Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (28)

Search Parameters:
Keywords = spinal bulbar muscular atrophy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 643 KiB  
Article
Identifying Clinical Measures Related to Falls in Ambulatory Patients with Spinal and Bulbar Muscular Atrophy
by Joseph A. Shrader, Allison C. Niemic, Rafael Jiménez-Silva, Joshua G. Woolstenhulme, Galen O. Joe, Uma Jacobs, Ashwini Sansare, Angela Kokkinis, Kenneth Fischbeck, Chris Grunseich and Cris Zampieri
Neurol. Int. 2025, 17(6), 80; https://doi.org/10.3390/neurolint17060080 - 23 May 2025
Viewed by 612
Abstract
Introduction: Spinal and bulbar muscular atrophy (SBMA) is an adult-onset, X-linked, progressive neuromuscular disease caused by abnormal CAG trinucleotide expansion in the androgen receptor gene. Patients with SBMA report difficulty with falls on self-reported activities of daily living scales. To our knowledge, no [...] Read more.
Introduction: Spinal and bulbar muscular atrophy (SBMA) is an adult-onset, X-linked, progressive neuromuscular disease caused by abnormal CAG trinucleotide expansion in the androgen receptor gene. Patients with SBMA report difficulty with falls on self-reported activities of daily living scales. To our knowledge, no study has examined the relationship between falls and common clinical measures of strength, balance, mobility, and disease biomarkers. We performed a cross-sectional analysis of an SBMA cohort. Objectives: The objectives of this study are as follows: (1) compare demographics, clinical measures, and biomarkers between patients who did and did not fall; (2) determine which measures best discriminate fallers from non-fallers; and (3) identify cutoff scores to detect patients with a higher fall risk. Design: Cross-sectional analysis was used. Outcome Measures: Disease biomarkers included blood serum creatinine, and clinical measures included the Timed Up and Go (TUG), the Adult Myopathy Assessment Tool (AMAT), and posturography, including the Modified Clinical Test of Sensory Interaction on Balance and the Motor Control Test. The Maximal Voluntary Isometric Contractions (MVICs) of four lower extremity muscles were captured via fixed-frame dynamometry. Results: We identified three clinical measures that help detect fall risk in people with SBMA. A post hoc receiver operating characteristic curve analysis helped identify cut scores for each test. Impairments of mobility (TUG > 8 s), muscle endurance (AMAT endurance subscale < 14), and muscle strength (ankle plantar flexion MVIC < 45% of predicted) were different between fallers and non-fallers, via independent t-tests. Conclusions: These three clinical tests can help detect fall risk that may help clinicians implement gait aid use or other fall prevention strategies before catastrophic falls occur. Full article
(This article belongs to the Section Movement Disorders and Neurodegenerative Diseases)
Show Figures

