growth promoter. Full article
(This article belongs to the Section Pest and Disease Management)
Show Figures

Figure 1

19 pages, 2448 KB  
Article
Ultrafiltration of Water Has a Temporary Effect on Cell Numbers, but Profoundly Changes the Composition of Bacterial Populations—The ‘Reset’ Phenomenon
by Benjamin H. Meyer, Bernd Bendinger, Martin Hippelein and Andreas Nocker
Separations 2025, 12(8), 213; https://doi.org/10.3390/separations12080213 - 15 Aug 2025
Viewed by 851
Abstract
Ultrafiltration strips water of bacteria. The common misconception is that the filtrate is thus free of bacteria. This only applies, however, in the case that the filtrate compartment is sterile. In real-world applications, the filtrate is rapidly re-colonized, followed by regrowth. In extreme [...] Read more.
Ultrafiltration strips water of bacteria. The common misconception is that the filtrate is thus free of bacteria. This only applies, however, in the case that the filtrate compartment is sterile. In real-world applications, the filtrate is rapidly re-colonized, followed by regrowth. In extreme cases of low water usage, the cell numbers in the filtrate can even exceed those in the feed water, probably due to a combination of the microbial enrichment of the bulk water from surfaces, regrowth in the water body itself, and nutrient enrichment on the filter membrane. Regrowth is made possible because dissolved nutrients can freely pass through the membranes. This explains why the initial decrease in cell numbers in drinking water installation systems with ultrafiltration is often followed by an increase in the periphery of the plumbing system. The extent of actual regrowth hereby depends mostly on water usage behaviours. A shorter frequency of membrane wash cycles is beneficial for reducing cell numbers. Neither frequent wash cycles nor cleaning in place (CIP) in filtration units, however, seem to modulate the maximal regrowth potential. Although the effect of ultrafiltration on cell numbers is not sustainable, it causes profound changes in the bacterial communities, with highly distinct populations in the feed water and the filtrate. The microbiological “reset” is demonstrated using examples both from the fields of drinking water and water reuse. Overall, our results suggest that ultrafiltration has a profound impact on the microbiome, but the cell numbers in filtrates depend mostly on the water usage and operational conditions. Full article
Show Figures

Graphical abstract

13 pages, 1348 KB  
Article
Morphometric, Nutritional, and Blood Analyses in Hybrid Striped Bass (Morone chrysops x Morone saxatilis, Walbaum 1972) Reared in a Recirculating Aquaculture System (RAS) Implant in Sicily, Italy
by Francesca Aragona, Syed Sikandar Habib, Francesco Fazio, Alessandro Zumbo, Antonino Costa, Kristian Riolo, Alessia Giannetto and Vincenzo Parrino
Fishes 2025, 10(6), 278; https://doi.org/10.3390/fishes10060278 - 6 Jun 2025
Cited by 1 | Viewed by 592
Abstract
Hybrid striped bass (HSB), a cross between white bass (Morone chrysops) and striped bass (Morone saxatilis), has garnered attention in aquaculture due to its adaptability, rapid growth, and high market value. This study investigates the morphometric, nutritional, and blood [...] Read more.
Hybrid striped bass (HSB), a cross between white bass (Morone chrysops) and striped bass (Morone saxatilis), has garnered attention in aquaculture due to its adaptability, rapid growth, and high market value. This study investigates the morphometric, nutritional, and blood characteristics of HSB reared in a recirculating aquaculture system (RAS) in Sicily, Italy, over a 22-month grow-out period. The fish were managed under standardized feeding and water quality protocols, with weekly monitoring of the physicochemical parameters. A total of 21 clinically healthy fish, averaging 571.33 ± 129.32 in body weight, were randomly sampled in the spring season from a commercial RAS facility equipped with biological filtration, UV sterilization, and seasonally regulated water parameters. The results revealed strong positive correlations between the morphometric parameters and blood indices, such as red blood cell (RBC) count, hemoglobin (Hb) levels, and hematocrit (Hct), highlighting their importance as health indicators. The proximate composition revealed an average moisture content of 75.55 ± 1.49, crude protein at 20.29 ± 0.26, total lipid at 4.25 ± 0.97, and ash content at 1.69 ± 0.17. Additionally, statistical analyses, including a principal component analysis (PCA), identified relationships between body size, nutritional content, and blood parameters, emphasizing the role of body size in influencing nutritional and health outcomes. The findings of this study are crucial for optimizing farming protocols and improving the health and productivity of HSB in RAS under Mediterranean conditions. Full article
(This article belongs to the Special Issue Fish Hematology)
Show Figures

