Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (14)

Search Parameters:
Keywords = standing spin waves

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 3045 KiB  
Article
Optimization Design of a Multi-String Standing Wave Electrospinning Apparatus Based on Electric Field Simulations
by Xiaoqing Chen, Jiahao Liang, Xiang Tan, Jiazheng Ding, Wenyu Xie, Changgang Li and Yebin Cai
Polymers 2024, 16(16), 2330; https://doi.org/10.3390/polym16162330 - 17 Aug 2024
Viewed by 1162
Abstract
The mass production of uniform, high-quality polymer nanofibers remains a challenge. To enhance spinning yield, a multi-string standing wave electrospinning apparatus was developed by incorporating a string array into a standing wave electrospinning device. The process parameters such as string spacing, quantity, and [...] Read more.
The mass production of uniform, high-quality polymer nanofibers remains a challenge. To enhance spinning yield, a multi-string standing wave electrospinning apparatus was developed by incorporating a string array into a standing wave electrospinning device. The process parameters such as string spacing, quantity, and phase difference were optimized, and their effects on the electric field distribution within the spinning area were analyzed using electric field simulations. When the string spacing was less than 40 mm or the number of strings exceeded two, the electric field strength significantly decreased due to electric field interference. However, this interference could be effectively mitigated by setting the string standing wave phase difference to half a period. The optimal string array parameters were identified as string spacing of 40 mm, two strings, and a phase difference of half a period. Multi-string standing wave electrospinning produced fibers with diameters similar to those obtained with single-string standing wave electrospinning (178 ± 72 nm vs. 173 ± 48 nm), but the yield increased by 88.7%, reaching 2.17 g/h, thereby demonstrating the potential for the large-scale production of nanofibers. This work further refined the standing wave electrospinning process and provided valuable insights for optimizing wire-type electrospinning processes. Full article
Show Figures

Figure 1

10 pages, 1919 KiB  
Article
Modulation of Standing Spin Waves in Confined Rectangular Elements
by Milad Jalali, Qian Chen, Xuejian Tang, Qingjie Guo, Jian Liang, Xiaochao Zhou, Dong Zhang, Zhaocong Huang and Ya Zhai
Materials 2024, 17(10), 2404; https://doi.org/10.3390/ma17102404 - 16 May 2024
Viewed by 1391
Abstract
Magnonics is an emerging field within spintronics that focuses on developing novel magnetic devices capable of manipulating information through the modification of spin waves in nanostructures with submicron size. Here, we provide a confined magnetic rectangular element to modulate the standing spin waves, [...] Read more.
Magnonics is an emerging field within spintronics that focuses on developing novel magnetic devices capable of manipulating information through the modification of spin waves in nanostructures with submicron size. Here, we provide a confined magnetic rectangular element to modulate the standing spin waves, by changing the saturation magnetisation (MS), exchange constant (A), and the aspect ratio of rectangular magnetic elements via micromagnetic simulation. It is found that the bulk mode and the edge mode of the magnetic element form a hybrid with each other. With the decrease in MS, both the Kittel mode and the standing spin waves undergo a shift towards higher frequencies. On the contrary, as A decreases, the frequencies of standing spin waves become smaller, while the Kittel mode is almost unaffected. Moreover, when the length-to-width aspect ratio of the element is increased, standing spin waves along the width and length become split, leading to the observation of additional modes in the magnetic spectra. For each mode, the vibration style is discussed. These spin dynamic modes were further confirmed via FMR experiments, which agree well with the simulation results. Full article
(This article belongs to the Special Issue Advanced Spintronic Materials and Devices)
Show Figures