Figure 1

10 pages, 1113 KiB  
Article
Evaluation of Sensory and Motor Function in Spinal and Bulbar Muscular Atrophy Using Quiet Stance and Reactive Postural Control
by Joseph A. Shrader, Ashwini Sansare, Allison C. Niemic, Rafael Jiménez-Silva, Joshua G. Woolstenhulme, Galen O. Joe, Uma Jacobs, Angela Kokkinis, Kenneth Fischbeck, Chris Grunseich and Cris Zampieri
Neurol. Int. 2025, 17(6), 79; https://doi.org/10.3390/neurolint17060079 - 22 May 2025
Cited by 1 | Viewed by 713
Abstract
Introduction: Spinal and bulbar muscular atrophy (SBMA) is an X-linked neuromuscular disorder characterized by progressive muscle weakness, along with muscle cramps, tremors, and sensory neuropathy. Previous research has shown that patients with SBMA have difficulty with dynamic balance and sensory postural control during [...] Read more.
Introduction: Spinal and bulbar muscular atrophy (SBMA) is an X-linked neuromuscular disorder characterized by progressive muscle weakness, along with muscle cramps, tremors, and sensory neuropathy. Previous research has shown that patients with SBMA have difficulty with dynamic balance and sensory postural control during quiet stance. There have been no reports on automatic postural reactions in SBMA. Objectives: In this study, we aimed (1) to augment previous findings of sensory postural control, (2) to investigate automatic postural reactions in SBMA, and (3) to explore the relationship between strength and balance. Design: A cross-sectional design was used for the analysis. Participants: The participants were fifty male individuals with a confirmed diagnosis of SBMA. Outcome Measures: Balance testing included the NeuroCom modified Clinical Test of Sensory Interaction on Balance (mCTSIB), which measures sway velocity during quiet stance, and the NeuroCom Motor Control Test (MCT), which measures the latency and strength of postural reactions following sudden perturbations. Strength testing included maximal voluntary isometric contractions measured via fixed-frame dynamometry. Results: Forty-seven out of fifty participants were able to complete the mCTSIB test, but only thirty-eight completed the MCT test. Patients who were unable to complete the MCT were significantly weaker in all lower extremity muscles compared to those who were able to complete testing. Compared to normative data, participants showed significantly higher sway velocity during quiet stance across all conditions of the mCTSIB, except when standing on foam with eyes open. They also exhibited significantly slower postural reactions in response to sudden shifts of the force plate on the MCT. Plantarflexor weakness was significantly correlated with poor postural control on the mCTSIB and MCT. Conclusions: This study confirms previously reported abnormalities of sensory postural control in SBMA and highlights patients’ heavy reliance on visual inputs for postural control. Additionally, this study shows that automatic postural corrections are slower than normal in SBMA and provides a unique approach for measuring the combined sensory and motor components of the disease. Both the sensory and automatic balance abnormalities were found to be associated with plantarflexor weakness and may contribute to a higher risk of falls under challenging situations. Therefore, addressing this weakness may be an important step toward fall prevention in this population. Full article
(This article belongs to the Section Movement Disorders and Neurodegenerative Diseases)
Show Figures

Figure 1

38 pages, 2169 KiB  
Review
Sensory Dysfunction in ALS and Other Motor Neuron Diseases: Clinical Relevance, Histopathology, Neurophysiology, and Insights from Neuroimaging
by Jana Kleinerova, Rangariroyashe H. Chipika, Ee Ling Tan, Yana Yunusova, Véronique Marchand-Pauvert, Jan Kassubek, Pierre-Francois Pradat and Peter Bede
Biomedicines 2025, 13(3), 559; https://doi.org/10.3390/biomedicines13030559 - 22 Feb 2025
Cited by 1 | Viewed by 1845
Abstract
Background: The clinical profiles of MNDs are dominated by inexorable motor decline, but subclinical proprioceptive, nociceptive and somatosensory deficits may also exacerbate mobility, dexterity, and bulbar function. While extra-motor pathology and frontotemporal involvement are widely recognised in motor neuron diseases (MNDs), reports [...] Read more.
Background: The clinical profiles of MNDs are dominated by inexorable motor decline, but subclinical proprioceptive, nociceptive and somatosensory deficits may also exacerbate mobility, dexterity, and bulbar function. While extra-motor pathology and frontotemporal involvement are widely recognised in motor neuron diseases (MNDs), reports of sensory involvement are conflicting. The potential contribution of sensory deficits to clinical disability is not firmly established and the spectrum of sensory manifestations is poorly characterised. Methods: A systematic review was conducted to examine the clinical, neuroimaging, electrophysiology and neuropathology evidence for sensory dysfunction in MND phenotypes. Results: In ALS, paraesthesia, pain, proprioceptive deficits and taste alterations are sporadically reported and there is also compelling electrophysiological, histological and imaging evidence of sensory network alterations. Gait impairment, impaired dexterity, and poor balance in ALS are likely to be multifactorial, with extrapyramidal, cerebellar, proprioceptive and vestibular deficits at play. Human imaging studies and animal models also confirm dorsal column-medial lemniscus pathway involvement as part of the disease process. Sensory symptoms are relatively common in spinal and bulbar muscular atrophy (SBMA) and Hereditary Spastic Paraplegia (HSP), but are inconsistently reported in primary lateral sclerosis (PLS) and in post-poliomyelitis syndrome (PPS). Conclusions: Establishing the prevalence and nature of sensory dysfunction across the spectrum of MNDs has a dual clinical and academic relevance. From a clinical perspective, subtle sensory deficits are likely to impact the disability profile and care needs of patients with MND. From an academic standpoint, sensory networks may be ideally suited to evaluate propagation patterns and the involvement of subcortical grey matter structures. Our review suggests that sensory dysfunction is an important albeit under-recognised facet of MND. Full article
Show Figures

