Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (9)

Search Parameters:
Keywords = squid meat

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1639 KiB  
Article
Effect of Inoculation with Lacticaseibacillus casei and Staphylococcus carnosus on the Quality of Squid (Dosidicus gigas) Surimi Sausage
by Hongliang Mu, Peifang Weng and Zufang Wu
Fermentation 2023, 9(9), 794; https://doi.org/10.3390/fermentation9090794 - 28 Aug 2023
Cited by 6 | Viewed by 1831 | Correction
Abstract
Dosidicus gigas is a kind of low-fat food with poor gel properties. Fermentation has been proved to be an effective food processing method that could improve the gel properties of meat. Here, we inoculated D. gigas with two strains, Lacticaseibacillus casei and Staphylococcus [...] Read more.
Dosidicus gigas is a kind of low-fat food with poor gel properties. Fermentation has been proved to be an effective food processing method that could improve the gel properties of meat. Here, we inoculated D. gigas with two strains, Lacticaseibacillus casei and Staphylococcus carnosus, that have been approved for use in meat processing, and studied their impact on the quality of the product. Compared with the uninoculated samples, inoculation with L. casei and mixed inoculation with L. casei and S. carnosus were able to significantly reduce pH during fermentation. The plate counting results showed that L. casei may have adapted well to the environment in the inoculated groups, while the growth of Staphylococcus may have been inhibited in the mixed inoculated group. 16s rRNA sequencing confirmed that inoculation significantly altered the bacterial composition of squid surimi sausages. Both inoculation with L. casei and mixed inoculation with L. casei and S. carnosus were able to inhibit the accumulation of the main biogenic amines, and in the mixed inoculated group, the main biogenic amines were lower. Compared with unfermented squid surimi sausages, mixed inoculation changed the texture, gel properties, color, and appearance of squid surimi sausages. These results showed that mixed inoculation can not only ensure safety, but also improve the quality of squid surimi sausages. Full article
(This article belongs to the Special Issue Nutrition and Health of Fermented Foods, 2nd Edition)
Show Figures

Figure 1

7 pages, 644 KiB  
Article
An Assessment of Starch Content and Gelatinization in Traditional and Non-Traditional Dog Food Formulations
by Erin Beth Perry, Alyssa Ann Valach, Jesse Marie Fenton and George E. Moore
Animals 2022, 12(23), 3357; https://doi.org/10.3390/ani12233357 - 30 Nov 2022
Cited by 5 | Viewed by 3576
Abstract
Starch gelatinization in pet food may be affected by moisture, retention time, and ingredients used. Starch gelatinization has been associated with changes in digestibility but is not well studied using non-traditional ingredients in canine diets. The objective of this research was to examine [...] Read more.
Starch gelatinization in pet food may be affected by moisture, retention time, and ingredients used. Starch gelatinization has been associated with changes in digestibility but is not well studied using non-traditional ingredients in canine diets. The objective of this research was to examine differences in starch content and gelatinization associated with changes in ingredient profile (traditional vs. non-traditional) and nutrient content requirements associated with differing life stages. Traditional diets (n = 10) utilizing protein sources including chicken, chicken by-product meal, meat and bone meal and plant-based ingredients including rice, barley, oats, and corn were examined in comparison with non-traditional diets (n = 10) utilizing protein sources including alligator, buffalo, venison, kangaroo, squid, quail, rabbit, and salmon along with plant-based ingredients including tapioca, chickpeas, lentils, potato, and pumpkin. Total starch and gelatinized starch (as percent of total diet) were measured with variation due to ingredient type assessed using Student’s t-test in SAS 9.4. Significance was set at p < 0.05. Total starch (as a percent of diet) was higher in traditional diets compared to non-traditional diets formulated for maintenance (p < 0.0032) or all life stages (p < 0.0128). However, starch gelatinization as a proportion of total starch was lower in traditional diets formulated for maintenance (p < 0.0165) and all life stages (p < 0.0220). Total starch and gelatinized starch had a strong negative correlation (r = −0.78; p < 0.01) in diets utilizing traditional ingredients. These novel data reveal important differences between starch content and gelatinization and may impact selection of various ingredient types by pet food manufacturers. Full article
Show Figures