Graphical abstract

16 pages, 10148 KB  
Article
Bioinspired Janus Membrane with Dopamine-ZnO Coating for Antibacterial Filtration in Oral Applications
by Yumeng Guo, Qian Wang, Guoming Sun and Ying Zheng
Polymers 2025, 17(10), 1356; https://doi.org/10.3390/polym17101356 - 15 May 2025
Viewed by 643
Abstract
Developing an oral fibrous barrier membrane that prevents bacterial invasion while possessing antibacterial properties and facilitating fluid decompression remains a significant clinical and scientific challenge. In this study, we developed a novel Janus membrane by modifying a polypropylene (PP) fibrous membrane with dopamine [...] Read more.
Developing an oral fibrous barrier membrane that prevents bacterial invasion while possessing antibacterial properties and facilitating fluid decompression remains a significant clinical and scientific challenge. In this study, we developed a novel Janus membrane by modifying a polypropylene (PP) fibrous membrane with dopamine and zinc oxide nanoparticles (ZnO-NPs). Fabricated via a simple floating immersion method, this asymmetric bilayer structure consists of a hydrophobic PP layer and a hydrophilic PP/dopamine@30 nm ZnO layer, providing both antibacterial properties and enhanced fluid filtration. The mechanical properties of the PP/ZnO membrane were significantly enhanced, with an increase in the Young’s modulus and ultimate tensile strength, indicating improved strength. Antibacterial activity against Streptococcus mutans (S. mutans) demonstrated a significant reduction in biofilm formation on the PP/dopamine@30 nm ZnO surface compared to unmodified PP. Water flux tests confirmed a stable, high filtration rate, with increased permeability under rising pressure. In vivo experiments with miniature pigs confirmed reduced bacterial presence on the sterile side of the membrane. These findings highlight the potential of the membrane for oral exudate filtration, extending filtration time and minimizing infection risks under strict sterility conditions. Further improvements in barrier properties are necessary to optimize its clinical performance. Full article
(This article belongs to the Special Issue Polymers Strategies in Dental Therapy)
Show Figures

Graphical abstract

51 pages, 1390 KB  
Review
Navigating the Purification Process: Maintaining the Integrity of Replication-Competent Enveloped Viruses
by Adrian Schimek, Judy King Man Ng and Jürgen Hubbuch
Vaccines 2025, 13(5), 444; https://doi.org/10.3390/vaccines13050444 - 23 Apr 2025
Viewed by 2901
Abstract
Replication-competent virus particles hold significant therapeutic potential in application as oncolytic viruses or cancer vaccines. Ensuring the viral integrity of these particles is crucial for their infectivity, safety, and efficacy. Enveloped virus particles, in particular, offer large gene insert capacities and customizable target [...] Read more.
Replication-competent virus particles hold significant therapeutic potential in application as oncolytic viruses or cancer vaccines. Ensuring the viral integrity of these particles is crucial for their infectivity, safety, and efficacy. Enveloped virus particles, in particular, offer large gene insert capacities and customizable target specificity. However, their sensitivity to environmental factors presents challenges in bioprocessing, potentially compromising high quality standards and cost-effective production. This review provides an in-depth analysis of the purification process steps for replication-competent enveloped virus particles, emphasizing the importance of maintaining viral integrity. It evaluates bioprocessing methods from cell culture harvest to final sterile filtration, including centrifugation, chromatographic, and filtration purification techniques. Furthermore, the manuscript delves into formulation and storage strategies necessary to preserve the functional and structural integrity of virus particles, ensuring their long-term stability and therapeutic efficacy. To assess the impact of process steps on particles and determine their quality and integrity, advanced analytical methods are required. This review evaluates commonly used methods for assessing viral integrity, such as infectious titer assays, total virus particle quantification, and structural analysis. By providing a comprehensive overview of the current state of bioprocessing for replication-competent enveloped virus particles, this review aims to guide researchers and industry professionals in developing robust and efficient purification processes. The insights gained from this analysis will contribute to the advancement of virus-based therapeutics, ultimately supporting the development of safe, effective, and economically viable treatments for various diseases. Full article
(This article belongs to the Special Issue Cancer Vaccines 3.0)
Show Figures