Figure 1

26 pages, 1572 KiB  
Article
Signatures of Electric Field and Layer Separation Effects on the Spin-Valley Physics of MoSe2/WSe2 Heterobilayers: From Energy Bands to Dipolar Excitons
by Paulo E. Faria Junior and Jaroslav Fabian
Nanomaterials 2023, 13(7), 1187; https://doi.org/10.3390/nano13071187 - 27 Mar 2023
Cited by 14 | Viewed by 4090
Abstract
Multilayered van der Waals heterostructures based on transition metal dichalcogenides are suitable platforms on which to study interlayer (dipolar) excitons, in which electrons and holes are localized in different layers. Interestingly, these excitonic complexes exhibit pronounced valley Zeeman signatures, but how their spin-valley [...] Read more.
Multilayered van der Waals heterostructures based on transition metal dichalcogenides are suitable platforms on which to study interlayer (dipolar) excitons, in which electrons and holes are localized in different layers. Interestingly, these excitonic complexes exhibit pronounced valley Zeeman signatures, but how their spin-valley physics can be further altered due to external parameters—such as electric field and interlayer separation—remains largely unexplored. Here, we perform a systematic analysis of the spin-valley physics in MoSe2/WSe2 heterobilayers under the influence of an external electric field and changes of the interlayer separation. In particular, we analyze the spin (Sz) and orbital (Lz) degrees of freedom, and the symmetry properties of the relevant band edges (at K, Q, and Γ points) of high-symmetry stackings at 0° (R-type) and 60° (H-type) angles—the important building blocks present in moiré or atomically reconstructed structures. We reveal distinct hybridization signatures on the spin and the orbital degrees of freedom of low-energy bands, due to the wave function mixing between the layers, which are stacking-dependent, and can be further modified by electric field and interlayer distance variation. We find that H-type stackings favor large changes in the g-factors as a function of the electric field, e.g., from 5 to 3 in the valence bands of the Hhh stacking, because of the opposite orientation of Sz and Lz of the individual monolayers. For the low-energy dipolar excitons (direct and indirect in k-space), we quantify the electric dipole moments and polarizabilities, reflecting the layer delocalization of the constituent bands. Furthermore, our results show that direct dipolar excitons carry a robust valley Zeeman effect nearly independent of the electric field, but tunable by the interlayer distance, which can be rendered experimentally accessible via applied external pressure. For the momentum-indirect dipolar excitons, our symmetry analysis indicates that phonon-mediated optical processes can easily take place. In particular, for the indirect excitons with conduction bands at the Q point for H-type stackings, we find marked variations of the valley Zeeman (∼4) as a function of the electric field, which notably stands out from the other dipolar exciton species. Our analysis suggests that stronger signatures of the coupled spin-valley physics are favored in H-type stackings, which can be experimentally investigated in samples with twist angle close to 60°. In summary, our study provides fundamental microscopic insights into the spin-valley physics of van der Waals heterostructures, which are relevant to understanding the valley Zeeman splitting of dipolar excitonic complexes, and also intralayer excitons. Full article
Show Figures

Figure 1

12 pages, 3018 KiB  
Article
Engineering the Exchange Spin Waves in Graded Thin Ferromagnetic Films
by Igor Yanilkin, Amir Gumarov, Igor Golovchanskiy, Bulat Gabbasov, Roman Yusupov and Lenar Tagirov
Nanomaterials 2022, 12(24), 4361; https://doi.org/10.3390/nano12244361 - 7 Dec 2022
Cited by 3 | Viewed by 1960
Abstract
The results of experimental and theoretical studies of standing spin waves in a series of epitaxial films of the ferromagnetic Pd1−xFex alloy (0.02 < x < 0.11) with different distributions of the magnetic properties across the thickness are presented. [...] Read more.
The results of experimental and theoretical studies of standing spin waves in a series of epitaxial films of the ferromagnetic Pd1−xFex alloy (0.02 < x < 0.11) with different distributions of the magnetic properties across the thickness are presented. Films with linear and stepwise, as well as more complex Lorentzian, sine and cosine profiles of iron concentration in the alloy, and thicknesses from 20 to 400 nm are considered. A crucial influence of the magnetic properties profile on the spectrum of spin wave resonances is demonstrated. A capability of engineering the standing spin waves in graded ferromagnetic films for applications in magnonics is discussed. Full article
(This article belongs to the Special Issue Nano-Magnets and Nano-Magnetisms)
Show Figures

Figure 1

7 pages, 5108 KiB  
Article
Magnonic Activity of Circularly Magnetized Ferromagnetic Nanotubes Induced by Dzyalonshinskii-Moriya Interaction
by Mingming Yang, Xiaoyan Zeng and Ming Yan
Symmetry 2022, 14(9), 1771; https://doi.org/10.3390/sym14091771 - 25 Aug 2022
Cited by 3 | Viewed by 1606
Abstract
Magnonic activity, a chiral effect in magnetization dynamics, was recently reported in ferromagnetic nanotubes. Being a perfect analogy to the optical activity, it refers to the continuous rotation of a standing-waves pattern formed in the circumferential direction during the wave propagation along the [...] Read more.
Magnonic activity, a chiral effect in magnetization dynamics, was recently reported in ferromagnetic nanotubes. Being a perfect analogy to the optical activity, it refers to the continuous rotation of a standing-waves pattern formed in the circumferential direction during the wave propagation along the tube. This effect only occurs when the tube is longitudinally magnetized. Here we report that a similar phenomenon can also take place in circularly magnetized nanotubes with the presence of Dzyalonshinskii-Moriya interaction (DMI). While in the former case, the chiral-symmetry breaking is caused by the curvilinear shape of the tube, it is attributed to the intrinsic asymmetry of the DMI in the latter one. We present the results obtained in both numerical simulations and semi-analytical calculations, which are in great agreement. This work provides new aspects for the manipulation of spin waves, which may bear potential applications in the development of novel spintronic devices. Full article
(This article belongs to the Section Physics)
Show Figures

