Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (34)

Search Parameters:
Keywords = stabilized rammed earth

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 5282 KiB  
Article
Climate Adaptability Analysis of Traditional Dwellings in Mountain Terraced Areas: A Case Study of ‘Mushroom Houses’ in the Hani Terraces of Yunnan, China
by Luyao Hu, Yinong Liu, Xinkai Li and Pengbo Yan
Atmosphere 2025, 16(5), 608; https://doi.org/10.3390/atmos16050608 - 16 May 2025
Viewed by 496
Abstract
This study examines the climate adaptability of traditional Hani ‘Mushroom Houses’ located in the rice terrace region of Honghe Hani Autonomous Prefecture, Yunnan, China. By analyzing 30 years of meteorological data, the study identifies the local climatic characteristics of high temperatures, high humidity, [...] Read more.
This study examines the climate adaptability of traditional Hani ‘Mushroom Houses’ located in the rice terrace region of Honghe Hani Autonomous Prefecture, Yunnan, China. By analyzing 30 years of meteorological data, the study identifies the local climatic characteristics of high temperatures, high humidity, and significant diurnal temperature variations. The thermal comfort voting method was used to establish a quantitative relationship between the Physiological Equivalent Temperature (PET) index and residents’ subjective thermal perceptions, thereby assessing seasonal variations in thermal comfort. Field measurements of indoor and outdoor temperature, humidity, and wind speed were conducted in May and December 2023 to evaluate thermal interactions between rooms. This study demonstrated: (1) the critical roles of building orientation (e.g., northwest-facing design), functional layout (e.g., multi-story zoning), and structural forms (e.g., thick walls, thatched roofs) in regulating temperature and humidity. (2) Confirmed that Hani ‘Mushroom Houses’ stabilize indoor environments through passive strategies, including material selection (wood, rammed earth), natural ventilation (cross-draft design), and spatial organization (climate-buffering storage layers). (3) Provided empirical evidence for optimizing traditional dwellings (e.g., enhanced insulation, ventilation improvements) and advancing sustainable practices in similar climatic regions. Full article
(This article belongs to the Section Biometeorology and Bioclimatology)
Show Figures

Figure 1

16 pages, 4171 KiB  
Article
Evaluation of the Potential of Natural Mining By-Products as Constituents of Stabilized Rammed Earth Building Materials
by Miguel Angel Martin-Antunes, Céline Perlot, Pedro Villanueva, Rafik Abdallah and Andrés Seco
Appl. Sci. 2025, 15(9), 5167; https://doi.org/10.3390/app15095167 - 6 May 2025
Cited by 1 | Viewed by 334
Abstract
In this investigation, different natural by-products were used to modify the Particle Size Distribution (PSD) of a soil to evaluate their potential in Stabilized Rammed Earth (SRE) building. Three different mixes were manufactured: (i) a mix composed entirely of a clayey soil, (ii) [...] Read more.
In this investigation, different natural by-products were used to modify the Particle Size Distribution (PSD) of a soil to evaluate their potential in Stabilized Rammed Earth (SRE) building. Three different mixes were manufactured: (i) a mix composed entirely of a clayey soil, (ii) a mix consisting of mining by-products and clayey soil and (iii) a mix entirely based on mining by-products. Unstabilized and stabilized samples of the mixes were manufactured using two cement dosages (2.5% and 5%), and the samples were tested for Unconfined Compressive Strength (UCS), soaked UCS, and wetting and drying tests. Mining by-products demonstrated significant potential in SRE building, as their addition to the clayey soil resulted in higher UCS values compared to the UCS obtained from clayey soil alone. Unstabilized samples lost their integrity during exposure to water. The inclusion of mining by-products also showed potential as, although the mixes did not fully meet the requirements for soaked UCS and the wetting and drying tests, the mix containing both mining by-products and clayey soil retained its integrity in water, unlike the samples composed solely of clayey soil. M3C5 successfully met the requirements for soaked UCS and the wetting and drying tests, further highlighting the great potential of mining by-products in SRE building. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

