Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (14)

Search Parameters:
Keywords = stereocomplex crystallites

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 7097 KB  
Article
Unraveling the Crystallization, Mechanical, and Heat Resistance Properties of Poly(butylene adipate-co-terephthalate) Through the Introduction of Stereocomplex Crystallites
by Min Qiao, Tao Zhang, Jing Jiang, Caiyi Jia, Yangyang Li, Xiaofeng Wang and Qian Li
Crystals 2025, 15(3), 247; https://doi.org/10.3390/cryst15030247 - 6 Mar 2025
Viewed by 1317
Abstract
Poly(butylene adipate-co-terephthalate) (PBAT) is a promising degradable polymer for replacing non-degradable traditional plastics to mitigate pollution. However, its low softening temperature and poor hardness impede its application. Herein, PBAT and stereocomplex polylactide (sc-PLA) blends were fabricated through a melt-blending process to balance the [...] Read more.
Poly(butylene adipate-co-terephthalate) (PBAT) is a promising degradable polymer for replacing non-degradable traditional plastics to mitigate pollution. However, its low softening temperature and poor hardness impede its application. Herein, PBAT and stereocomplex polylactide (sc-PLA) blends were fabricated through a melt-blending process to balance the heat resistance and mechanical strength of PBAT in this research. The effects of the PLA content and hot embossing temperature on the blend properties were comprehensively investigated. The results demonstrate that the sc-crystal content in the PBAT/sc-PLA blend increased by 493% as the PLA content rose from 10% to 30%. The blend with 15% PLLA and 15% PDLA, hot embossed at 190 °C, exhibited the highest sc-PLA crystallinity of 23.3% and the largest fraction of sc-crystallites at 66%, leading to the optimal comprehensive performance. Its Vicat softening temperature (VST) reached 92.2 °C, and a nonlinear increase trend in accordance with the power-law model between VST and the mass ratio of sc-crystal was obtained. Compared with the mechanical properties of neat PBAT, a maximum tensile yield stress of 9.7 MPa and a Young’s modulus of 82.5 MPa were achieved and improved approximately by 107% and 361%, respectively. This research offers an effective strategy for synergistically enhancing the heat resistance and mechanical strength of PBAT. Full article
Show Figures

Figure 1

22 pages, 7315 KB  
Review
Development of Stereocomplex Polylactide Nanocomposites as an Advanced Class of Biomaterials—A Review
by Muhammad Samsuri and Purba Purnama
Polymers 2023, 15(12), 2730; https://doi.org/10.3390/polym15122730 - 19 Jun 2023
Cited by 7 | Viewed by 2542
Abstract
This review paper analyzes the development of advanced class polylactide (PLA) materials through a combination of stereocomplexation and nanocomposites approaches. The similarities in these approaches provide the opportunity to generate an advanced stereocomplex PLA nanocomposite (stereo-nano PLA) material with various beneficial properties. As [...] Read more.
This review paper analyzes the development of advanced class polylactide (PLA) materials through a combination of stereocomplexation and nanocomposites approaches. The similarities in these approaches provide the opportunity to generate an advanced stereocomplex PLA nanocomposite (stereo-nano PLA) material with various beneficial properties. As a potential “green” polymer with tunable characteristics (e.g., modifiable molecular structure and organic–inorganic miscibility), stereo-nano PLA could be used for various advanced applications. The molecular structure modification of PLA homopolymers and nanoparticles in stereo-nano PLA materials enables us to encounter stereocomplexation and nanocomposites constraints. The hydrogen bonding of D- and L-lactide fragments aids in the formation of stereococomplex crystallites, while the hetero-nucleation capabilities of nanofillers result in a synergism that improves the physical, thermal, and mechanical properties of materials, including stereocomplex memory (melt stability) and nanoparticle dispersion. The special properties of selected nanoparticles also allow the production of stereo-nano PLA materials with distinctive characteristics, such as electrical conductivity, anti-inflammatory, and anti-bacterial properties. The D- and L-lactide chains in PLA copolymers provide self-assembly capabilities to form stable nanocarrier micelles for encapsulating nanoparticles. This development of advanced stereo-nano PLA with biodegradability, biocompatibility, and tunability properties shows potential for use in wider and advanced applications as a high-performance material, in engineering field, electronic, medical device, biomedical, diagnosis, and therapeutic applications. Full article
(This article belongs to the Special Issue Biodegradable Polymers: Synthesis, Characterization and Applications)
Show Figures