Figure 1

16 pages, 7564 KiB  
Article
Numerical Analysis of Standing Waves Phenomenon of Aircraft Tires
by Yu Gan, Xingbo Fang and Xiaohui Wei
Materials 2022, 15(9), 2960; https://doi.org/10.3390/ma15092960 - 19 Apr 2022
Cited by 1 | Viewed by 2583
Abstract
In this paper, the generation mechanisms of standing waves on aircraft tires are discussed by comparing the time-domain model and FEA model. Unlike passenger car tires, aircraft tires accelerate to landing speed sharply when the airplane lands. According to the tire structure, the [...] Read more.
In this paper, the generation mechanisms of standing waves on aircraft tires are discussed by comparing the time-domain model and FEA model. Unlike passenger car tires, aircraft tires accelerate to landing speed sharply when the airplane lands. According to the tire structure, the detailed finite element model of the aircraft tires is established in ABAQUS. The tire model runs on a 1.7 m spinning drum and accelerates to 300 km/h in 0.3 s. The proposed finite element model is verified by comparing the simulation results under inflation and static load with the experimental results. Similarly, by analyzing and comparing the calculated values of the time-domain model and FEA model, the variation of standing wave wavelength at different speeds is studied. In addition, the stress and strain field of the aircraft tires standing wave is analyzed. According to the definition of tire standing wave, a method for determining critical speed is proposed. Finally, the effects of tire inflation pressure and vertical load on the occurrence of standing waves were studied. Full article
Show Figures

Figure 1

15 pages, 5864 KiB  
Article
3D-Printed Miniature Robots with Piezoelectric Actuation for Locomotion and Steering Maneuverability Applications
by Víctor Ruiz-Díez, José Luis García-Caraballo, Jorge Hernando-García and José Luis Sánchez-Rojas
Actuators 2021, 10(12), 335; https://doi.org/10.3390/act10120335 - 20 Dec 2021
Cited by 12 | Viewed by 4258
Abstract
The miniaturization of robots with locomotion abilities is a challenge of significant technological impact in many applications where large-scale robots have physical or cost restrictions. Access to hostile environments, improving microfabrication processes, or advanced instrumentation are examples of their potential use. Here, we [...] Read more.
The miniaturization of robots with locomotion abilities is a challenge of significant technological impact in many applications where large-scale robots have physical or cost restrictions. Access to hostile environments, improving microfabrication processes, or advanced instrumentation are examples of their potential use. Here, we propose a miniature 20 mm long sub-gram robot with piezoelectric actuation whose direction of motion can be controlled. A differential drive approach was implemented in an H-shaped 3D-printed motor platform featuring two plate resonators linked at their center, with built-in legs. The locomotion was driven by the generation of standing waves on each plate by means of piezoelectric patches excited with burst signals. The control of the motion trajectory of the robot, either translation or rotation, was attained by adjusting the parameters of the actuation signals such as the applied voltage, the number of applied cycles, or the driving frequency. The robot demonstrated locomotion in bidirectional straight paths as long as 65 mm at 2 mm/s speed with a voltage amplitude of only 10 V, and forward and backward precise steps as low as 1 µm. The spinning of the robot could be controlled with turns as low as 0.013 deg. and angular speeds as high as 3 deg./s under the same conditions. The proposed device was able to describe complex trajectories of more than 160 mm, while carrying 70 times its own weight. Full article
(This article belongs to the Special Issue Miniature and Micro-Actuators)
Show Figures