Figure 1

10 pages, 313 KiB  
Article
Giant Squid (Dosidicus gigas) Meal in Chicken Diets to Enrich Meat with n-3 Fatty Acids
by Jesús Morales-Barrera, María Carranco-Jáuregui, Guillermo Téllez-Isaías, Ana Sandoval-Mejía, Mariano González-Alcorta and Silvia Carrillo-Domínguez
Animals 2022, 12(17), 2210; https://doi.org/10.3390/ani12172210 - 27 Aug 2022
Cited by 1 | Viewed by 2298
Abstract
The main marketed parts of squid are the mantle, the head with tentacles, and fins. However, when the whole squid does not meet quality standards for human consumption it can be used for broiler feed. The objective of the study was to include [...] Read more.
The main marketed parts of squid are the mantle, the head with tentacles, and fins. However, when the whole squid does not meet quality standards for human consumption it can be used for broiler feed. The objective of the study was to include giant squid (Dosidicus gigas) meal (GSM) in broiler rations to increase the content of the n-3 fatty acids eicosapentaenoic (EPA), docosapentaenoic (DPA), and docosahexaenoic (DHA) in chicken meat. Two hundred Ross 380 chickens, half male, half female, and one day old, were randomly distributed in a 4x2x2 factorial arrangement. The factors were the treatment (0%, 1.67%, 3.34%, and 5.01% of GSM in the diet), sex, and content of n-3 in the legs with thighs and the breasts. Each treatment had five repetitions with 10 birds each. There were no differences (p > 0.05) in the production parameters for both sexes. The contents of EPA, DPA, and DHA increased in the females and in the legs with thighs (p < 0.05) with GSM. Acceptance for the flavor and texture of meat was higher in the treatment with 1.67% GSM than in the other treatments. It is concluded that GSM is an alternative for increasing the amount of n-3 in chicken meat. Full article
(This article belongs to the Special Issue Advances in Animal Novel Alternative Feed)
16 pages, 6797 KiB  
Article
Conversion of Fishery Waste to Proteases by Streptomyces speibonae and Their Application in Antioxidant Preparation
by Thi Ngoc Tran, Chien Thang Doan, Van Bon Nguyen, Anh Dzung Nguyen and San-Lang Wang
Fishes 2022, 7(3), 140; https://doi.org/10.3390/fishes7030140 - 14 Jun 2022
Cited by 10 | Viewed by 3002
Abstract
Proteinaceous wastes from the fishery process are an abundant renewable resource for the recovery of a variety of high-value products. This work attempted to utilize several proteinaceous wastes to produce proteases using the Streptomyces speibonae TKU048 strain. Among different possible carbon and nitrogen [...] Read more.
Proteinaceous wastes from the fishery process are an abundant renewable resource for the recovery of a variety of high-value products. This work attempted to utilize several proteinaceous wastes to produce proteases using the Streptomyces speibonae TKU048 strain. Among different possible carbon and nitrogen sources, the protease productive activity of S. speibonae TKU048 was optimal on 1% tuna head powder. Further, the casein/gelatin/tuna head powder zymography of the crude enzyme revealed the presence of three/nine/six proteases, respectively. The crude-enzyme cocktail of S. speibonae TKU048 exhibited the best proteolytic activity at 70 °C and pH = 5.8. Sodium dodecyl sulfate strongly enhanced the proteolytic activity of the cocktail, whereas FeCl3, CuSO4, and ethylenediaminetetraacetic acid could completely inhibit the enzyme activity. Additionally, the crude-enzyme cocktail of S. speibonae TKU048 could efficiently enhance the 2,2-diphenyl-1-picrylhydrazyl and 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) radical scavenging activities of all tested proteinaceous materials including the head, viscera, and meat of tuna fish; the head, viscera, and meat of tilapia fish; the head, meat, and shell of shrimp; squid pen; crab shell; and soybean. Taken together, S. speibonae TKU048 revealed potential in the reclamation of proteinaceous wastes for protease production and antioxidant preparation. Full article
Show Figures

Graphical abstract

13 pages, 2460 KiB  
Article
Improvement of Gel Quality of Squid (Dosidicus gigas) Meat by Using Sodium Gluconate, Sodium Citrate, and Sodium Tartrate
by Yanjiao Chu, Shanggui Deng, Guancheng Lv, Mingao Li, Hongli Bao, Yuanpei Gao and Ru Jia
Foods 2022, 11(2), 173; https://doi.org/10.3390/foods11020173 - 10 Jan 2022
Cited by 12 | Viewed by 2750
Abstract
In order to improve the quality of squid surimi products, squid surimi gels were prepared using several types of organic salts under two heating conditions to study the effects of organic salts on squid gel properties. Compared with the NaCl group, organic salts [...] Read more.
In order to improve the quality of squid surimi products, squid surimi gels were prepared using several types of organic salts under two heating conditions to study the effects of organic salts on squid gel properties. Compared with the NaCl group, organic salts reduced the solubilization capacity of myofibrillar protein, and significant (p < 0.05) decreases in the breaking force, breaking distance, texture, and water-holding capacity of the gel were observed in the sodium gluconate group, while significant (p < 0.05) increases in the breaking force, breaking distance, texture, and water-holding capacity of the gel were observed in the sodium citrate and sodium tartrate groups. Although the mixed addition of NaCl and organic salt improved surimi gel quality, the effective improvement was still lower than that of only organic salt. Rheological properties indicated that sodium citrate and sodium tartrate had high viscoelasticity. The squid surimi gel prepared by direct heating exhibited better properties than gels prepared by two-step heating. The chemical force of squid gel prepared with sodium citrate and sodium tartrate formed a stronger matrix than the gels prepared with other salts. For color, the addition of sodium citrate resulted in an undesirable color of squid surimi gels, while the addition of sodium tartrate improved the whiteness of the surimi gel. The results showed that the quality of surimi gel was dependent upon the choice of heating method and the types of salt used. Sodium citrate and sodium tartrate could significantly improve the gel properties of squid surimi. This study provides reliable guidance for improving the overall quality of squid surimi gels. Full article
(This article belongs to the Section Foods of Marine Origin)
Show Figures