Figure 1

12 pages, 2448 KB  
Article
A Biodegradable Stereo-Complexed Poly (Lactic Acid) Drinking Straw of High Heat Resistance and Performance
by Renzhi Li, Yangyang Feng, R. Hugh Gong and Constantinos Soutis
Materials 2023, 16(6), 2438; https://doi.org/10.3390/ma16062438 - 18 Mar 2023
Cited by 8 | Viewed by 5512
Abstract
Current biodegradable drinking straws suffer from poor heat resistance and rigidity when wet, causing user dissatisfaction. Here, a fully biodegradable straw formed by stereocomplexation of poly (lactic acid) (SC-PLA) is reported. Because of the unique strong interaction and high density of link chains [...] Read more.
Current biodegradable drinking straws suffer from poor heat resistance and rigidity when wet, causing user dissatisfaction. Here, a fully biodegradable straw formed by stereocomplexation of poly (lactic acid) (SC-PLA) is reported. Because of the unique strong interaction and high density of link chains between stereocomplex crystallites (over 70% crystallinity), SC-PLA straws outperform their counterparts on the market. This coupled with the advantages of simple processing (solution casting and annealing) and relatively low cost (~2.06 cents per straw) makes SC-PLA drinking straws a superior substitute for plastic ones. Commercially available PLLA straws lose almost 60% of their flexural strength when wet compared to less than 5% of the SC-PLA straws proposed in this study. Full article
Show Figures

Figure 1

20 pages, 5206 KB  
Article
Scalable Continuous Manufacturing Process of Stereocomplex PLA by Twin-Screw Extrusion
by Mohammed Alhaj and Ramani Narayan
Polymers 2023, 15(4), 922; https://doi.org/10.3390/polym15040922 - 12 Feb 2023
Cited by 11 | Viewed by 5215
Abstract
A scalable continuous manufacturing method to produce stereocomplex PLA was developed and optimized by melt-blending a 1:1 blend of high molecular weight poly(L-lactide) (PLLA) and high molecular weight poly(D-lactide) (PDLA) in a co-rotating twin-screw extruder. Thermal characteristics of stereocomplex formation were characterized via [...] Read more.
A scalable continuous manufacturing method to produce stereocomplex PLA was developed and optimized by melt-blending a 1:1 blend of high molecular weight poly(L-lactide) (PLLA) and high molecular weight poly(D-lactide) (PDLA) in a co-rotating twin-screw extruder. Thermal characteristics of stereocomplex formation were characterized via DSC to identify the optimal temperature profile and time for processing stereocomplex PLA. At the proper temperature window, high stereocomplex formation is achieved as the twin-screw extruder allows for alignment of the chains; this is due to stretching of the polymer chains in the extruder. The extruder processing conditions were optimized and used to produce >95% of stereocomplex PLA conversion (melting peak temperature Tpm = 240 °C). ATR-FTIR depicts the formation of stereocomplex crystallites based on the absorption band at 908 cm−1 (β helix). The only peaks observed for stereocomplex PLA’s WAXD profile were at 2θ values of 12, 21, and 24°, verifying >99% of stereocomplex formation. The total crystallinity of stereocomplex PLA ranges from 56 to 64%. A significant improvement in the tensile behavior was observed in comparison to the homopolymers, resulting in a polymer of high strength and toughness. These results lead us to propose stereocomplex PLA as a potential additive/fiber that can reinforce the material properties of neat PLA. Full article
Show Figures