Figure 1

17 pages, 4422 KiB  
Article
Sensitivity Analysis of a Portable Wireless PCB-MEMS Permittivity Sensor Node for Non-Invasive Liquid Recognition
by Javier Meléndez-Campos, Matias Vázquez-Piñón and Sergio Camacho-Leon
Micromachines 2021, 12(9), 1068; https://doi.org/10.3390/mi12091068 - 2 Sep 2021
Cited by 1 | Viewed by 4219
Abstract
Dielectric characteristics are useful to determine crucial properties of liquids and to differentiate between liquid samples with similar physical characteristics. Liquid recognition has found applications in a broad variety of fields, including healthcare, food science, and quality inspection, among others. This work demonstrates [...] Read more.
Dielectric characteristics are useful to determine crucial properties of liquids and to differentiate between liquid samples with similar physical characteristics. Liquid recognition has found applications in a broad variety of fields, including healthcare, food science, and quality inspection, among others. This work demonstrates the fabrication, instrumentation, and functionality of a portable wireless sensor node for the permittivity measurement of liquids that require characterization and differentiation. The node incorporates an interdigitated microelectrode array as a transducer and a microcontroller unit with radio communication electronics for data processing and transmission, which enable a wide variety of stand-alone applications. A laser-ablation-based microfabrication technique is applied to fabricate the microelectromechanical systems (MEMS) transducer on a printed circuit board (PCB) substrate. The surface of the transducer is covered with a thin layer of SU-8 polymer by spin coating, which prevents it from direct contact with the Cu electrodes and the liquid sample. This helps to enhance durability, avoid electrode corrosion and contamination of the liquid sample, and to prevent undesirable electrochemical reactions to arise. The transducer’s impedance was modeled as a Randles cell, having resistive and reactive components determined analytically using a square wave as stimuli, and a resistor as a current-to-voltage converter. To characterize the node sensitivity under different conditions, three different transducer designs were fabricated and tested for four different fluids, i.e., air, isopropanol, glycerin, and distilled water—achieving a sensitivity of 1.6965 +/− 0.2028 εr/pF. The use of laser ablation allowed the reduction of the transducer footprint while maintaining its sensitivity within an adequate value for the targeted applications. Full article
(This article belongs to the Special Issue Selected Papers from ICMA2021)
Show Figures

Graphical abstract

22 pages, 7271 KiB  
Article
Microwave Atom Chip Design
by William Miyahira, Andrew P. Rotunno, ShuangLi Du and Seth Aubin
Atoms 2021, 9(3), 54; https://doi.org/10.3390/atoms9030054 - 5 Aug 2021
Cited by 3 | Viewed by 2588
Abstract
We present a toolbox of microstrip building blocks for microwave atom chips geared towards trapped atom interferometry. Transverse trapping potentials based on the AC Zeeman (ACZ) effect can be formed from the combined microwave magnetic near fields of a pair or a triplet [...] Read more.
We present a toolbox of microstrip building blocks for microwave atom chips geared towards trapped atom interferometry. Transverse trapping potentials based on the AC Zeeman (ACZ) effect can be formed from the combined microwave magnetic near fields of a pair or a triplet of parallel microstrip transmission lines. Axial confinement can be provided by a microwave lattice (standing wave) along the microstrip traces. Microwave fields provide additional parameters for dynamically adjusting ACZ potentials: detuning of the applied frequency to select atomic transitions and local polarization controlled by the relative phase in multiple microwave currents. Multiple ACZ traps and potentials, operating at different frequencies, can be targeted to different spin states simultaneously, thus enabling spin-specific manipulation of atoms and spin-dependent trapped atom interferometry. Full article
(This article belongs to the Special Issue Atomic Interferometry with Bose–Einstein Condensates)
Show Figures