37 pages, 4763 KiB  
Review
Bio-Based Stabilization of Natural Soil for Rammed Earth Construction: A Review on Mechanical and Water Durability Performance
by Taiwo Sesay, Yuekai Xie, Yue Chen and Jianfeng Xue
Polymers 2025, 17(9), 1170; https://doi.org/10.3390/polym17091170 - 25 Apr 2025
Cited by 1 | Viewed by 1216
Abstract
Rammed earth (RE), despite being an ancient method of construction, has smoothly integrated into contemporary civil engineering due to its compatibility with current sustainability requirements for housing structures. However, typical RE needs some improvements to fully realize its potential as both a structurally [...] Read more.
Rammed earth (RE), despite being an ancient method of construction, has smoothly integrated into contemporary civil engineering due to its compatibility with current sustainability requirements for housing structures. However, typical RE needs some improvements to fully realize its potential as both a structurally effective and environmentally friendly building technique. As a result, multiple bio-inspired enhancement methods have been suggested to substitute traditional cement or lime stabilizers. This review examines the various efforts made in the past decade to biologically stabilize natural soil for the construction of RE. It provides a brief overview of the different bio-based materials utilized in this area but primarily concentrates on their effects on the mechanical strength and water durability of RE structures. The review also addresses current obstacles that prevent the widespread industrial adoption of this valuable earth-building method and identifies potential directions for future research. Overall, the available literature on the mechanical performance and durability of bio-based rammed earth (BRE) shows encouraging outcomes. Nonetheless, various issues, such as the absence of thorough data on the discussed topics, issues related to the inherent properties of soil and biomaterials, and doubts regarding the reliability of durability evaluation methods, have been identified as factors that could lead to a lack of confidence among RE practitioners in adopting bio-based treatments. This study will provide a solid foundation for future researchers aiming to advance BRE technology, thus enhancing sustainability within the construction sector. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

38 pages, 5716 KiB  
Article
Machine Learning Approach for Assessment of Compressive Strength of Soil for Use as Construction Materials
by Yassir M. H. Mustafa, Yakubu Sani Wudil, Mohammad Sharif Zami and Mohammed A. Al-Osta
Eng 2025, 6(5), 84; https://doi.org/10.3390/eng6050084 - 23 Apr 2025
Cited by 1 | Viewed by 1283
Abstract
This study investigates the use of machine learning techniques to predict the unconfined compressive strength (UCS) of both stabilized and unstabilized soils. This research focuses on analyzing key soil parameters that significantly impact the strength of earth materials, such as grain size distribution [...] Read more.
This study investigates the use of machine learning techniques to predict the unconfined compressive strength (UCS) of both stabilized and unstabilized soils. This research focuses on analyzing key soil parameters that significantly impact the strength of earth materials, such as grain size distribution and Atterberg limits. Machine learning models, specifically Support Vector Regression (SVR) and Decision Trees (DT), were employed to predict UCS. Model performance was evaluated using key metrics, including the Pearson coefficient of correlation (r2), coefficient of determination (R2), mean absolute error, and root mean square error. The findings reveal that, for unstabilized soils, both SVR and DT models exhibit remarkable performance with r2 values of 0.9948 and 0.9947, respectively, with the DT model surpassing the SVR model in estimating UCS. Validation was conducted using data from four types of locally available soils in the Najd region of Saudi Arabia, although some disparities were noted between actual and predicted results due to limitations in the training data. The analysis indicates that, for unstabilized soil, grain size distribution and moisture content during testing are primary influencers of strength, whereas, for stabilized soil, factors such as stabilizer type and content, as well as density and moisture during testing, are pivotal. This research demonstrates the potential of machine learning for developing a robust classification system to enhance earth material utilization. Full article
(This article belongs to the Section Chemical, Civil and Environmental Engineering)
Show Figures