Graphical abstract

16 pages, 4864 KB  
Article
Scalable Preparation of Complete Stereo-Complexation Polylactic Acid Fiber and Its Hydrolysis Resistance
by Mingtao Sun, Siyao Lu, Pengfei Zhao, Zhongyao Feng, Muhuo Yu and Keqing Han
Molecules 2022, 27(21), 7654; https://doi.org/10.3390/molecules27217654 - 7 Nov 2022
Cited by 13 | Viewed by 2502
Abstract
Due to their high sensitivity to temperature and humidity, the applications of polylactic acid (PLA) products are limited. The stereo-complexation (SC) formed by poly(L-lactic acid) (PLLA) and its enantiomer poly(D-lactic acid) (PDLA) can effectively improve the heat resistance and hydrolysis resistance of PLA [...] Read more.
Due to their high sensitivity to temperature and humidity, the applications of polylactic acid (PLA) products are limited. The stereo-complexation (SC) formed by poly(L-lactic acid) (PLLA) and its enantiomer poly(D-lactic acid) (PDLA) can effectively improve the heat resistance and hydrolysis resistance of PLA products. In this work, the blended melt-spinning process of PLLA/PDLA was carried out using a polyester fiber production line to obtain PLA fiber with a complete SC structure. The effects of high-temperature tension heat-setting on the crystalline structure, thermal properties, mechanical properties, and hydrolysis resistance were discussed. The results indicated that when the tension heat-setting temperature reached 190 °C, the fiber achieved an almost complete SC structure, and its melting point was 222.5 °C. An accelerated hydrolysis experiment in a 95 °C water bath proved that the SC crystallites had better hydrolysis resistance than homocrystallization (HC). The monofilament strength retention rate of SC−190 fiber reached as high as 78.5% after hydrolysis for 24 h, which was significantly improved compared with PLLA/PDLA drawn fiber. Full article
Show Figures

Figure 1

14 pages, 2906 KB  
Article
Enhancement in Crystallizability of Poly(L-Lactide) Using Stereocomplex-Polylactide Powder as a Nucleating Agent
by Yodthong Baimark, Prasong Srihanam, Yaowalak Srisuwan and Theeraphol Phromsopha
Polymers 2022, 14(19), 4092; https://doi.org/10.3390/polym14194092 - 29 Sep 2022
Cited by 10 | Viewed by 2240
Abstract
High-molecular-weight poly(L-lactide) (HMW-PLLA) is a promising candidate for use as a bioplastic because of its biodegradability and compostability. However, the applications of HMW-PLLA have been limited due to its poor crystallizability. In this work, stereocomplex polylactide (scPLA) powder was prepared by [...] Read more.
High-molecular-weight poly(L-lactide) (HMW-PLLA) is a promising candidate for use as a bioplastic because of its biodegradability and compostability. However, the applications of HMW-PLLA have been limited due to its poor crystallizability. In this work, stereocomplex polylactide (scPLA) powder was prepared by precipitation of a low-molecular-weight poly(L-lactide)/poly(D-lactide) (LMW-PLLA/LMW-PDLA) blend solution and investigated for use as a fully-biodegradable nucleating agent for HMW-PLLA compared to LMW-PLLA powder. The obtained LMW-PLLA and scPLA powders with a nearly spherical shape showed complete homo- and stereocomplex crystallites, respectively. HMW-PLLA/LMW-PLLA powder and HMW-PLLA/scPLA powder blends were prepared by melt blending. The LMW-PLLA powder was homogeneously melted in the HMW-PLLA matrices, whereas the scPLA powder had good phase compatibility and was well-dispersed in the HMW-PLLA matrices, as detected by scanning electron microscopy (SEM). It was shown that the enthalpies of crystallization (ΔHc) upon cooling scans for HMW-PLLA largely increased and the half crystallization time (t1/2) dramatically decreased as the scPLA powder content increased; however, the LMW-PLLA powder did not exhibit the same behavior, as determined by differential scanning calorimetry (DSC). The crystallinity content of the HMW-PLLA/scPLA powder blends significantly increased as the scPLA powder content increased, as determined by DSC and X-ray diffractometry (XRD). In conclusion, the fully biodegradable scPLA powder showed good potential for use as an effective nucleating agent to improve the crystallization properties of the HMW-PLLA bioplastic. Full article
(This article belongs to the Special Issue Advances in Bio-Based and Biodegradable Polymeric Composites II)
Show Figures