Figure 1

10 pages, 2021 KiB  
Article
The Effects of Electric Field Dynamics on the Quality of Large-Area Nanofibrous Layers
by Marek Pokorný, Jan Klemeš, Adéla Kotzianová, Martin Fogl, Anna Zítková, Simon Jantač, Kateřina Knotková, Juraj Košek and Vladimír Velebný
Polymers 2021, 13(12), 1968; https://doi.org/10.3390/polym13121968 - 14 Jun 2021
Viewed by 2206
Abstract
This paper presents technological modifications of an electrostatic spinning device, which significantly increase the thickness homogeneity (i.e., quality) of produced layers by creating auxiliary dynamic electric fields in the vicinity of the spinning and collector electrodes. A moving body was installed above the [...] Read more.
This paper presents technological modifications of an electrostatic spinning device, which significantly increase the thickness homogeneity (i.e., quality) of produced layers by creating auxiliary dynamic electric fields in the vicinity of the spinning and collector electrodes. A moving body was installed above the needleless spinning electrode, which destabilized the standing wave occurring on the free surface of the spinning solution. Furthermore, an endless belt design was used for the collector electrode instead of a roll-to-roll design, which made it possible to substantially increase the surface speed of the substrate and, therefore, the dynamics of the electric field at the place of collection of the fibers being spun. As a result, the coefficient of variation of the area weight of 912 samples cut out from the deposited nanofibrous layer, which was (1000 × 500) mm2 in size and had an average area weight of (17.2 ± 0.8) g/m2, was less than 4.5%. These results were obtained only when the dynamics of both the spinning and collector electrodes were increased at the same time. These modifications resulted in a significant increase in the quality of deposited nanofibrous layers up to the standard required for their use in pharmaceutical applications. Full article
(This article belongs to the Special Issue Electrospinning of Biodegradable Nanofibers)
Show Figures

Graphical abstract

1 pages, 126 KiB  
Abstract
Sensitivity Analysis of a Portable Wireless PCB-MEMS Permittivity Sensor Node for Non-Invasive Liquid Recognition
by Javier Meléndez-Campos, Matias Vázquez-Piñón and Sergio Camacho-Leon
Eng. Proc. 2021, 4(1), 40; https://doi.org/10.3390/Micromachines2021-09597 - 16 Apr 2021
Viewed by 913
Abstract
Dielectric characteristics are useful to determine crucial properties of liquids and to differentiate between liquid samples with similar physical characteristics. Liquid recognition has found applications in a broad variety of fields, including healthcare, food science, and quality inspection, among others. This work demonstrates [...] Read more.
Dielectric characteristics are useful to determine crucial properties of liquids and to differentiate between liquid samples with similar physical characteristics. Liquid recognition has found applications in a broad variety of fields, including healthcare, food science, and quality inspection, among others. This work demonstrates the fabrication, instrumentation, and functionality of a portable wireless sensor node for permittivity measurement of liquids that require characterization and differentiation. The node incorporates an interdigitated microelectrode array as transducer, and a microcontroller unit with radio communication electronics for data processing and transmission, which enables a wide variety of stand-alone applications. A laser-ablation-based microfabrication technique is applied to fabricate the microelectromechanical systems (MEMS) transducer on a printed circuit board (PCB) substrate. The surface of the transducer is covered with a thin layer of SU-8 polymer by spin coating, which prevents direct contact between the Cu electrodes and the liquid sample. This helps to enhance durability, avoid electrode corrosion and contamination of the liquid sample, and to prevent undesirable electrochemical reactions from arising. The transducer’s impedance was modelled as a Randles cell, having resistive and reactive components determined analytically, using a square wave as stimuli and a resistor as a current-to-voltage converter. To characterize the node sensitivity under different conditions, three different transducer designs were fabricated and tested for four different fluids—i.e., air, isopropanol, glycerin, and distilled water—achieving a sensitivity of 1.6965 +/− 0.2028 εr/pF. The use of laser ablation allowed the reduction of the transducer footprint while maintaining its sensitivity within an adequate value for the targeted applications. Full article
(This article belongs to the Proceedings of The 1st International Conference on Micromachines and Applications)
15 pages, 1553 KiB  
Article
Impact of 2.45 GHz Microwave Irradiation on the Fruit Fly, Drosophila melanogaster
by Aya Yanagawa, Masatoshi Tomaru, Atsushi Kajiwara, Hiroki Nakajima, Elie Desmond-Le Quemener, Jean-Philippe Steyer and Tomohiko Mitani
Insects 2020, 11(9), 598; https://doi.org/10.3390/insects11090598 - 4 Sep 2020
Cited by 8 | Viewed by 3750
Abstract
The physiological and behavioral influences of 2.45 GHz microwaves on Drosophila melanogaster were examined. Standing waves transitioned into heat energy effectively when passing through the insect body. On the contrary, travelling waves did not transit into heat energy in the insect body. This [...] Read more.
The physiological and behavioral influences of 2.45 GHz microwaves on Drosophila melanogaster were examined. Standing waves transitioned into heat energy effectively when passing through the insect body. On the contrary, travelling waves did not transit into heat energy in the insect body. This indicated that there was no concern regarding the thermal effects of microwave irradiation for levels of daily usage. However, we detected genotoxicity and behavioral alterations associated with travelling wave irradiation, which can be attributed to the non-thermal effects of the waves. Electron spin resonance (ESR) revealed that fruit flies possessed paramagnetic substances in the body such as Fe3+, Cu2+, Mn2+, and organic radicals. The temperature dependent intensities of these paramagnetic substances indicated that females possessed more of the components susceptible to electromagnetic waves than males, and the behavioral tests supported the differences between the sexes. Full article
(This article belongs to the Special Issue Cross Talking between Insects and Environment)
Show Figures