Figure 1

47 pages, 12229 KiB  
Systematic Review
Sustainable Earthen Construction: A Meta-Analytical Review of Environmental, Mechanical, and Thermal Performance
by Viviana Mora-Ruiz, Jonathan Soto-Paz, Shady Attia and Cristian Mejía-Parada
Buildings 2025, 15(6), 918; https://doi.org/10.3390/buildings15060918 - 14 Mar 2025
Cited by 1 | Viewed by 2346
Abstract
This study examines the main earthen constructions—such as adobe, compressed earth blocks (CEBs), and rammed earth walls (REWs)—highlighting their potential to reduce the environmental impact compared to conventional materials. Through a systematic literature review (2013–2024) and a meta-analysis, the mechanical, thermal, and sustainability [...] Read more.
This study examines the main earthen constructions—such as adobe, compressed earth blocks (CEBs), and rammed earth walls (REWs)—highlighting their potential to reduce the environmental impact compared to conventional materials. Through a systematic literature review (2013–2024) and a meta-analysis, the mechanical, thermal, and sustainability properties of these constructions are analyzed. Emphasis is placed on the use of additives, such as stabilizers and fibers from various industrial and agro-industrial by-products, as leading actors influencing the mechanical and environmental performance of earthen constructions (EnCs). Remarkable improvements in the compressive and flexural strength are found, especially in stabilized CEBs and REWs, where strengths of up to 24 MPa are reached in certain mixtures, comparable to conventional materials such as concrete. However, the impact of these admixtures on environmental aspects, as measured through metrics such as the global warming potential (GWP), remains poorly documented. This review also shows that numerical methods like finite element modeling (FEM) have been crucial to modeling and predicting the performance of these materials, contributing to the understanding of their dynamic and structural responses. The findings suggest that, although CEB is currently the most studied onshore technique, future challenges include the standardization of admixtures and regulation of sustainable practices globally. Full article
(This article belongs to the Collection Green and Sustainable Building Materials)
Show Figures

Figure 1

30 pages, 5801 KiB  
Article
Investigating Scale Effects on Experimental Shear Strength of Earthen Walls (Adobe and Rammed-Earth)
by Daniel M. Ruiz, Juan C. Reyes, Yezid A. Alvarado, Hermes Vacca, Nicola Tarque and Sandra Jerez
Buildings 2025, 15(5), 689; https://doi.org/10.3390/buildings15050689 - 22 Feb 2025
Viewed by 922
Abstract
This study investigates the scale effects on the experimental shear strength of earthen walls, a critical parameter influencing the seismic performance of adobe and rammed-earth (RE) buildings. Recognized for their historical significance and sustainable construction practices, earthen structures require a comprehensive understanding of [...] Read more.
This study investigates the scale effects on the experimental shear strength of earthen walls, a critical parameter influencing the seismic performance of adobe and rammed-earth (RE) buildings. Recognized for their historical significance and sustainable construction practices, earthen structures require a comprehensive understanding of their mechanical behavior under shear loads to ensure effective design and preservation. This research compiles data from over 120 in-plane shear wall tests (adobe and RE), nearly 20 direct shear tests from the scientific and technical literature, and new cyclic direct shear tests performed on large cubic specimens (300 mm side length) made from the same material as a previously tested two-story RE wall. Based on the findings, this study recommends a minimum specimen cross-sectional area of 0.5 m2 for reliable shear strength testing of earthen walls in structural laboratories. This recommendation aims to prevent the unconservative overestimation of shear strength commonly observed in smaller specimens, including direct shear tests. Furthermore, the Mohr–Coulomb failure criterion outlined in the AIS-610 Colombian standard is validated as a conservative lower bound for all compiled shear strength data. Cyclic direct shear tests on nine 300 mm cubic specimens produced a Mohr–Coulomb envelope with an apparent cohesion of 0.0715 MPa and a slope of 0.66, whereas the full-scale two-story wall (5.95 × 6.20 × 0.65 m) constructed with the same material exhibited a much lower cohesion of 0.0139 MPa and a slope of 0.26. The analysis reveals significant scale effects, as small-scale specimens consistently overestimate shear strength due to their inability to capture macro-structural behaviors such as compaction layer interactions, construction joint weaknesses, and stress redistributions. Based on the analysis of the compiled data, the novelty of this study lies in defining a strength reduction factor for direct shear tests (3.4–3.8 for rammed earth, ~3.0 for adobe) to align with full-scale wall behavior, as well as establishing a minimum specimen size (≥0.5 m2) for reliable in-plane shear testing of earthen walls, ensuring accurate structural assessments of shear strength. This study provides a first approach to the shear behavior of unstabilized earth. To expand its application, future research should explore how the scale of specimens with different stabilizers affects their shear strength. Full article
(This article belongs to the Special Issue Seismic Assessment of Unreinforced Masonry Buildings)
Show Figures