Graphical abstract

12 pages, 3074 KB  
Article
Substantially Enhanced Stereocomplex Crystallization of Poly(L-lactide)/Poly(D-lactide) Blends by the Formation of Multi-Arm Stereo-Block Copolymers
by Xingyuan Diao, Xiaonan Chen, Shihao Deng and Hongwei Bai
Crystals 2022, 12(2), 210; https://doi.org/10.3390/cryst12020210 - 30 Jan 2022
Cited by 16 | Viewed by 4040
Abstract
Stereocomplex-type polylactide (SC-PLA) created by alternate packing of poly(L-lactide) (PLLA) and poly(D-lactide) (PDLA) chains in a crystalline state has emerged as a growingly popular engineering bioplastic that possesses excellent hydrolytic stability and thermomechanical properties. However, it is extremely difficult to acquire high-performance SC-PLA [...] Read more.
Stereocomplex-type polylactide (SC-PLA) created by alternate packing of poly(L-lactide) (PLLA) and poly(D-lactide) (PDLA) chains in a crystalline state has emerged as a growingly popular engineering bioplastic that possesses excellent hydrolytic stability and thermomechanical properties. However, it is extremely difficult to acquire high-performance SC-PLA products via melt-processing of high-molecular-weight PLLA/PDLA blends because both SC crystallites and homocrystallites (HCs) are competitively formed in the melt-crystallization. Herein, a facile yet powerful way was employed to boost SC formation by introducing trace amounts of some epoxy-functionalized small-molecule modifiers into the enantiomeric blends during reactive melt-blending. The results show that the SC formation is considerably enhanced with the in situ generation of multi-arm stereo-block PLA copolymers, based on the reaction between epoxy groups of the modifiers and hydroxyl end groups of PLAs. More impressively, it is intriguing to find that the introduction of only 0.5 wt% modifiers can induce exclusive SC formation in the blends upon isothermal and non-isothermal melt-crystallizations. The outstanding SC crystallizability might be attributed to the suppressing effect of such unique copolymers on the separation of the alternately arranged PLLA/PDLA chain segments in molten state as a compatibilizer. Furthermore, the generation of these copolymers does not result in a significant increase in melt viscosity of the blends. These findings suggest new opportunities for the high-throughput processing of SC-PLA materials into useful products. Full article
(This article belongs to the Topic Polymer Crystallization)
Show Figures

Graphical abstract

10 pages, 9331 KB  
Article
Crystallization and Alkaline Degradation Behaviors of Poly(l-Lactide)/4-Armed Poly(ε-Caprolactone)-Block-Poly(d-Lactide) Blends with Different Poly(d-Lactide) Block Lengths
by Suyang Dai, Min Wang, Zhuoxin Zhuang and Zhenbo Ning
Polymers 2020, 12(10), 2195; https://doi.org/10.3390/polym12102195 - 25 Sep 2020
Cited by 8 | Viewed by 2794
Abstract
Four-armed poly(ε-caprolactone)-block-poly(d-lactide) (4-C-D) copolymers with different poly(d-lactide) (PDLA) block lengths (Mn,PDLAs) were synthesized by sequential ring-opening polymerization (ROP). The formation of stereocomplex (SC) crystallites in the 80/20 poly(l-lactide) (PLLA)/4-C-D blends were investigated [...] Read more.
Four-armed poly(ε-caprolactone)-block-poly(d-lactide) (4-C-D) copolymers with different poly(d-lactide) (PDLA) block lengths (Mn,PDLAs) were synthesized by sequential ring-opening polymerization (ROP). The formation of stereocomplex (SC) crystallites in the 80/20 poly(l-lactide) (PLLA)/4-C-D blends were investigated with the change of Mn,PDLA from 0.5 to 1.5 kg/mol. It was found that the crystallization and alkaline degradation of the blends were profoundly affected by the formed SC crystallites. The PLLA/4-C-D0.5 blend had the lowest crystallization rate of the three blends, and it was difficult to see spherulites in this blend by polarized optical microscopy (POM) observation after isothermal crystallization at 140 °C for 4 h. Meanwhile, when Mn,PDLA was 1 kg/mol or 1.5 kg/mol, SC crystallites could be formed in the PLLA/4-C-D blend and acted as nucleators for the crystallization of PLLA homo-crystals. However, the overall crystallization rates of the two blends were still lower than that of the neat PLLA. In the PLLA/4-C-D1.5 blend, the Raman results showed that small isolated SC spherulites were trapped inside the big PLLA homo-spherulites during isothermal crystallization. The degradation rate of the PLLA/4-C-D blend decreased when Mn,PDLA increased from 0.5 to 1.5 kg/mol, and the degradation morphologies had a close relationship with the crystallization state of the blends. This work revealed the gradual formation of SC crystallites with the increase in Mn,PDLA in the PLLA/4-C-D blends and its significant effect on the crystallization and degradation behaviors of the blend films. Full article
(This article belongs to the Special Issue Studies on Polymer Degradation and Recycling)
Show Figures