Figure 1

12 pages, 682 KiB  
Article
CAGn Polymorphic Locus of Androgen Receptor (AR) Gene in Russian Infertile and Fertile Men
by Vyacheslav Chernykh, Olga Solovova, Tatyana Sorokina, Maria Shtaut, Anna Sedova, Elena Bliznetz, Olga Ismagilova, Tatiana Beskorovainaya, Olga Shchagina and Aleksandr Polyakov
Int. J. Mol. Sci. 2024, 25(22), 12183; https://doi.org/10.3390/ijms252212183 - 13 Nov 2024
Viewed by 1092
Abstract
The androgen receptor (AR) is critical for mediating the effects of androgens. The polymorphic CAGn locus in exon 1 of the AR gene is associated with several diseases, including spinal and bulbar muscular atrophy (SBMA), prostate cancer, and male infertility. This study [...] Read more.
The androgen receptor (AR) is critical for mediating the effects of androgens. The polymorphic CAGn locus in exon 1 of the AR gene is associated with several diseases, including spinal and bulbar muscular atrophy (SBMA), prostate cancer, and male infertility. This study evaluated the CAGn locus in 9000 infertile Russian men and 286 fertile men (control group). The CAGn locus was analyzed using the amplified fragment length polymorphism method. In the infertile cohort, the number of CAG repeats ranged from 6 to 46, with a unimodal distribution. The number of CAG repeats in infertile and fertile men was 22.15 ± 0.93 and 22.02 ± 1.36, respectively. In infertile men, variants with 16 to 29 repeats were present in 97% of the alleles. A complete mutation (≥42 CAG repeats) was found in three patients, while three others had 39-41 repeats. The incidence of SBMA was 1:3000 infertile men. Significant differences (p < 0.05) were observed between infertile and fertile men in alleles with 21, 24 and 25 repeats. This study revealed certain differences in the CAGn polymorphic locus of the AR gene in Russian infertile and fertile men and determined the frequency of SBMA in infertile patients. Full article
(This article belongs to the Special Issue Male Infertility: From Molecular Mechanisms to Therapeutic Strategies)
Show Figures

Figure 1

9 pages, 1013 KiB  
Article
Respiratory Trajectories and Correlation with Serum Biochemical Indices in Spinal and Bulbar Muscular Atrophy
by Federica Ginanneschi, Caterina Bigliazzi, Flora Anna Cimmino, Stefania Casali, Pietro Pelliccioni, Emanuele Emmanuello, Elena Bargagli and Nicola De Stefano
Brain Sci. 2024, 14(11), 1057; https://doi.org/10.3390/brainsci14111057 - 25 Oct 2024
Cited by 1 | Viewed by 1248
Abstract
Background/Objectives: The primary life-threatening complication in spinal–bulbar muscular atrophy (SBMA) is ventilatory failure. The present study analyzes the longitudinal patterns of respiratory function tests over a follow-up of 11 years. Methods: We collected data from 9 genetically confirmed SBMA patients. Spirometric measurements [maximum [...] Read more.
Background/Objectives: The primary life-threatening complication in spinal–bulbar muscular atrophy (SBMA) is ventilatory failure. The present study analyzes the longitudinal patterns of respiratory function tests over a follow-up of 11 years. Methods: We collected data from 9 genetically confirmed SBMA patients. Spirometric measurements [maximum inspiratory pressure (MIP), maximum expiratory pressure (MEP), and forced vital capacity (FVC)], serum biochemical indices and SBMA functional rating scale (SBMAFRS) were collected every 6 months for 11 years. An average time curve was utilized to assess the changes in both pulmonary tests and serum biochemical indices of the patients. One-way repeated-measures ANOVA was applied to assess statistical differences. The Spearman’s rank correlation coefficient was utilized to evaluate the correlations between the respiratory function tests and serum biochemical and clinical indices. Results: A progressive decrease was observed in the respiratory function tests; the slope of the linear regression was significantly non-zero (p < 0.0001) for all three time curves. A major decrease was observed for MEP (52%) and MIP (42%), while this was minor for FVC (25%). SBMAFRS score correlated with FVC (r = 0.27), MIP (r = 0.53) and MEP (r = 0.51). MIP and MEP correlated with creatine phosphokinase (r = 0.3, r = 0.25, respectively) and MIP with creatinine levels (r = 0.31). Conclusions: This longitudinal study shows a progressive decline of spirometric data throughout life in SBMA patients. The decline appears to be related to clinical deterioration and muscle denervation. Spirometric measures relative to maximal strength of the respiratory muscles (MIP and MEP) may have a better predictive value for pulmonary and muscular decline than FVC. Full article
(This article belongs to the Section Sensory and Motor Neuroscience)
Show Figures