Figure 1

22 pages, 8094 KiB  
Article
Multi-Physics Ensemble versus Atmosphere–Ocean Coupled Model Simulations for a Tropical-Like Cyclone in the Mediterranean Sea
by Antonio Ricchi, Mario Marcello Miglietta, Davide Bonaldo, Guido Cioni, Umberto Rizza and Sandro Carniel
Atmosphere 2019, 10(4), 202; https://doi.org/10.3390/atmos10040202 - 15 Apr 2019
Cited by 36 | Viewed by 6923
Abstract
Between 19 and 22 January 2014, a baroclinic wave moving eastward from the Atlantic Ocean generated a cut-off low over the Strait of Gibraltar and was responsible for the subsequent intensification of an extra-tropical cyclone. This system exhibited tropical-like features in the following [...] Read more.
Between 19 and 22 January 2014, a baroclinic wave moving eastward from the Atlantic Ocean generated a cut-off low over the Strait of Gibraltar and was responsible for the subsequent intensification of an extra-tropical cyclone. This system exhibited tropical-like features in the following stages of its life cycle and remained active for approximately 80 h, moving along the Mediterranean Sea from west to east, eventually reaching the Adriatic Sea. Two different modeling approaches, which are comparable in terms of computational cost, are analyzed here to represent the cyclone evolution. First, a multi-physics ensemble using different microphysics and turbulence parameterization schemes available in the WRF (weather research and forecasting) model is employed. Second, the COAWST (coupled ocean–atmosphere wave sediment transport modeling system) suite, including WRF as an atmospheric model, ROMS (regional ocean modeling system) as an ocean model, and SWAN (simulating waves in nearshore) as a wave model, is used. The advantage of using a coupled modeling system is evaluated taking into account air–sea interaction processes at growing levels of complexity. First, a high-resolution sea surface temperature (SST) field, updated every 6 h, is used to force a WRF model stand-alone atmospheric simulation. Later, a two-way atmosphere–ocean coupled configuration is employed using COAWST, where SST is updated using consistent sea surface fluxes in the atmospheric and ocean models. Results show that a 1D ocean model is able to reproduce the evolution of the cyclone rather well, given a high-resolution initial SST field produced by ROMS after a long spin-up time. Additionally, coupled simulations reproduce more accurate (less intense) sea surface heat fluxes and a cyclone track and intensity, compared with a multi-physics ensemble of standalone atmospheric simulations. Full article
(This article belongs to the Special Issue Mediterranean Tropical-Like Cyclones (Medicanes))
Show Figures

Figure 1

8 pages, 4023 KiB  
Article
The Fabrication of Nanostructures on Polydimethylsiloxane by Laser Interference Lithography
by Jun Wu, Zhaoxin Geng, Yiyang Xie, Zhiyuan Fan, Yue Su, Chen Xu and Hongda Chen
Nanomaterials 2019, 9(1), 73; https://doi.org/10.3390/nano9010073 - 7 Jan 2019
Cited by 11 | Viewed by 6459
Abstract
We report a method for fabricating periodic nanostructures on the surface of polydimethylsiloxane (PDMS) using laser interference lithography. The wave-front splitting method was used for the system, as the period and duty cycle can be easily controlled. Indium tin oxide (ITO) glass reveals [...] Read more.
We report a method for fabricating periodic nanostructures on the surface of polydimethylsiloxane (PDMS) using laser interference lithography. The wave-front splitting method was used for the system, as the period and duty cycle can be easily controlled. Indium tin oxide (ITO) glass reveals favorable characteristics for controlling the standing waves distributed in the vertical direction, and was selected as the rigid substrate for the curing of the PDMS prepolymer, photoresist spin coating, and exposure processes. Periodic nanostructures such as gratings, dot, and hole arrays were prepared. This efficient way of fabricating large area periodic nanoscale patterns will be useful for surface plasmonic resonance and wearable electronics. Full article
Show Figures

Figure 1

Back to TopTop