Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = squared top-hat

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 4367 KB  
Article
Improvement of Laser-Induced Damage on High-Efficiency Solar Cells via Top-Hat Beam Ablation
by Feng Qian, Honglie Shen, Guoping Huang, Biao Liu and Juan Hong
Energies 2024, 17(4), 858; https://doi.org/10.3390/en17040858 - 12 Feb 2024
Cited by 1 | Viewed by 1680
Abstract
An important challenge in industrial laser ablation is laser-induced damage. In this study, reduced damage was achieved through the transition of the laser distribution from a Gaussian beam to a top-hat beam using diffractive optical elements (DOE), which overcome inhomogeneous irradiation. The higher [...] Read more.
An important challenge in industrial laser ablation is laser-induced damage. In this study, reduced damage was achieved through the transition of the laser distribution from a Gaussian beam to a top-hat beam using diffractive optical elements (DOE), which overcome inhomogeneous irradiation. The higher peak fluence of a Gaussian beam far exceeded the ablation threshold and led to severely melted silicon at a higher depth covering the polished texture. The top-hat beam, with uniform irradiation, had a superior ablation characteristic and created a uniform square opening with the shallow melted silicon in the lift-off process. Thus, its effective minor carrier lifetime was 15.35% less at an ablated area fraction of 2% after re-passivation because of the decreased damage. After optimizing the ablation pattern with a top-hat beam, the local contacts improved the average open-circuit voltage (Voc) and short-circuit current (Isc) values of the cells due to the decreased damage and the uniform openings, but the damage induced by a Gaussian beam was too deep and can be partly restored under back surface field (BSF) formation. The overall increment in Isc and Voc enhanced the average efficiency by 0.05% of the absolute value for the PERC cells and 0.03% of the absolute value for bi-facial PERC cells. Full article
(This article belongs to the Section A2: Solar Energy and Photovoltaic Systems)
Show Figures

Figure 1

13 pages, 3852 KB  
Article
Utilizing a Diffractive Focus Beam Shaper to Enhance Pattern Uniformity and Process Throughput during Direct Laser Interference Patterning
by Mikhael El-Khoury, Bogdan Voisiat, Tim Kunze and Andrés Fabián Lasagni
Materials 2022, 15(2), 591; https://doi.org/10.3390/ma15020591 - 13 Jan 2022
Cited by 12 | Viewed by 3678
Abstract
Uniform periodic microstructure formation over large areas is generally challenging in Direct Laser Interference Patterning (DLIP) due to the Gaussian laser beam intensity distribution inherent to most commercial laser sources. In this work, a diffractive fundamental beam-mode shaper (FBS) element is implemented in [...] Read more.
Uniform periodic microstructure formation over large areas is generally challenging in Direct Laser Interference Patterning (DLIP) due to the Gaussian laser beam intensity distribution inherent to most commercial laser sources. In this work, a diffractive fundamental beam-mode shaper (FBS) element is implemented in a four-beam DLIP optical setup to generate a square-shaped top-hat intensity distribution in the interference volume. The interference patterns produced by a standard configuration and the developed setup are measured and compared. In particular, the impact of both laser intensity distributions on process throughput as well as fill-factor is investigated by measuring the resulting microstructure height with height error over the structured surface. It is demonstrated that by utilizing top-hat-shaped interference patterns, it is possible to produce on average 44.8% deeper structures with up to 60% higher homogeneity at the same throughput. Moreover, the presented approach allows the production of microstructures with comparable height and homogeneity compared to the Gaussian intensity distribution with increased throughput of 53%. Full article
Show Figures