Graphical abstract

17 pages, 4663 KB  
Article
Preparation and Properties of Stereocomplex of Poly(lactic acid) and Its Amphiphilic Copolymers Containing Glucose Groups
by Liyan Qi, Qianjin Zhu, Dan Cao, Tingting Liu, Kevin R Zhu, Kaixin Chang and Qinwei Gao
Polymers 2020, 12(4), 760; https://doi.org/10.3390/polym12040760 - 31 Mar 2020
Cited by 11 | Viewed by 3957
Abstract
The stereocomplex of poly(lactic acid) containing glucose groups (sc-PLAG) was prepared by solution blending from equal amounts of poly(l-lactic acid) (PLLA) and poly(d-lactic acid-co-glucose) (PDLAG), which were synthesized from l- and d-lactic acid and glucose [...] Read more.
The stereocomplex of poly(lactic acid) containing glucose groups (sc-PLAG) was prepared by solution blending from equal amounts of poly(l-lactic acid) (PLLA) and poly(d-lactic acid-co-glucose) (PDLAG), which were synthesized from l- and d-lactic acid and glucose by melt polycondensation. The methods, including 1H nuclear magnetic resonance spectroscopy (1H NMR), gel permeation chromatography (GPC), differential scanning calorimetry (DSC), X-ray diffraction (XRD), fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), polarizing microscope (POM), scanning electron microscope (SEM), transmission electron microscope (TEM), and contact angle were used to determine the effects of the stereocomplexation of enantiomeric poly(lactic acid) (PLA) units, the amphiphilicity due to glucose residues and lactic acid units, and the interaction of glucose residues with lactic units on the crystallization performance, hydrophilicity, thermal stability, and morphology of samples. The results showed PDLAG was multi-armed, and partial OH groups of glucose residues in PDLAG might remain unreacted. The molecular weight (Mw), dispersity (Ɖ), and glucose proportion in the chain of PDLAG thereby had significant effects on sc-PLAG. There were the stereocomplexation of enantiomeric lactic units and the amphiphilic self-assembly of PDLAG in sc-PLAG, which resulted in glucose groups mainly in the surface phase and lactic units in the bulk phase. The sc-PLAG only possessed the stereocomplex crystal owing to the interaction between nearly equimolar of l-lactic units of PLLA and d-lactic units of PDLAG, and had no homo-crystallites of l- or d-lactic units, which improved the melting temperature (Tm) of sc-PLAG about 50 °C higher than that of PLLA. Glucose groups in sc-PLAG played an important role by forming heterogeneous nucleation, promoting amphiphilic self-assembly, and affecting the ordered arrangement of lactic units. The glass transition temperature (Tg), the melting temperature (Tm), crystallinity, crystallization rate, and water absorption of sc-PLAG showed similar changes with the increased glucose content in feeding. All these parameters increased at first, and the maximum appeared as glucose content in feeding about 2%, such as the maximum crystallinity of 48.8% and the maximum water absorption ratio being 11.7%. When glucose content in feeding continued increasing, all these performances showed a downward trend due to the decrease of arrangement regularity of lactic acid chains caused by glucose groups. Moreover, the contact angle of sc-PLAG decreased gradually with the increased glucose content in feeding to obtain the minimum 77.5° as the glucose content in feeding being 5%, while that of PLLA was 85.0°. The sc-PLAG possessed a regular microsphere structure, and its microspheres with a diameter of about 200 nm could be observed. In conclusion, sc-PLAG containing proper glucose amount could effectively enhance the crystallinity, hydrophilicity, and thermal stability of PLA material, which is useful for drug delivery, a scaffold for tissue engineering, and other applications of biomedicine. Full article
Show Figures