Figure 1

20 pages, 30224 KiB  
Article
Practice and Reflection on Rammed Earth Architecture: The Case Study of Tiles Hill–Xiangshan Campus Reception Centre in China
by Lichao Chen, Zhiyu Lan, Chaochao Wei, Dan Ouyang, Boren Shi, Peiyin Chen, Mingzhe Wang and Tianyi Xie
Buildings 2024, 14(12), 4034; https://doi.org/10.3390/buildings14124034 - 19 Dec 2024
Cited by 1 | Viewed by 1987
Abstract
This article documents the rammed earth construction practices undertaken at the “Tiles Hill–Xiangshan Campus Reception Centre” project. Traditional rammed earth craftsmanship is a sustainable construction method, with its core rooted in the precise material ratios and building techniques. This project aimed to explore [...] Read more.
This article documents the rammed earth construction practices undertaken at the “Tiles Hill–Xiangshan Campus Reception Centre” project. Traditional rammed earth craftsmanship is a sustainable construction method, with its core rooted in the precise material ratios and building techniques. This project aimed to explore the revival of this nearly forgotten vernacular construction method by integrating modern building technologies, all while adhering to the principle of avoiding any stabilizer additives. The project utilized a total of 2200 cubic meters of rammed earth to construct 16 walls, predominantly oriented north-south, with heights ranging from 3.6 m to 9.6 m and a thickness of 0.6 m. Before the formal commencement of the project, the team conducted experiments in the laboratory, constructing test walls to determine the optimal template fabrication and installation system compatible with modern rammed earth techniques. During the construction process, the team refined the rammed earth techniques, addressing challenges such as wall tilting, horizontal cracking caused by material settlement, and the flexible connection between the earthen walls and the primary structural framework through rational structural node design. The walls also passed compressive strength tests. Furthermore, advancements in the construction process allowed for the recycling and reuse of excavated soil. The article emphasizes that the sustainability of rammed earth techniques extends beyond material reuse to encompass the material’s inherent environmental friendliness and nondestructive nature. It argues that, provided there is a thorough understanding of the material properties of soil and reasonable structural and node design, coupled with the addition of necessary structural measures, it is entirely feasible to achieve ecological sustainability in rammed earth construction without the use of stabilizing additives. Full article
Show Figures

Figure 1

17 pages, 4227 KiB  
Article
The Source of K Fertilizer for Industrial Hemp (Cannabis sativa L.): Mechanical and Chemical Properties of Stem for Rammed Earth Walls
by Ivana Varga, Dario Iljkić, Paulina Krolo, Ana Perić Fekete and Ivan Kraus
Agriculture 2024, 14(12), 2196; https://doi.org/10.3390/agriculture14122196 - 1 Dec 2024
Cited by 3 | Viewed by 1344
Abstract
Industrial hemp, as a natural plant fiber, has received increased research attention recently. Potassium fertilization is one of the most important fertilizers for plant stem thickness, but how the formulation of K fertilizer influences stem morphology and stem tensile strength remains unclear. This [...] Read more.
Industrial hemp, as a natural plant fiber, has received increased research attention recently. Potassium fertilization is one of the most important fertilizers for plant stem thickness, but how the formulation of K fertilizer influences stem morphology and stem tensile strength remains unclear. This study aims to examine the influence of K fertilizer sources on industrial hemp stem properties, with a specific focus on the fibers, to evaluate their potential applications as reinforcement material for stabilizing rammed earth in sustainable construction. A field experiment was set up with different K fertilizer types applied as pre-sowing fertilizer in the following doses: K0—control, K1—100 kg ha−1 KCl, and K2—100 kg ha−1 K2SO4. Different K fertilizations did not have significant influence on stem height, which was on average 71.2 cm, nor on stem diameter, which was on average 3.4 mm. Regarding the macronutrient content of the industrial hemp stem (N, P, and K), K fertilization treatment significantly influenced (p < 0.05) their accumulation. The N, P, and K content in the stem within fertilization treatment averaged 0.78, 0.72, and 1.26%, respectively. The average content of cellulose, hemicellulose, and lignin was not significantly different in relation to K fertilization treatments. In the stem, dry weight cellulose content varied from 57.8% (K0) to 59.0% (K1), hemicellulose from 11.0% (K2) to 11.6% (K0 and K1), and lignin from 10.2% (K2) to 10.5% (K0). The tensile strength and Young’s modulus of the industrial hemp stem were non-homogenous within K fertilization treatments. The highest tensile strength (388.52 MPa) and Young’s modulus (32.09 GPa) were on K1 treatment. The lowest industrial hemp stem tensile strength was determined at K2 treatment (95.16 MPa), whereas stems in the control treatment had the lowest Young’s modulus (21.09 GPa). In the mixtures of hemp fibers with rammed earth, the higher compressive strength was determined on cubic samples than on cylindrical samples. This study contributes to the industrial hemp K fertilization of the newer genotypes, but there has been a lack of research in recent times. Since industrial hemp has great potential in various industry branches, this study also contributes to using fiber extracted from the stem in eco-friendly and renewable forms in mixtures with rammed earth. Full article
Show Figures