Figure 1

22 pages, 1205 KiB  
Review
Update on Inherited Pediatric Motor Neuron Diseases: Clinical Features and Outcome
by Antonio Trabacca, Camilla Ferrante, Maria Carmela Oliva, Isabella Fanizza, Ivana Gallo and Marta De Rinaldis
Genes 2024, 15(10), 1346; https://doi.org/10.3390/genes15101346 - 21 Oct 2024
Cited by 2 | Viewed by 3185
Abstract
Background: Inherited pediatric motor neuron diseases (MNDs) are a group of neurodegenerative disorders characterized by the degeneration of motor neurons in the brain and the spinal cord. These diseases can manifest as early as infancy and originate from inherited pathogenic mutations in known [...] Read more.
Background: Inherited pediatric motor neuron diseases (MNDs) are a group of neurodegenerative disorders characterized by the degeneration of motor neurons in the brain and the spinal cord. These diseases can manifest as early as infancy and originate from inherited pathogenic mutations in known genes. Key clinical features of MNDs include muscle weakness, hypotonia, and atrophy due to the degeneration of lower motor neurons or spasticity, hypertonia, and hyperreflexia caused by upper motor neuron dysfunction. The course of the disease varies among individuals and is influenced by the specific subtype. Methods: We performed a non-systematic, narrative clinical review, employing a systematic methodology for the literature search and article selection to delineate the features of hereditary pediatric motor neuron diseases. Results: The growing availability of advanced molecular testing, such as whole-exome sequencing (WES) and whole-genome sequencing (WGS), has expanded the range of identified genetic factors. These advancements provide insights into the genetic complexity and underlying mechanisms of these disorders. As more MND-related genes are discovered, the accumulating genetic data will help prioritize promising candidate genes for future research. In some cases, targeted treatments based on specific genetic mechanisms have already emerged, underscoring the critical role of early and timely diagnosis in improving patient outcomes. Common MNDs include amyotrophic lateral sclerosis, spinal muscular atrophy, and bulbar spinal muscular atrophy. Conclusion: This narrative clinical review covers the clinical presentation, genetics, molecular features, and pathophysiology of inherited pediatric MNDs. Full article
(This article belongs to the Special Issue Advances in Genetics of Motor Neuron Diseases)
Show Figures

Figure 1

25 pages, 2065 KiB  
Review
Antisense Oligonucleotides (ASOs) in Motor Neuron Diseases: A Road to Cure in Light and Shade
by Silvia Cantara, Giorgia Simoncelli and Claudia Ricci
Int. J. Mol. Sci. 2024, 25(9), 4809; https://doi.org/10.3390/ijms25094809 - 28 Apr 2024
Cited by 19 | Viewed by 7792
Abstract
Antisense oligonucleotides (ASOs) are short oligodeoxynucleotides designed to bind to specific regions of target mRNA. ASOs can modulate pre-mRNA splicing, increase levels of functional proteins, and decrease levels of toxic proteins. ASOs are being developed for the treatment of motor neuron diseases (MNDs), [...] Read more.
Antisense oligonucleotides (ASOs) are short oligodeoxynucleotides designed to bind to specific regions of target mRNA. ASOs can modulate pre-mRNA splicing, increase levels of functional proteins, and decrease levels of toxic proteins. ASOs are being developed for the treatment of motor neuron diseases (MNDs), including spinal muscular atrophy (SMA), amyotrophic lateral sclerosis (ALS) and spinal and bulbar muscular atrophy (SBMA). The biggest success has been the ASO known as nusinersen, the first effective therapy for SMA, able to improve symptoms and slow disease progression. Another success is tofersen, an ASO designed to treat ALS patients with SOD1 gene mutations. Both ASOs have been approved by the FDA and EMA. On the other hand, ASO treatment in ALS patients with the C9orf72 gene mutation did not show any improvement in disease progression. The aim of this review is to provide an up-to-date overview of ASO research in MNDs, from preclinical studies to clinical trials and, where available, regulatory approval. We highlight the successes and failures, underline the strengths and limitations of the current ASO research, and suggest possible approaches that could lead to more effective treatments. Full article
Show Figures