Figure 1

15 pages, 3199 KiB  
Article
Proteases Production and Chitin Preparation from the Liquid Fermentation of Chitinous Fishery By-Products by Paenibacillus elgii
by Dan-Hsin Lee, Chien Thang Doan, Thi Ngoc Tran, Van Bon Nguyen, Anh Dzung Nguyen, Chuan-Lu Wang and San-Lang Wang
Mar. Drugs 2021, 19(9), 477; https://doi.org/10.3390/md19090477 - 25 Aug 2021
Cited by 23 | Viewed by 3699
Abstract
Chitinous fishery by-products have great application in the production of various bioactive compounds. In this study, Paenibacillus elgii TKU051, a protease-producing bacterial strain, was isolated using a medium containing 1% squid pens powder (SPP) as the sole carbon/nitrogen (C/N) source. P. elgii TKU051 [...] Read more.
Chitinous fishery by-products have great application in the production of various bioactive compounds. In this study, Paenibacillus elgii TKU051, a protease-producing bacterial strain, was isolated using a medium containing 1% squid pens powder (SPP) as the sole carbon/nitrogen (C/N) source. P. elgii TKU051 was found to produce at least four proteases with molecular weights of 100 kDa, 57 kDa, 43 kDa, and 34 kDa (determined by the gelatin zymography method). A P. elgii TkU051 crude enzyme cocktail was optimally active at pH 6–7 and 60 °C. The 2,2-diphenyl-1-picrylhydrazyl radical scavenging activity and α-glucosidase inhibitory activity of the hydrolysates obtained from the hydrolysis of shrimp shell powder, shrimp head powder, shrimp meat powder, fish head powder and soya bean powder catalyzed by the P. elgii TkU051 crude enzyme cocktail were also evaluated. P. elgii TKU051 exhibited a high deproteinization capacity (over 94%) on different kinds of shrimp waste (shrimp heads and shells; fresh and cooked shrimp waste; shrimp waste dried by oven and lyophilizer), and the Fourier-transform infrared spectroscopy profile of the chitin obtained from the deproteinization process displayed the characteristic of chitin. Finally, the obtained chitin exhibited an effect comparable to commercial chitin in terms of adsorption against Congo Red (90.48% and 90.91%, respectively). Thus, P. elgii TKU051 showed potential in the reclamation of chitinous fishery by-products for proteases production and chitin extraction. Full article
Show Figures

Figure 1

18 pages, 911 KiB  
Article
Application of High-Frequency Defrosting, Superheated Steam, and Quick-Freezing Treatments to Improve the Quality of Seafood Home Meal Replacement Products Consisting of the Adductor Muscle of Pen Shells and Common Squid Meat
by Bertoka Fajar Surya Perwira Negara, Seung Rok Kim, Jae Hak Sohn, Jin-Soo Kim and Jae-Suk Choi
Appl. Sci. 2021, 11(7), 2926; https://doi.org/10.3390/app11072926 - 25 Mar 2021
Cited by 10 | Viewed by 3283
Abstract
We developed a new seafood home meal replacement (HMR) product containing the adductor muscle of the pen shell (AMPS) and common squid meat (CSM) via high-frequency defrosting (HFD), superheated steam, and quick freezing. Test HMR products were produced by mixing defrosted and roasted [...] Read more.
We developed a new seafood home meal replacement (HMR) product containing the adductor muscle of the pen shell (AMPS) and common squid meat (CSM) via high-frequency defrosting (HFD), superheated steam, and quick freezing. Test HMR products were produced by mixing defrosted and roasted AMPS, CSM, and sauce in ratios of 27.5, 27.5, and 45.0% (w/w), respectively, followed by quick freezing at −35 °C in a polypropylene plastic bowl covered with a plastic film. The chemical characteristics, nutritional quality, microbial and sensory properties, and shelf life of the product were examined. The response surface methodology identified the optimal temperature and heating time of the superheated steam for AMPS (220 °C, 1 min) and CSM (300 °C, 1.5 min). Chemical characteristics showed low levels of volatile basic nitrogen (9.45 mg%) and thiobarbituric acid-reactive substances (1.13 mg Malondialdehyde [MDA]/kg). No significant changes (p < 0.05) were observed in microbial, color, flavor, taste, texture, and overall acceptance at −23 °C for 90 days. After reheating, the sensory scores varied from “like moderately” to “like very much.” The shelf life of the HMR product was estimated to be 24 months. In conclusion, HFD, superheated steam, and quick freezing successfully improved product quality, with little loss of nutrition and texture. Full article
Show Figures