Figure 1

24 pages, 19759 KB  
Article
Laser Micro Polishing of Tool Steel 1.2379 (AISI D2): Influence of Intensity Distribution, Laser Beam Size, and Fluence on Surface Roughness and Area Rate
by André Temmler, Magdalena Cortina, Ingo Ross, Moritz E. Küpper and Silja-Katharina Rittinghaus
Metals 2021, 11(9), 1445; https://doi.org/10.3390/met11091445 - 13 Sep 2021
Cited by 11 | Viewed by 3795
Abstract
Within the scope of this study, basic research was carried out on laser micro polishing of the tool steel 1.2379 (AISI D2) using a square, top-hat shaped intensity distribution. The influence of three different quadratic laser beam sizes (100 µm, 200 µm, 400 [...] Read more.
Within the scope of this study, basic research was carried out on laser micro polishing of the tool steel 1.2379 (AISI D2) using a square, top-hat shaped intensity distribution. The influence of three different quadratic laser beam sizes (100 µm, 200 µm, 400 µm side length) and fluences up to 12 J/cm2 on the resulting surface topography and roughness were investigated. Surface topography was analyzed by microscopy, white light interferometry, spectral roughness analysis, and 1D fast Fourier transformation. Scanning electron microscopy and electrical discharge analyses indicate that chromium carbides are the source of undesired surface features such as craters and dimples, which were generated inherently to the remelting process. Particularly for high laser fluences, a noticeable stripe structure was observed, which is typically a characteristic of a continuous remelting process. Although the micro-roughness was significantly reduced, often, the macro-roughness was increased. The results show that smaller laser polishing fluences are required for larger laser beam dimensions. Additionally, the same or even a lower surface roughness and less undesired surface features were created for larger laser beam dimensions. This shows a potential path for industrial applications of laser micro polishing, where area rates of up to several m2/min might be achievable with commercially available laser beam sources. Full article
(This article belongs to the Special Issue Advances in Laser Materials Processing)
Show Figures

Figure 1

12 pages, 32014 KB  
Article
Squared Focal Intensity Distributions for Applications in Laser Material Processing
by Henrike Schlutow, Ulrike Fuchs, Frank A. Müller and Stephan Gräf
Materials 2021, 14(17), 4981; https://doi.org/10.3390/ma14174981 - 31 Aug 2021
Cited by 10 | Viewed by 3457
Abstract
Tailored intensity profiles within the focal spot of the laser beam offer great potential for a well-defined control of the interaction process between laser radiation and material, and thus for improving the processing results. The present paper discusses a novel refractive beam-shaping element [...] Read more.
Tailored intensity profiles within the focal spot of the laser beam offer great potential for a well-defined control of the interaction process between laser radiation and material, and thus for improving the processing results. The present paper discusses a novel refractive beam-shaping element that provides different squared intensity distributions converted from the Gaussian output beam of the utilized femtosecond (fs) laser. Using the examples of surface structuring of stainless-steel on the micro- and nano-scale, the suitability of the beam-shaping element for fs-laser material processing with a conventional f-Theta lens is demonstrated. In this context, it was shown that the experimental structuring results are in good agreement with beam profile measurements and numerical simulations of the beam-shaping unit. In addition, the experimental results reveal the improvement of laser processing in terms of a significantly reduced processing time during surface nano-structuring and the possibility to control the ablation geometry during the fabrication of micro-channels. Full article
(This article belongs to the Special Issue Advanced Pulse Laser Machining Technology)
Show Figures

Figure 1

9 pages, 7763 KB  
Article
Compact Beam Homogenizer Module with Laser-Fabricated Lens-Arrays
by Simon Schwarz, Babette Götzendorfer, Stefan Rung, Cemal Esen and Ralf Hellmann
Appl. Sci. 2021, 11(3), 1018; https://doi.org/10.3390/app11031018 - 23 Jan 2021
Cited by 9 | Viewed by 6510
Abstract
We report on manufacturing of a compact beam homogenizer module including two lens arrays and an aperture. Lens arrays are fabricated by an all laser-based technology employing a precise femtosecond pulsed laser ablation and a CO2 laser polishing step. Each lens array [...] Read more.
We report on manufacturing of a compact beam homogenizer module including two lens arrays and an aperture. Lens arrays are fabricated by an all laser-based technology employing a precise femtosecond pulsed laser ablation and a CO2 laser polishing step. Each lens array is processed revealing a high contour accuracy and a roughness of 25 nm. The 8x8 lens arrays are designed to have a square footprint to generate a quadratic Top-Hat beam profile and focal length of 10 mm to realize compact packaging. Firstly, the lens arrays are tested in an experimental setup using commercial lens holders with their functionality being demonstrated by shaping a uniform 4.5 mm squared Top-Hat beam profile, as being calculated. Afterwards, a 3D printer is used to additively manufacture the housing for the beam homogenizer module having a length of only 16 mm. After assembling the laser-fabricated lens arrays and a laser-cutted aperture into the housing, the functionality of the miniaturized module is proven. Full article
(This article belongs to the Special Issue Advanced Laser Beam Shaping for Micro Material Processing)
Show Figures