Figure 1

15 pages, 1599 KB  
Article
Modern Water Treatment Technology Based on Industry 4.0
by David Guth and David Herák
Sensors 2025, 25(6), 1925; https://doi.org/10.3390/s25061925 - 20 Mar 2025
Viewed by 2418
Abstract
Access to clean water remains a critical global challenge, particularly in under-resourced regions. This study introduces an autonomous water treatment system leveraging Industry 4.0 technologies, including advanced smart sensors, real-time monitoring, and automation. The system employs a multi-stage filtration process—mechanical, chemical, and UV [...] Read more.
Access to clean water remains a critical global challenge, particularly in under-resourced regions. This study introduces an autonomous water treatment system leveraging Industry 4.0 technologies, including advanced smart sensors, real-time monitoring, and automation. The system employs a multi-stage filtration process—mechanical, chemical, and UV sterilization—to treat water with varying contamination levels. Smart sensors play a pivotal role in ensuring precise control and adaptability across the entire process. Experimental validation was conducted on three water types: pond, river, and artificially contaminated water. Results revealed significant reductions in key contaminants such as PPM, pH, and electrical conductivity, achieving water quality standards set by the WHO. Statistical analyses confirmed the system’s reliability and adaptability under diverse conditions. These findings underscore the potential of smart, sensor-integrated, decentralized water treatment systems to effectively address global water security challenges. Future research could focus on scalability, renewable energy integration, and long-term operational durability to enhance applicability in remote areas. Full article
(This article belongs to the Section Industrial Sensors)
Show Figures

Figure 1

17 pages, 5147 KB  
Article
Bacterial Contamination of Ultrafiltration Installation Applied to Carwash Wastewater Treatment
by Piotr Woźniak and Marek Gryta
Membranes 2025, 15(3), 71; https://doi.org/10.3390/membranes15030071 - 1 Mar 2025
Viewed by 1050
Abstract
An ultrafiltration (UF) installation was used to separate the actual wastewater from a car wash. Following these studies, the plant was washed several times; however, severe membrane fouling was observed during the filtration of sterile deionised (DI) water. As a result, the permeate [...] Read more.
An ultrafiltration (UF) installation was used to separate the actual wastewater from a car wash. Following these studies, the plant was washed several times; however, severe membrane fouling was observed during the filtration of sterile deionised (DI) water. As a result, the permeate flux decreased by more than 50% after 5 h of the UF process. The source of the fouling was the release of deposits, particularly bacteria, from the surfaces of plant elements such as pipes and pumps. The paper presents the effectiveness of biofilm removal from the surface of the equipment during a cyclically repeated washing process. Chemical washing was carried out using acid solutions and alkaline cleaning solutions containing NaOH (pH = 11.5–12). After installation cleaning, the filtration tests were carried out using DI water as a feed. It was determined how biofouling, which develops under these conditions, reduces permeate flux. Despite 3 h of installation washing, there was a 50% reduction in flux after 10 h of UF. Repeating the installation wash (4 h) resulted in a similar decrease in flux after 4 days of UF. Stabilisation of the flux at a level of 500 LMH was achieved after an additional 5 h of washing, including application of hot (323–333 K) alkaline cleaning solutions. The number of bacteria in the biofilm collected from the surface of the membranes, the pump inlet and the surface of the polyvinyl chloride (PVC) hoses forming the pipeline was also investigated. Despite repeated chemical cleaning, the number of bacteria on the pump and hose surfaces was 50–100 CFU/cm2. Studies were carried out to determine which bacterial species survived the chemical cleaning of the installation. Gram-positive and Gram-negative bacteria were determined, and taxonomic characteristics of the isolated bacteria were identified. Full article
(This article belongs to the Special Issue Membrane Fouling during Water/Wastewater Treatment Processes)
Show Figures