Figure 1

13 pages, 3066 KB  
Article
Biodegradable, Flexible, and Transparent Conducting Silver Nanowires/Polylactide Film with High Performance for Optoelectronic Devices
by Junjun Wang, Junsheng Yu, Dongyu Bai, Zhuobin Li, Huili Liu, Ying Li, Shanyong Chen, Jiang Cheng and Lu Li
Polymers 2020, 12(3), 604; https://doi.org/10.3390/polym12030604 - 6 Mar 2020
Cited by 27 | Viewed by 5330
Abstract
As a synthetic renewable and biodegradable material, the application of polylactide (PLA) in the green flexible electronics has attracted intensive attention due to the increasingly serious issue of electronic waste. Unfortunately, the development of PLA-based optoelectronic devices is greatly hindered by the poor [...] Read more.
As a synthetic renewable and biodegradable material, the application of polylactide (PLA) in the green flexible electronics has attracted intensive attention due to the increasingly serious issue of electronic waste. Unfortunately, the development of PLA-based optoelectronic devices is greatly hindered by the poor heat resistance and mechanical property of PLA. To overcome these limitations, herein, we report a facile and promising route to fabricate silver nanowires/PLA (AgNW/PLA) film with largely improved properties by utilizing the stereocomplex (SC) crystallization between poly(L-lactide) (PLLA) and poly(D-lactide) (PDLA). Through embedding the AgNW networks into the PLLA:PDLA blend matrix via a transfer method, the AgNW/PLLA:PDLA film with both high transparency and excellent conductivity was obtained. Compared with the AgNW/PLLA film, the formation of SC crystallites in the composites matrix could significantly enhance not only heat resistance but also mechanical strength of the AgNW/PLLA:PDLA film. Exceptionally, the AgNW/PLLA:PDLA film exhibited superior flexibility and could maintain excellent electrical conductivity stability even under the condition of 10,000 repeated bending cycles and 100 tape test cycles. In addition, the organic light-emitting diodes (OLEDs) with the AgNW/PLLA:PDLA films as electrodes were successfully fabricated in this work for the first time and they exhibited highly flexible, luminous, as well as hydrolytic degradation properties. This work could provide a low-cost and environment-friendly avenue towards fabricating high-performanced PLA-based biodegradable electronics. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

10 pages, 1388 KB  
Article
Influence of Chain-Extension Reaction on Stereocomplexation, Mechanical Properties and Heat Resistance of Compressed Stereocomplex-Polylactide Bioplastic Films
by Yodthong Baimark and Sumet Kittipoom
Polymers 2018, 10(11), 1218; https://doi.org/10.3390/polym10111218 - 2 Nov 2018
Cited by 15 | Viewed by 3707
Abstract
Stereocomplex polylactide (scPLA) films were prepared by melt blending of poly(l-lactide) (PLLA) and poly(d-lactide) (PDLA) with and without an epoxy-based chain extender before compression molding. The obtained scPLA films were characterized through differential scanning calorimetry, X-ray diffractometry (XRD), tensile [...] Read more.
Stereocomplex polylactide (scPLA) films were prepared by melt blending of poly(l-lactide) (PLLA) and poly(d-lactide) (PDLA) with and without an epoxy-based chain extender before compression molding. The obtained scPLA films were characterized through differential scanning calorimetry, X-ray diffractometry (XRD), tensile testing and dimensional stability to heat. XRD patterns revealed that all the scPLA films had only stereocomplex crystallites. The obtained results showed that the chain-extension reaction improved mechanical properties of the scPLA films, however, it suppressed stereocomplexation and heat resistance. Full article
(This article belongs to the Special Issue Recent Advances in Bioplastics)
Show Figures