Figure 1

12 pages, 3150 KiB  
Article
Quantitative and Comparative Investigation of Plasmalogen Species in Daily Foodstuffs
by Yue Wu, Zhen Chen, Jiaping Jia, Hitoshi Chiba and Shu-Ping Hui
Foods 2021, 10(1), 124; https://doi.org/10.3390/foods10010124 - 8 Jan 2021
Cited by 17 | Viewed by 5386
Abstract
Plasmalogens are an animal-derived functional phospholipid increasingly known as a safe and effective nutritional ingredient, however, the quantitation and comparison of plasmalogen species in foods is limited. In the present work, determination methods for dietary plasmalogens using liquid chromatography-tandem mass spectroscopy under positive [...] Read more.
Plasmalogens are an animal-derived functional phospholipid increasingly known as a safe and effective nutritional ingredient, however, the quantitation and comparison of plasmalogen species in foods is limited. In the present work, determination methods for dietary plasmalogens using liquid chromatography-tandem mass spectroscopy under positive and negative ionization modes were compared. The negative-mode method, which showed better selectivity, sensitivity, and accuracy, was then applied in 14 kinds of livestock, poultry, and seafood samples. Livestock and poultry showed abundant total plasmalogen (530.83–944.94 nmol/g), higher than fish (46.08–399.75 nmol/g) and mollusk (10.00–384.76 nmol/g). While fish and mollusk samples expressed healthier fatty acyl composition, with higher eicosapentaenoyl and more beneficial n-6/n-3 ratio than the land animal meats, especially for squid and octopus, with eicosapentaenoyl of 98.4% and 94.5%, respectively. The correlations among plasmalogen species varied in different foodstuffs with distinguishing patterns, suggesting the customizable strategies for achieving targeted plasmalogen species. These findings not only provided fundamental comparison of plasmalogen among daily foodstuffs, but also contributed to extend the dietary plasmalogen sources for health food development. Full article
Show Figures

Graphical abstract

28 pages, 855 KiB  
Review
Sous-Vide as a Technique for Preparing Healthy and High-Quality Vegetable and Seafood Products
by Sandra Zavadlav, Marijana Blažić, Franco Van de Velde, Charito Vignatti, Cecilia Fenoglio, Andrea M. Piagentini, María Elida Pirovani, Cristina M. Perotti, Danijela Bursać Kovačević and Predrag Putnik
Foods 2020, 9(11), 1537; https://doi.org/10.3390/foods9111537 - 25 Oct 2020
Cited by 66 | Viewed by 14034
Abstract
Sous-vide is a technique of cooking foods in vacuum bags under strictly controlled temperature, offering improved taste, texture and nutritional values along with extended shelf life as compared to the traditional cooking methods. In addition to other constituents, vegetables and seafood represent important [...] Read more.
Sous-vide is a technique of cooking foods in vacuum bags under strictly controlled temperature, offering improved taste, texture and nutritional values along with extended shelf life as compared to the traditional cooking methods. In addition to other constituents, vegetables and seafood represent important sources of phytochemicals. Thus, by applying sous-vide technology, preservation of such foods can be prolonged with almost full retention of native quality. In this way, sous-vide processing meets customers’ growing demand for the production of safer and healthier foods. Considering the industrial points of view, sous-vide technology has proven to be an adequate substitute for traditional cooking methods. Therefore, its application in various aspects of food production has been increasingly researched. Although sous-vide cooking of meats and vegetables is well explored, the challenges remain with seafoods due to the large differences in structure and quality of marine organisms. Cephalopods (e.g., squid, octopus, etc.) are of particular interest, as the changes of their muscular physical structure during processing have to be carefully considered. Based on all the above, this study summarizes the literature review on the recent sous-vide application on vegetable and seafood products in view of production of high-quality and safe foodstuffs. Full article
(This article belongs to the Special Issue Sustainable Functional Food Processing)
Back to TopTop