Figure 1

19 pages, 3708 KB  
Article
Large Eddy Simulation of Pulsatile Flow through a Channel with Double Constriction
by Md. Mamun Molla and Manosh C. Paul
Fluids 2017, 2(1), 1; https://doi.org/10.3390/fluids2010001 - 28 Dec 2016
Cited by 5 | Viewed by 5937
Abstract
Pulsatile flow in a 3D model of arterial double stenoses is investigated using a large eddy simulation (LES) technique. The computational domain that has been chosen is a simple channel with a biological-type stenosis formed eccentrically on the top wall. The pulsation was [...] Read more.
Pulsatile flow in a 3D model of arterial double stenoses is investigated using a large eddy simulation (LES) technique. The computational domain that has been chosen is a simple channel with a biological-type stenosis formed eccentrically on the top wall. The pulsation was generated at the inlet using the first four harmonics of the Fourier series of the pressure pulse. The flow Reynolds numbers, which are typically suitable for a large human artery, are chosen in the present work. In LES, a top-hat spatial grid-filter is applied to the Navier–Stokes equations of motion to separate the large-scale flows from the sub-grid scale (SGS). The large-scale flows are then resolved fully while the unresolved SGS motions are modelled using a localized dynamic model. It is found that the narrowing of the channel causes the pulsatile flow to undergo a transition to a turbulent condition in the downstream region; as a consequence, a severe level of turbulent fluctuations is achieved in these zones. Transitions to turbulent of the pulsatile flow in the post stenosis are examined through the various numerical results, such as velocity, streamlines, wall pressure, shear stresses and root mean square turbulent fluctuations. Full article
Show Figures

Figure 1

23 pages, 1985 KB  
Article
Automated Image Analysis for the Detection of Benthic Crustaceans and Bacterial Mat Coverage Using the VENUS Undersea Cabled Network
by Jacopo Aguzzi, Corrado Costa, Katleen Robert, Marjolaine Matabos, Francesca Antonucci, S. Kim Juniper and Paolo Menesatti
Sensors 2011, 11(11), 10534-10556; https://doi.org/10.3390/s111110534 - 4 Nov 2011
Cited by 40 | Viewed by 10904
Abstract
The development and deployment of sensors for undersea cabled observatories is presently biased toward the measurement of habitat variables, while sensor technologies for biological community characterization through species identification and individual counting are less common. The VENUS cabled multisensory network (Vancouver Island, Canada) [...] Read more.
The development and deployment of sensors for undersea cabled observatories is presently biased toward the measurement of habitat variables, while sensor technologies for biological community characterization through species identification and individual counting are less common. The VENUS cabled multisensory network (Vancouver Island, Canada) deploys seafloor camera systems at several sites. Our objective in this study was to implement new automated image analysis protocols for the recognition and counting of benthic decapods (i.e., the galatheid squat lobster, Munida quadrispina), as well as for the evaluation of changes in bacterial mat coverage (i.e., Beggiatoa spp.), using a camera deployed in Saanich Inlet (103 m depth). For the counting of Munida we remotely acquired 100 digital photos at hourly intervals from 2 to 6 December 2009. In the case of bacterial mat coverage estimation, images were taken from 2 to 8 December 2009 at the same time frequency. The automated image analysis protocols for both study cases were created in MatLab 7.1. Automation for Munida counting incorporated the combination of both filtering and background correction (Median- and Top-Hat Filters) with Euclidean Distances (ED) on Red-Green-Blue (RGB) channels. The Scale-Invariant Feature Transform (SIFT) features and Fourier Descriptors (FD) of tracked objects were then extracted. Animal classifications were carried out with the tools of morphometric multivariate statistic (i.e., Partial Least Square Discriminant Analysis; PLSDA) on Mean RGB (RGBv) value for each object and Fourier Descriptors (RGBv+FD) matrices plus SIFT and ED. The SIFT approach returned the better results. Higher percentages of images were correctly classified and lower misclassification errors (an animal is present but not detected) occurred. In contrast, RGBv+FD and ED resulted in a high incidence of records being generated for non-present animals. Bacterial mat coverage was estimated in terms of Percent Coverage and Fractal Dimension. A constant Region of Interest (ROI) was defined and background extraction by a Gaussian Blurring Filter was performed. Image subtraction within ROI was followed by the sum of the RGB channels matrices. Percent Coverage was calculated on the resulting image. Fractal Dimension was estimated using the box-counting method. The images were then resized to a dimension in pixels equal to a power of 2, allowing subdivision into sub-multiple quadrants. In comparisons of manual and automated Percent Coverage and Fractal Dimension estimates, the former showed an overestimation tendency for both parameters. The primary limitations on the automatic analysis of benthic images were habitat variations in sediment texture and water column turbidity. The application of filters for background corrections is a required preliminary step for the efficient recognition of animals and bacterial mat patches. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Back to TopTop