Figure 1

19 pages, 5656 KB  
Article
Stereocomplexation, Thermal and Mechanical Properties of Conetworks Composed of Star-Shaped l-Lactide, d-Lactide and ε-Caprolactone Oligomers Utilizing Sugar Alcohols as Core Molecules
by Kaito Sugane, Hayato Takahashi, Toshiaki Shimasaki, Naozumi Teramoto and Mitsuhiro Shibata
Polymers 2017, 9(11), 582; https://doi.org/10.3390/polym9110582 - 6 Nov 2017
Cited by 9 | Viewed by 6061
Abstract
It is important to develop tailor-made biodegradable/biocompatible polymer networks usable for biomaterials whose thermal and mechanical properties are easily controlled by changing the composition. We synthesized sugar-alcohol-based polymer networks (SPN-mscLAO/3CLO, m = 4, 5 or 6) by the crosslinking reactions of [...] Read more.
It is important to develop tailor-made biodegradable/biocompatible polymer networks usable for biomaterials whose thermal and mechanical properties are easily controlled by changing the composition. We synthesized sugar-alcohol-based polymer networks (SPN-mscLAO/3CLO, m = 4, 5 or 6) by the crosslinking reactions of erythritol, xylitol or sorbitol-based m-armed star-shaped l-lactide and d-lactide oligomers (HmSLLAO and HmSDLAO), a glycerol-based 3-armed star-shaped ε-caprolactone oligomer (H3SCLO) and hexamethylene diisocyanate (HDI) at the weight ratios of HmSLLAO/HmSDLAO = 1/1 and (HmSLLAO + HmSDLAO)/H3CLO = 100/0, 75/25, 50/50, 25/75 or 0/100). The influence of the arm number on the crystallization behavior, thermal and mechanical properties of SPN-mscLAO/3CLOs were systematically investigated by comparing with those of sugar-alcohol-based homochiral polymer network (SPN-mLLAO, m = 4, 5 or 6) prepared by the reaction of HmSLLAO and HDI. Stereocomplex (sc) crystallites are dominantly formed for SPN-mscLAO/3CLOs 100/0–25/75, whereas SPN-mLLAOs were amorphous. The higher order of melting temperature of sc-crystals for SPN-mscLAO/3CLOs 100/0–25/75 was m = 5 > m = 6 > m = 4. The sc-crystallinities of SPN-4scLAO/3CLOs 100/0–50/50 were significantly lower than those of SPN-mscLAO/3CLOs 100/0–50/50 (m = 5 and 6). The larger order of the sc-spherulite size at crystallization temperature of 110 °C was m = 5 > m = 6 > m = 4 for SPN-mscLAO/3CLO 100/0. The size and number of sc-spherulites decreased with increasing crystallization temperature over the range of 110–140 °C and with increasing CLO fraction. Among all the networks, SPN-5scLAO/3CLOs 75/25 and 50/50 exhibited the highest and second highest tensile toughnesses (21.4 and 20.3 MJ·m−3), respectively. Full article
(This article belongs to the Special Issue Bio-Based Resins and Crosslinked Polymers from Renewable Resources)
Show Figures