Figure 1

18 pages, 7096 KiB  
Article
Balancing Environmental Impact and Practicality: A Case Study on the Cement-Stabilized Rammed Earth Construction in Southeast Rural China
by Shan Dai, Wenfeng Bai and Jing Xiao
Sustainability 2024, 16(20), 8731; https://doi.org/10.3390/su16208731 - 10 Oct 2024
Cited by 2 | Viewed by 3073
Abstract
Construction using earth materials demonstrates ecological sustainability using locally sourced natural materials and environmentally friendly demolition methods. In this study, the environmental impact of adding cement to soil materials for rammed earth farmhouse construction in rural China was investigated and comparatively simulated using [...] Read more.
Construction using earth materials demonstrates ecological sustainability using locally sourced natural materials and environmentally friendly demolition methods. In this study, the environmental impact of adding cement to soil materials for rammed earth farmhouse construction in rural China was investigated and comparatively simulated using the One Click LCA database, focusing on the conflict between sustainability objectives and the practical aspects of cement addition. By analyzing how the addition of cement aligns with local construction practices and addressing the debate surrounding the inclusion of cement in rammed-earth construction, our objective is to provide insights into achieving a balance between the environmental impact and the pragmatic considerations of using cement in earthen building practices. Three local structure scenarios are evaluated via simulations: cement-stabilized rammed earth wall, fired brick wall, and a localized reinforced concrete frame structure. The quantitative environmental impacts are assessed, and the qualitative differences in adaptation, economic sustainability, and other factors are examined in the context of present-day development in rural China. The results show that the use of cement-stabilized rammed earth wall-supported structures is associated with higher embodied carbon emissions compared to structures supported by reinforced concrete frames and enclosed by brick walls; however, these emissions are lower than those for brick wall-supported structures while effectively meeting the structural requirements. In addition, the use of cement-stabilized earth for perimeter walls simplifies material management and disposal throughout the building’s life cycle, and the cost-effectiveness of cement has been found to be substantially greater than that of reinforced concrete frames and brick structures, improving economic viability and social acceptability, especially among low-income communities in rural areas Full article
Show Figures

Figure 1

20 pages, 8039 KiB  
Article
Effect of Incorporating Cement and Olive Waste Ash on the Mechanical Properties of Rammed Earth Block
by Hassan Ghanem, Chouk El Bouz, Rawan Ramadan, Adrien Trad, Jamal Khatib and Adel Elkordi
Infrastructures 2024, 9(8), 122; https://doi.org/10.3390/infrastructures9080122 - 25 Jul 2024
Cited by 6 | Viewed by 1408
Abstract
Rammed earth blocks have recently gained substantial popularity in construction materials due to their environmental benefits, energy saving, and financial effectiveness. These benefits are even more pronounced if waste materials such as olive waste ash (OWA) are incorporated in rammed earth blocks. There [...] Read more.
Rammed earth blocks have recently gained substantial popularity in construction materials due to their environmental benefits, energy saving, and financial effectiveness. These benefits are even more pronounced if waste materials such as olive waste ash (OWA) are incorporated in rammed earth blocks. There is limited information on the use of OWA in rammed earth blocks. This paper investigates the use of OWA and cement in improving rammed earth block characteristics. OWA was incorporated to partially replace the soil by 10, 20, 30 and 40% of its weight and cement was added in percentages of 2, 4, 6 and 8% by the dry weight of the composite soil. Proctor, unconfined compressive strength (UCS), and California Bearing Ratio (CBR) tests were performed at 7, 28, and 56 days. Results indicated that OWA inclusion decreased the maximum dry density while it increased the optimum moisture content. However, cement addition improved the maximum dry density of soil. The UCS results revealed that OWA possessed cementitious and pozzolanic behavior, and soil mechanical properties improved by up to 30% due to OWA inclusion, after which there was a significant drop of 40%. The trend in the CBR results was similar to those of UCS. To further clarify the experimental results, a mathematical model was proposed to determine the variation in strength as a function of time. Furthermore, correlations between soil mechanical properties were conducted. Predicted equations were developed to determine the properties of rammed earth block. All in all, the inclusion of OWA in cement stabilized earth block suggests the potential to improve the properties of rammed earth blocks. Full article
(This article belongs to the Section Infrastructures Materials and Constructions)
Show Figures

