Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = spirocyclopropanes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 1287 KiB  
Article
Synthesis of Spirocyclopropane-Containing 4H-Pyrazolo[1,5-a]indoles via Alkylative Dearomatization and Intramolecular N-Imination of an Indole–O-(Methylsulfonyl)oxime
by Jiann-Jyh Huang, Hung-Chun Liao, Cheng-En Hsu, Yan-Ru Liu, Yi-Fu Chang and Shan-Yen Chou
Molecules 2023, 28(17), 6374; https://doi.org/10.3390/molecules28176374 - 31 Aug 2023
Viewed by 1818
Abstract
In this paper, we report the synthesis of spirocyclopropane-containing 4H-pyrazolo[1,5-a]indoles 6ae via alkylative dearomatization and intramolecular N-imination of indole–O-(methylsulfonyl)oxime 11. Starting materials tryptophol (7) and 2-bromocyclopetanone (8) were reacted [...] Read more.
In this paper, we report the synthesis of spirocyclopropane-containing 4H-pyrazolo[1,5-a]indoles 6ae via alkylative dearomatization and intramolecular N-imination of indole–O-(methylsulfonyl)oxime 11. Starting materials tryptophol (7) and 2-bromocyclopetanone (8) were reacted in the presence of HBF4·OEt2, providing 1,2,3,5,6,11-hexahydrocyclopenta[2,3]oxepino[4,5-b]indole (9) in a 63% yield. Compound 9 was reacted with hydroxylamine hydrochloride to afford oxime 10 (65% yield), which was subsequently bis-methanesulfonated to form 11 in a 85% yield. Heating 11 with various alcohols in the presence of N,N-diisopropylethylamine (DIPEA) triggered the alkylative dearomatization and intramolecular N-imination, forming the spirocyclopropane and 4H-pyrazolo[1,5-a]indole structures in the targets 6ae with 67–84% yields. Full article
(This article belongs to the Special Issue Feature Papers in Organic Chemistry (Volume II))
Show Figures

Graphical abstract

18 pages, 7961 KiB  
Article
The Solubility Studies and the Complexation Mechanism Investigations of Biologically Active Spiro[cyclopropane-1,3′-oxindoles] with β-Cyclodextrins
by Anna A. Kravtsova, Anna A. Skuredina, Alexander S. Malyshev, Irina M. Le-Deygen, Elena V. Kudryashova and Ekaterina M. Budynina
Pharmaceutics 2023, 15(1), 228; https://doi.org/10.3390/pharmaceutics15010228 - 9 Jan 2023
Cited by 5 | Viewed by 3541
Abstract
In this work, we first improved the aqueous solubility of biologically active spiro[cyclopropane-1,3′-oxindoles] (SCOs) via their complexation with different β-cyclodextrins (β-CDs) and proposed a possible mechanism of the complex formation. β-CDs significantly increased the water solubility of SCOs (up to fourfold). Moreover, the [...] Read more.
In this work, we first improved the aqueous solubility of biologically active spiro[cyclopropane-1,3′-oxindoles] (SCOs) via their complexation with different β-cyclodextrins (β-CDs) and proposed a possible mechanism of the complex formation. β-CDs significantly increased the water solubility of SCOs (up to fourfold). Moreover, the nature of the substituents in the β-CDs influenced the solubility of the guest molecule (MβCD > SBEβCD > HPβCD). Complexation preferably occurred via the inclusion of aromatic moieties of SCOs into the hydrophobic cavity of β-CDs by the numerous van der Waals contacts and formed stable supramolecular systems. The phase solubility technique and optical microscopy were used to determine the dissociation constants of the complexes (Kc~102 M−1) and reveal a significant decrease in the size of the formed crystals. FTIR-ATR microscopy, PXRD, and 1H-1H ROESY NMR measurements, as well as molecular modeling studies, were carried out to elucidate the host–guest interaction mechanism of the complexation. Additionally, in vitro experiments were carried out and revealed enhancements in the antibacterial activity of SCOs due to their complexation with β-CDs. Full article
(This article belongs to the Special Issue Applications of Crystal Engineering in Drug Delivery)
Show Figures