Figure 1

16 pages, 1323 KiB  
Review
Disruption of Neuromuscular Junction Following Spinal Cord Injury and Motor Neuron Diseases
by Colin Nemeth, Naren L. Banik and Azizul Haque
Int. J. Mol. Sci. 2024, 25(6), 3520; https://doi.org/10.3390/ijms25063520 - 20 Mar 2024
Cited by 7 | Viewed by 5461
Abstract
The neuromuscular junction (NMJ) is a crucial structure that connects the cholinergic motor neurons to the muscle fibers and allows for muscle contraction and movement. Despite the interruption of the supraspinal pathways that occurs in spinal cord injury (SCI), the NMJ, innervated by [...] Read more.
The neuromuscular junction (NMJ) is a crucial structure that connects the cholinergic motor neurons to the muscle fibers and allows for muscle contraction and movement. Despite the interruption of the supraspinal pathways that occurs in spinal cord injury (SCI), the NMJ, innervated by motor neurons below the injury site, has been found to remain intact. This highlights the importance of studying the NMJ in rodent models of various nervous system disorders, such as amyotrophic lateral sclerosis (ALS), Charcot–Marie–Tooth disease (CMT), spinal muscular atrophy (SMA), and spinal and bulbar muscular atrophy (SBMA). The NMJ is also involved in myasthenic disorders, such as myasthenia gravis (MG), and is vulnerable to neurotoxin damage. Thus, it is important to analyze the integrity of the NMJ in rodent models during the early stages of the disease, as this may allow for a better understanding of the condition and potential treatment options. The spinal cord also plays a crucial role in the functioning of the NMJ, as the junction relays information from the spinal cord to the muscle fibers, and the integrity of the NMJ could be disrupted by SCI. Therefore, it is vital to study SCI and muscle function when studying NMJ disorders. This review discusses the formation and function of the NMJ after SCI and potential interventions that may reverse or improve NMJ dysfunction, such as exercise, nutrition, and trophic factors. Full article
(This article belongs to the Special Issue Molecular and Cellar Research of Spine and Spinal Cord Injury)
Show Figures

Figure 1

24 pages, 858 KiB  
Review
Functional Implications of Protein Arginine Methyltransferases (PRMTs) in Neurodegenerative Diseases
by Efthalia Angelopoulou, Efstratios-Stylianos Pyrgelis, Chetana Ahire, Prachi Suman, Awanish Mishra and Christina Piperi
Biology 2023, 12(9), 1257; https://doi.org/10.3390/biology12091257 - 20 Sep 2023
Cited by 5 | Viewed by 3831
Abstract
During the aging of the global population, the prevalence of neurodegenerative diseases will be continuously growing. Although each disorder is characterized by disease-specific protein accumulations, several common pathophysiological mechanisms encompassing both genetic and environmental factors have been detected. Among them, protein arginine methyltransferases [...] Read more.
During the aging of the global population, the prevalence of neurodegenerative diseases will be continuously growing. Although each disorder is characterized by disease-specific protein accumulations, several common pathophysiological mechanisms encompassing both genetic and environmental factors have been detected. Among them, protein arginine methyltransferases (PRMTs), which catalyze the methylation of arginine of various substrates, have been revealed to regulate several cellular mechanisms, including neuronal cell survival and excitability, axonal transport, synaptic maturation, and myelination. Emerging evidence highlights their critical involvement in the pathophysiology of neurodegenerative diseases, including Alzheimer’s disease (AD), Parkinson’s disease (PD), frontotemporal dementia–amyotrophic lateral sclerosis (FTD-ALS) spectrum, Huntington’s disease (HD), spinal muscular atrophy (SMA) and spinal and bulbar muscular atrophy (SBMA). Underlying mechanisms include the regulation of gene transcription and RNA splicing, as well as their implication in various signaling pathways related to oxidative stress responses, apoptosis, neuroinflammation, vacuole degeneration, abnormal protein accumulation and neurotransmission. The targeting of PRMTs is a therapeutic approach initially developed against various forms of cancer but currently presents a novel potential strategy for neurodegenerative diseases. In this review, we discuss the accumulating evidence on the role of PRMTs in the pathophysiology of neurodegenerative diseases, enlightening their pathogenesis and stimulating future research. Full article
(This article belongs to the Special Issue Epigenetic Modifications and Changes in Neurodegenerative Diseases)
Show Figures