Figure 1

26 pages, 7779 KiB  
Article
Architectural Features and Soil Properties of Traditional Rammed Earth Houses: Eastern Croatia Case Study
by Ivana Brkanić Mihić, Ivan Kraus, Jelena Kaluđer and Ana Perić Fekete
Buildings 2024, 14(7), 2049; https://doi.org/10.3390/buildings14072049 - 4 Jul 2024
Cited by 1 | Viewed by 2240
Abstract
Rammed earth buildings constitute a large part of the housing stock in rural areas. Although these houses are recognized as a cultural heritage, detailed analyses of their architectural features, geometric parameters crucial for structural stability, and soil properties used for their construction have [...] Read more.
Rammed earth buildings constitute a large part of the housing stock in rural areas. Although these houses are recognized as a cultural heritage, detailed analyses of their architectural features, geometric parameters crucial for structural stability, and soil properties used for their construction have not yet been carried out in Croatia. The aim of this study is to collect basic data on the architectural features and material properties of rammed earth walls through field research in Croatia. These data are crucial for both numerical and experimental studies to improve the understanding of the structural behavior of rammed earth houses. Data were obtained through field research and a detailed survey of 22 houses. The houses were analyzed, samples of the rammed earth walls were collected, and their properties were tested in the laboratory. This study contributes to a better understanding of regional building practices and provides data that will enable us to identify the causes of damage in future studies and to select rehabilitation measures to preserve the authentic symbols of cultural heritage. Full article
Show Figures

Figure 1

25 pages, 7504 KiB  
Article
Compressive Strengths of Cube vs. Cored Specimens of Cement Stabilized Rammed Earth Compared with ANOVA
by Hubert Anysz, Łukasz Rosicki and Piotr Narloch
Appl. Sci. 2024, 14(13), 5746; https://doi.org/10.3390/app14135746 - 1 Jul 2024
Cited by 3 | Viewed by 1859
Abstract
Cement-stabilized rammed earth (CSRE) is a variation of the traditional rammed earth building material, which has been used since ancient times, strengthened by the addition of a stabilizer in the form of Portland cement. This article compares the compressive strength of CSRE determined [...] Read more.
Cement-stabilized rammed earth (CSRE) is a variation of the traditional rammed earth building material, which has been used since ancient times, strengthened by the addition of a stabilizer in the form of Portland cement. This article compares the compressive strength of CSRE determined from specimens cored from structural walls and those molded in the laboratory. Both types of specimens underwent a 120-day curing period. The tests were conducted on specimens with various grain sizes and cement content. An analysis of variance (ANOVA) was performed on the obtained results to determine whether it is possible to establish a conversion factor between the compressive strength values obtained from laboratory-molded cubic samples and those from cored samples extracted from the CSRE structure. The study revealed that the compressive strength of CSRE increases significantly over the curing period, with substantial strength gains observed up to 120 days. The results indicated no statistically significant difference in the mean unconfined compressive strength (UCS) between cubic and cored specimens for certain mixtures, suggesting that a shape coefficient factor may not be necessary for calculating CSRE compressive strength in laboratory settings. However, for other mixtures, normal distribution was not confirmed. These findings have implications for the standardization and practical application of CSRE in construction, highlighting the need for longer curing periods to achieve optimal strength and the potential to simplify testing protocols. Full article
Show Figures

Figure 1

22 pages, 3329 KiB  
Article
Compared Environmental Lifecycle Performances of Earth-Based Walls to Drive Building Envelope Design
by Giada Giuffrida, Letizia Dipasquale, Riccardo Maria Pulselli and Rosa Caponetto
Sustainability 2024, 16(4), 1367; https://doi.org/10.3390/su16041367 - 6 Feb 2024
Cited by 12 | Viewed by 4361
Abstract
Raw earth has useful applications in contemporary buildings as a sustainable and circular construction material. The present study aims to assess the environmental performance of several earth-based wall systems with similar thermal performance, through a life cycle thinking approach. In particular, a life [...] Read more.
Raw earth has useful applications in contemporary buildings as a sustainable and circular construction material. The present study aims to assess the environmental performance of several earth-based wall systems with similar thermal performance, through a life cycle thinking approach. In particular, a life cycle assessment is developed for (a) unstabilized rammed earth (produced in situ), (b) compressed earth blocks (prefabricated in the factory), (c) stabilized rammed earth and (d) light earth, all combined with biobased (natural fibers, e.g., lime hemp, cork) and/or conventional materials for building insulation. Results show benefits in terms of avoided carbon emission, water footprint and embodied energy throughout the production chain and highlight limits and potential improvements. In addition, the CO2 offset by crops is also estimated based on carbon embedded in natural fibers. In particular, light earth wall systems are the most suitable to minimize environmental impacts, while massive constructive technologies (as unstabilized rammed earth) show a higher dynamic thermal performance for intended use in Mediterranean climates. Full article
Show Figures