Graphical abstract

14 pages, 1988 KiB  
Article
Synthesis of New Spiro-Cyclopropanes Prepared by Non-Stabilized Diazoalkane Exhibiting an Extremely High Insecticidal Activity
by Naoufel Ben Hamadi and Ahlem Guesmi
Molecules 2022, 27(8), 2470; https://doi.org/10.3390/molecules27082470 - 12 Apr 2022
Cited by 4 | Viewed by 3089
Abstract
The synthesis of new insecticidal gem-dimethyspiro-cyclopropanes derived from pyrrolidine-2,3-dione have been described, and their biological effect against different insect species has been evaluated. The presented results demonstrate the excellent insecticidal activity of cyclopropane 5c against Aedes aegypti and Musca domestica. Cyclopropane [...] Read more.
The synthesis of new insecticidal gem-dimethyspiro-cyclopropanes derived from pyrrolidine-2,3-dione have been described, and their biological effect against different insect species has been evaluated. The presented results demonstrate the excellent insecticidal activity of cyclopropane 5c against Aedes aegypti and Musca domestica. Cyclopropane 5c showed the quickest knockdown and the best killing against Aedes aegypti and Musca domestica compared to trans-chrysanthemic acid and pyrethrin. The biological results of the high insecticidal activity were confirmed by the results of docking. This is evident in the binding affinity obtained for cyclopropane 5c, indicating good binding with an important active amino acid residue of the 5FT3 protein. Full article
(This article belongs to the Special Issue Organic Synthesis in Drug Discovery)
Show Figures

Figure 1

18 pages, 2243 KiB  
Article
Diastereoselective Synthesis of Spirocyclopropanes under Mild Conditions via Formal [2 + 1] Cycloadditions Using 2,3-Dioxo-4-benzylidene-pyrrolidines
by Yi Li, Qing-Zhu Li, Li Huang, Hong Liang, Kai-Chuan Yang, Hai-Jun Leng, Yue Liu, Xu-Dong Shen, Xiao-Jun Gou and Jun-Long Li
Molecules 2017, 22(2), 328; https://doi.org/10.3390/molecules22020328 - 22 Feb 2017
Cited by 12 | Viewed by 7053
Abstract
A highly diastereoselective cyclopropanation of cyclic enones with sulfur ylides was developed under catalyst-free conditions, producing multifunctional spirocyclopropanes in generally excellent yields (up to 99% yield and >99:1 d.r.). The asymmetric version of this method was realized by using an easily available chiral [...] Read more.
A highly diastereoselective cyclopropanation of cyclic enones with sulfur ylides was developed under catalyst-free conditions, producing multifunctional spirocyclopropanes in generally excellent yields (up to 99% yield and >99:1 d.r.). The asymmetric version of this method was realized by using an easily available chiral sulfur ylide, affording products with moderate to good stereoselectivity. Full article
(This article belongs to the Collection Heterocyclic Compounds)
Show Figures

Graphical abstract

12 pages, 302 KiB  
Article
A Study of Palladium Catalyzed Intra/Intermolecular Cascade Cross Coupling/Cyclizations Involving Bicyclopropylidene
by Aydin Demircan
Molecules 2014, 19(5), 6058-6069; https://doi.org/10.3390/molecules19056058 - 13 May 2014
Cited by 3 | Viewed by 6023
Abstract
The compounds [3-(2-Bromocyclohex-2-enyloxy)prop-1-ynyl]-tert-butyl-dimethylsilane 3, [4-(2-bromocyclohex-2-en-1-yloxy)but-2-yn-1-yloxy]tert-butyldimethylsilane 5 and dimethyl 2-(2-bromocyclohex-2-enyl)-2-(3-(tert-butyldimethylsilanyl)prop-2-ynyl)malonate 9 were prepared and subjected to palladium-catalyzed intra-intermolecular cascade cross couplings incorporating bicyclopropylidene 10 under two types of conditions. In the presence of Pd(OAc)2, PPh [...] Read more.
The compounds [3-(2-Bromocyclohex-2-enyloxy)prop-1-ynyl]-tert-butyl-dimethylsilane 3, [4-(2-bromocyclohex-2-en-1-yloxy)but-2-yn-1-yloxy]tert-butyldimethylsilane 5 and dimethyl 2-(2-bromocyclohex-2-enyl)-2-(3-(tert-butyldimethylsilanyl)prop-2-ynyl)malonate 9 were prepared and subjected to palladium-catalyzed intra-intermolecular cascade cross couplings incorporating bicyclopropylidene 10 under two types of conditions. In the presence of Pd(OAc)2, PPh3 and K2CO3 in acetonitrile at 80 °C, the products were indene analogues, cross-conjugated tetraenes 11, 12 and 13, respectively. The corresponding spirocyclopropanated tricycle 16 in dimethylformamide at 110 °C was obtained, albeit in low yield (24%), and observed as an equimolar mixture of diastereomers, whereas 14, 15 were not fully isolated. Full article
(This article belongs to the Section Organic Chemistry)
Show Figures

Figure 1

Back to TopTop