Figure 1

19 pages, 2566 KB  
Article
Competitive Stereocomplexation and Homocrystallization Behaviors in the Poly(lactide) Blends of PLLA and PDLA-PEG-PDLA with Controlled Block Length
by Zhanxin Jing, Xuetao Shi and Guangcheng Zhang
Polymers 2017, 9(3), 107; https://doi.org/10.3390/polym9030107 - 15 Mar 2017
Cited by 27 | Viewed by 6215
Abstract
Stereocomplex poly(lactide) (PLA) was obtained by solution blending of linear PLLA and PDLA-PEG-PDLA. Effects of the L/D ratios, PEG block, and PDLA block on stereocomplexation of the blends are systemically discussed. The full stereocomplex PLA can be acquired by solution blending when L/D [...] Read more.
Stereocomplex poly(lactide) (PLA) was obtained by solution blending of linear PLLA and PDLA-PEG-PDLA. Effects of the L/D ratios, PEG block, and PDLA block on stereocomplexation of the blends are systemically discussed. The full stereocomplex PLA can be acquired by solution blending when L/D ratios are in the range of 7/3–5/5. The experiment results demonstrated that the stereocomplex degree of PLLA/PDLA-PEG-PDLA prepared by melt blending was closely related to the PEG block and PDLA block. POM results indicated that the blends with high L/D ratio showed large disordered spherulites, and the typical Maltese cross pattern was observed as the L/D ratios decreased. The results of PEG block on the stereocomplexation of PLLA/PDLA-PEG-PDLA revealed that the PEG blocks possessed two sides: accelerating agent for the mobility of polymer chains and decreasing nucleation capacity due to their diluting effect. The effect of PDLA block on the stereocomplexation of the blends was also well investigated. The results showed that the crystallization of sc-crystallites and hc-crystallites in the PLLA/PDLA-PEG4k-PDLA blends with different PDLA blocks presents an obvious competition relationship, and this is not beneficial to the formation of sc-crystallites with increasing PDLA block. The melting behavior of PLLA/PDLA-PEG4k-PDLA with different PDLA blocks after isothermal crystallization showed that the blends could achieve full stereocomplex when the crystallization temperature exceeded 160 °C, and a crystallite with high perfection could be formed as the crystallization temperature increased. This study systemically investigated the effects of the L/D ratios, PEG block, PDLA block, and crystallization conditions on stereocomplex crystallization of PLLA/PDLA-PEG-PDLA blends, which can provide potential approaches to control the microstructure and physical performances of PLLA/PDLA-PEG-PDLA blends. Full article
Show Figures

Graphical abstract

17 pages, 5460 KB  
Article
Stereocomplexation in Copolymer Networks Incorporating Enantiomeric Glycerol-Based 3-Armed Lactide Oligomers and a 2-Armed ɛ-Caprolactone Oligomer
by Ayaka Shibita, Seina Kawasaki, Toshiaki Shimasaki, Naozumi Teramoto and Mitsuhiro Shibata
Materials 2016, 9(7), 591; https://doi.org/10.3390/ma9070591 - 19 Jul 2016
Cited by 5 | Viewed by 5473
Abstract
The reactions of enantiomeric glycerol-based 3-armed lactide oligomers (H3DLAO and H3LLAO) and a diethylene glycol-based 2-armed ɛ-caprolactone oligomer (H2CLO) with hexamethylene diisocyanate (HDI) produced polyesterurethane copolymer networks (PEU-3scLAO/2CLOs 100/0, 75/25, 50/50, 25/75 and 0/100) with different feed ratios of stereocomplex (sc) lactide oligomer [...] Read more.
The reactions of enantiomeric glycerol-based 3-armed lactide oligomers (H3DLAO and H3LLAO) and a diethylene glycol-based 2-armed ɛ-caprolactone oligomer (H2CLO) with hexamethylene diisocyanate (HDI) produced polyesterurethane copolymer networks (PEU-3scLAO/2CLOs 100/0, 75/25, 50/50, 25/75 and 0/100) with different feed ratios of stereocomplex (sc) lactide oligomer (H3scLAO = H3DLAO + H3LLAO, H3DLAO/H3LLAO = 1/1) and H2CLO. Thermal and mechanical properties of the copolymer networks were compared with those of a simple homochiral (hc) network (PEU-3DLAO) produced by the reaction of H3DLAO and HDI. X-ray diffraction and differential scanning calorimetric analyses revealed that sc crystallites are formed without any hc crystallization for PEU-3scLAO/2CLOs, and that PEU-3DLAO is amorphous. The melting temperatures of sc crystallites for PEU-3scLAO/2CLOs were much higher than that of hc crystallites of H3DLAO. The polarized optical microscopic analysis revealed that the nucleation efficiency is enhanced with increasing feed of H3scLAO fraction, whereas the spherulite growth rate is accelerated with increasing feed H2CLO fraction over 100/0-50/50 networks. PEU-3scLAO/2CLO 100/0 (i.e., PEU-3scLAO) exhibited a higher tensile strength and modulus than PEU-3DLAO. The elongation at break and tensile toughness for PEU-3scLAO/2CLOs increased with an increasing feed amount of H2CLO. Full article
(This article belongs to the Section Biomaterials)
Show Figures

Graphical abstract

Back to TopTop