Figure 1

29 pages, 6175 KB  
Review
Endotoxin-Retentive Filters for the Online Preparation of Ultrapure Dialysis Fluid and Non-Pyrogenic Substitution Fluid: A Critical Review and Reference Guide
by Gerardo Catapano, Giuseppe Morrone, Lilio Hu, Gionata Fragomeni and Andrea Buscaroli
Membranes 2025, 15(2), 51; https://doi.org/10.3390/membranes15020051 - 5 Feb 2025
Cited by 3 | Viewed by 3212
Abstract
Poor water treatments and concentrates to prepare dialysis fluids favor bacterial growth-producing pyrogens (e.g., endotoxins) that may cross hemodialysis, particularly high-flux, membranes. This puts hemodialysis patients at risk of acute bacteremia, pyrogenic reactions, long-term complications, loss of residual renal function, and poor nutritional [...] Read more.
Poor water treatments and concentrates to prepare dialysis fluids favor bacterial growth-producing pyrogens (e.g., endotoxins) that may cross hemodialysis, particularly high-flux, membranes. This puts hemodialysis patients at risk of acute bacteremia, pyrogenic reactions, long-term complications, loss of residual renal function, and poor nutritional status. Consequently, regulatory bodies worldwide recommend using ultrapure dialysis fluid for routine hemodialysis. Requests are also growing for the online production of sterile non-pyrogenic substitution fluid from ultrapure dialysis fluid. This way, large volumes of infusion solution may be safely and economically produced, enabling more end-stage kidney disease patients to benefit from the greater capacity of hemodiafiltration to remove toxins than purely diffusive hemodialysis treatment. Ultrapure dialysis and substitution fluids are often produced upstream from hemodialyzers by online filtration of standard dialysis fluid through cascades of bacteria- and endotoxin-retentive filters (ETRFs). Commercial ETRFs differ for membranes, operation, performance, duration and maintenance protocols, connection to a dialysis machine, disinfection procedures, and replacement schedule. Although suboptimal ETRF choice may increase treatment costs, the difficulty in gathering comparative information on commercial ETRFs complicates their selection. To aid dialysis centers in selecting the most convenient and suitable ETRF for their needs, herein, relevant characteristics of commercial ETRFs are reported and critically reviewed for a quick yet effective comparison. Full article
(This article belongs to the Section Membrane Applications for Other Areas)
Show Figures