Figure 1

16 pages, 6955 KiB  
Article
A Study on Sensitivity of Soil-Based Building Mixtures to Biodeterioration by Fungi: Towards Sustainable Earth Structures
by Amer Al-Jokhadar, Yasmine Soudi, Suzanne Abdelmalek, Sarah R. Badran and Yasser Abuhashem
Sustainability 2024, 16(3), 1294; https://doi.org/10.3390/su16031294 - 3 Feb 2024
Cited by 2 | Viewed by 1772
Abstract
Earth structures have a significant sustainable impact on regulating indoor environmental qualities. Yet, using soil materials can lead to fungal growth, impacting occupant health and structural stability. This study investigates the susceptibility of earth-based construction materials with cement, limestone, and acrylic-based additives to [...] Read more.
Earth structures have a significant sustainable impact on regulating indoor environmental qualities. Yet, using soil materials can lead to fungal growth, impacting occupant health and structural stability. This study investigates the susceptibility of earth-based construction materials with cement, limestone, and acrylic-based additives to fungal growth. Laboratory tests were conducted on mixtures under conditions found in inhabited buildings in hot–arid regions. The proposed methodology was based on a 7-week artificial incubation of fungi obtained from moldy walls through regulating the room temperature to fall between 18 °C and 19 °C and a controlled humidity level of around 45%. These conditions were adopted according to the readings monitored in typical buildings in the study area. The results showed that fungal growth was evident on the surface of mixtures, including higher percentages of soil and lower percentages of additives. Mixtures comprising 50% soil, 15% acrylic-based additive, 15% quicklime, and 20% cement supported the least fungal growth, presenting the best choice as a sustainable, efficient replacement. Visual observation followed by microscopic examination ensured the results. Furthermore, results of an environmental post-occupancy evaluation of a constructed rammed earth building using the optimized mixture showed no signs of fungal proliferation on the inner walls afterward. Full article
Show Figures

Figure 1

12 pages, 938 KiB  
Article
Enhancing the Mechanical Properties of Polymer-Stabilized Rammed Earth Construction
by Salih Kocak and Aneurin Grant
Constr. Mater. 2023, 3(4), 377-388; https://doi.org/10.3390/constrmater3040024 - 17 Oct 2023
Cited by 2 | Viewed by 2288
Abstract
This paper investigates the viability of using a commercially available liquid polymer (LP) in lieu of ordinary cement to stabilize soil during rammed earth (RE) construction. The scope of this study includes modifying and testing the locally available natural soil with two different [...] Read more.
This paper investigates the viability of using a commercially available liquid polymer (LP) in lieu of ordinary cement to stabilize soil during rammed earth (RE) construction. The scope of this study includes modifying and testing the locally available natural soil with two different LPs at various percentages. Once the optimum moisture content (OMC) of the soil with LPs was determined using the Proctor test, test samples were prepared by chemical and mechanical stabilizations. Following the curing process in an unconfined open-air laboratory environment for 7 days, soil samples were tested to determine the unconfined compressive strength (UCS) and California bearing ratio (CBR) values. The results demonstrate that the lubrication effect of polymers is different than that of water. The first polymer type yields a lower OMC compared to water, while the second polymer achieves a higher OMC. The CBR and UCS values of polymer-stabilized soils are improved for both polymer types at all dosages. The CBR values of polymer-modified soils showed as high as a 10-times improvement compared to Portland cement (PC) stabilization. A similar trend is observed for the UCS results as well. The UCS value of polymer-stabilized soils reached over 1900 psi (13 MPa), which was over 3-times higher than the UCS of PC-stabilized soil. Full article
Show Figures

Figure 1

Back to TopTop