Figure 1

8 pages, 244 KB  
Proceeding Paper
Screening of Lactic Acid Bacteria Isolated from Foods for Interference with Bacterial Quorum Sensing Systems
by Dimitra Kostoglou and Efstathios Giaouris
Biol. Life Sci. Forum 2024, 40(1), 19; https://doi.org/10.3390/blsf2024040019 - 5 Feb 2025
Cited by 1 | Viewed by 983
Abstract
Quorum sensing (QS) is a cell-to-cell communication mechanism through which microorganisms can sense their population density and adjust their physiology by producing and detecting small signaling molecules called autoinducers (AIs). QS influences various aspects of microbial physiology, including virulence and pathogenesis by bacterial [...] Read more.
Quorum sensing (QS) is a cell-to-cell communication mechanism through which microorganisms can sense their population density and adjust their physiology by producing and detecting small signaling molecules called autoinducers (AIs). QS influences various aspects of microbial physiology, including virulence and pathogenesis by bacterial pathogens, biofilm formation, sporulation, antimicrobial resistance, etc. Lactic acid bacteria (LAB) have been used for centuries in food fermentation to improve sensory and nutritional profiles and preserve against spoilage and pathogenic microflora. This study investigated the potential of foodborne LAB of various genera, including Lactococcus, Lactobacillus, Leuconostoc, Streptococcus, and Enterococcus, to interfere with the QS system of bacterial pathogens. For this, cell-free supernatants (CFSs) of 89 LAB foodborne isolates were collected by centrifugation following a 20 h culture (at 30 °C) in quarter-strength Brain Heart Infusion (BHI) broth. The pH of all CFSs was adjusted to 6.5 and sterilized by filtration. The anti-QS activity of the sterilized and neutralized CFSs was initially screened using the biosensor strains Chromobacterium violaceum 026 and Agrobacterium tumefaciens NTL4 (pZLR4) through an agar well diffusion assay that can detect the inhibition of the QS system that is based on acylated homoserine lactones (AHLs), which are used as AIs by Gram-negative bacteria. Additionally, all the CFSs were also screened for interference with the autoinducer 2 (AI-2) QS system that is mostly used for interspecies communication by both Gram-positive and Gram-negative bacteria. This was assessed using a luminescence bioassay with the Vibrio harveyi BAA-1117 biosensor strain. The results indicate that none of the LAB CFSs could inhibit AHL-based QS. However, 61.8% (55/89) of the CFSs induced luminescence in V. harveyi BAA-1117, while the remaining 38.2% (34/89) of the samples were capable of inhibiting AI-2-based QS. In the next steps, the most representative of these latter AI-2 interfering LAB isolates will be investigated for possible inhibition of biofilm formation by some important foodborne bacterial pathogens. Full article
(This article belongs to the Proceedings of The 5th International Electronic Conference on Foods)
16 pages, 3017 KB  
Article
Testing the Purity of Limnospira fusiformis Cultures After Axenicity Treatments
by Michael Schagerl, Alexander Kaptejna, Fabian Polz, Sameh S. Ali, Shuhao Huo, Joana Seneca, Petra Pjevac and Vera Hechtl
Cells 2025, 14(2), 136; https://doi.org/10.3390/cells14020136 - 17 Jan 2025
Cited by 1 | Viewed by 1291
Abstract
Contaminations are challenging for monocultures, as they impact the culture conditions and thus influence the growth of the target organism and the overall biomass composition. In phycology, axenic cultures comprising a single living species are commonly strived for both basic research and industrial [...] Read more.
Contaminations are challenging for monocultures, as they impact the culture conditions and thus influence the growth of the target organism and the overall biomass composition. In phycology, axenic cultures comprising a single living species are commonly strived for both basic research and industrial applications, because contaminants reduce significance for analytic purposes and interfere with the safety and quality of commercial products. We aimed to establish axenic cultures of Limnospira fusiformis, known as the food additive “Spirulina”. Axenicity is strived because it ensures that pathogens or harmful microorganisms are absent and that the harvested biomass is consistent in terms of quality and composition. For the axenic treatment, we applied sterile filtration, ultrasonication, pH treatment, repeated centrifugation, and administration of antibiotics. For testing axenicity, we considered the most common verification method plate tests with Lysogeny Broth (LB) medium, which indicated axenicity after treatments were performed. In addition, we included plate tests with Reasoner’s 2A (R2A) agar and modified Zarrouk+ medium, the latter comparable to the biochemical properties of L. fusiformis’ cultivation medium. In contrast to LB plates, the other media, particularly Zarrouk+, indicated bacterial contamination. We conclude that LB-agar plates are inappropriate for contamination screening of extremophiles. Contamination was also verified by cultivation-independent methods like flow cytometry and 16S rRNA genome amplicon sequencing. We detected taxa of the phyla Proteobacteria, Bacteriodota, Firmicutes and to a lesser extent Verrucomicrobiota. Contaminants are robust taxa, as they survived aggressive treatments. Sequencing data suggest that some of them are promising candidates for in-depth studies to commercially exploit them. Full article
(This article belongs to the Section Plant, Algae and Fungi Cell Biology)
Show Figures

Figure 1

16 pages, 2850 KB  
Article
Influence of Parameters Used to Prepare Sterile Solutions of Poloxamer 188 on Their Physicochemical Properties
by Alexander Yegorov, Sergei Pushkin, Elena Arshintseva, Maxim Molchanov and Maria Timchenko
Polymers 2025, 17(1), 62; https://doi.org/10.3390/polym17010062 - 29 Dec 2024
Cited by 1 | Viewed by 2159
Abstract
The physicochemical properties of emulsions based on poloxamers (triblock copolymers of a hydrophobic polyoxypropylene chain and two hydrophilic polyoxyethylene chains) depend on the composition and preparation method. This study examined the impact of poloxamer P188 concentration, autoclaving mode, heating, and salt presence on [...] Read more.
The physicochemical properties of emulsions based on poloxamers (triblock copolymers of a hydrophobic polyoxypropylene chain and two hydrophilic polyoxyethylene chains) depend on the composition and preparation method. This study examined the impact of poloxamer P188 concentration, autoclaving mode, heating, and salt presence on the viscosity, particle size distribution, and morphology of particles using viscometric analysis, dynamic light scattering (DLS), and atomic force microscopy (AFM). It was shown that sample preparation affects the particle size and morphology but not the chemical composition of P188. The most similar properties were found for 10% P188 samples sterilized by filtration and autoclaving. The higher autoclave temperature and additional heating of the 10% P188 samples to 70 °C resulted in the formation of larger particles. For 4% P188 samples with 0.6% NaCl, samples heated at 70 °C for 15 h after sterilization filtration and autoclaving were the most similar and homogeneous. The 4% P188 sample with the higher autoclave temperature and subsequent heating had the lowest viscosity. In contrast to 10% P188, for 4% P188 in the presence of salt, the lack of heating resulted in the formation of large particles. The 4% P188 solutions with NaCl were more stable during storage than those with a higher concentration. Full article
(This article belongs to the Section Polymer Analysis and Characterization)
Show Figures

Graphical abstract

13 pages, 1232 KB  
Article
Towards a General Method for Using Cyclotron-Produced Ga68 to Manufacture Clinical and Research Ga68 Tracers
by Ivan E. Wang, Kevin Cheng, Allen F. Brooks, Peter J. H. Scott and Benjamin L. Viglianti
Molecules 2024, 29(22), 5457; https://doi.org/10.3390/molecules29225457 - 19 Nov 2024
Cited by 1 | Viewed by 1878
Abstract
The success of multiple nuclear medicine radiotherapeutics in treating cancer requires an increased supply of companion diagnostic imaging agents radiolabeled with gallium-68. Cyclotron production addresses the need for access to gallium-68 and has been validated for use with commercially produced sterile kits. For [...] Read more.
The success of multiple nuclear medicine radiotherapeutics in treating cancer requires an increased supply of companion diagnostic imaging agents radiolabeled with gallium-68. Cyclotron production addresses the need for access to gallium-68 and has been validated for use with commercially produced sterile kits. For novel research tracers undergoing translational studies (IND or RDRC), developing and purchasing sterile kits is time- and cost-prohibitive. An on-cassette labeling method with terminal filtration allows non-sterile kits to be fabricated in-house, simplifying workflow and allowing multiple PET imaging agents to be evaluated using the same kit (i.e., parts, reagents, and timelist) with minimal variation. Using modified GE gallium chloride cassettes, four diverse clinically relevant tracers (DOTA-TOC, FAPI-04, pentixafor, and PSMA-11) were radiolabeled with gallium-68 to evaluate the approach using DOTA and HBED-CC chelator types. The tracers were all formulated according to established FDA-approved formulations and sterile-filtered using a PVDF membrane. The automated procedure is robust, tolerating DOTA and HBED-CC chelators, and can be used to screen numerous gallium-68 agents for rapid translation to clinical use. Full article
(This article belongs to the Special Issue Featured Papers in Medicinal Chemistry II)
Show Figures

Figure 1

13 pages, 7092 KB  
Article
Design and Optimization of Microfluidic Vortex Diode
by Krzysztof Tadyszak, Alessandro Jäger, Jiří Pánek and Martin Hrubý
Math. Comput. Appl. 2024, 29(6), 97; https://doi.org/10.3390/mca29060097 - 30 Oct 2024
Cited by 2 | Viewed by 1769
Abstract
The performed research presents modeling results for designing microfluidic vortex diodes. These devices rectify fluid flow and can be used in many applications on micro and macro scales. The modeling, utilizing computational fluid dynamics (CFD) with the turbulence model RANS k-ε in COMSOL [...] Read more.
The performed research presents modeling results for designing microfluidic vortex diodes. These devices rectify fluid flow and can be used in many applications on micro and macro scales. The modeling, utilizing computational fluid dynamics (CFD) with the turbulence model RANS k-ε in COMSOL Multiphysics, has led to optimizing diodicity—the reversed-to-forward flow pressure drop ratio. The goal was to find the best flow-rectifying geometry within the 2D vortex-type design by changing the wall geometry, diode shape, and inflow velocities, identifying significant parameters and dependencies. Improving diodicity can be achieved by increasing the radius r1 of the central channel, increasing the entire diode radius r2, decreasing the width w of the rectangular channel, and reducing its length L. Additionally, changing the circular shape of the diode to an elliptical one can improve diodicity. The significance of this research is evident in the potential applications of these devices in microfluidic setups where fixed-geometry unidirectional flow is required, e.g., mixing, filtration, cell separation, and drug delivery, or on industrial scales, e.g., energy harvesting, wastewater treatment, and water sterilization. Full article
Show Figures

Graphical abstract

Back to TopTop