Figure 1

11 pages, 1118 KiB  
Review
Advancing Epidemiology and Genetic Approaches for the Treatment of Spinal and Bulbar Muscular Atrophy: Focus on Prevalence in the Indigenous Population of Western Canada
by Harry Wilton-Clark, Ammar Al-aghbari, Jessica Yang and Toshifumi Yokota
Genes 2023, 14(8), 1634; https://doi.org/10.3390/genes14081634 - 17 Aug 2023
Cited by 3 | Viewed by 3803
Abstract
Spinal and bulbar muscular atrophy (SBMA), also known as Kennedy’s disease, is a debilitating neuromuscular disease characterized by progressive muscular weakness and neuronal degeneration, affecting 1–2 individuals per 100,000 globally. While SBMA is relatively rare, recent studies have shown a significantly higher prevalence [...] Read more.
Spinal and bulbar muscular atrophy (SBMA), also known as Kennedy’s disease, is a debilitating neuromuscular disease characterized by progressive muscular weakness and neuronal degeneration, affecting 1–2 individuals per 100,000 globally. While SBMA is relatively rare, recent studies have shown a significantly higher prevalence of the disease among the indigenous population of Western Canada compared to the general population. The disease is caused by a pathogenic expansion of polyglutamine residues in the androgen receptor protein, which acts as a key transcriptional regulator for numerous genes. SBMA has no cure, and current treatments are primarily supportive and focused on symptom management. Recently, a form of precision medicine known as antisense therapy has gained traction as a promising therapeutic option for numerous neuromuscular diseases. Antisense therapy uses small synthetic oligonucleotides to confer therapeutic benefit by acting on pathogenic mRNA molecules, serving to either degrade pathogenic mRNA transcripts or helping to modulate splicing. Recent studies have explored the suitability of antisense therapy for the treatment of SBMA, primarily focused on gene therapy and antisense-mediated mRNA knockdown approaches. Advancements in understanding the pathogenesis of SBMA and the development of targeted therapies offer hope for improved quality of life for individuals affected by this debilitating condition. Continued research is essential to optimize these genetic approaches, ensuring their safety and efficacy. Full article
(This article belongs to the Section Human Genomics and Genetic Diseases)
Show Figures

Figure 1

11 pages, 1448 KiB  
Article
Pilot Program of Newborn Screening for 5q Spinal Muscular Atrophy in the Russian Federation
by Kristina Mikhalchuk, Olga Shchagina, Alena Chukhrova, Viktoria Zabnenkova, Polina Chausova, Nina Ryadninskaya, Dmitry Vlodavets, Sergei I. Kutsev and Alexander Polyakov
Int. J. Neonatal Screen. 2023, 9(2), 29; https://doi.org/10.3390/ijns9020029 - 16 May 2023
Cited by 11 | Viewed by 3152
Abstract
5q spinal muscular atrophy (5q SMA) is one of the most common autosomal recessive disorders in the Russian Federation. The first medication to treat 5q SMA was registered in the Russian Federation for treatment of all 5q SMA types in 2019, and the [...] Read more.
5q spinal muscular atrophy (5q SMA) is one of the most common autosomal recessive disorders in the Russian Federation. The first medication to treat 5q SMA was registered in the Russian Federation for treatment of all 5q SMA types in 2019, and the last of the three currently available in December 2021. We launched the pilot newborn screening (NBS) program for 5q SMA in Moscow, the Russian Federation, starting in 2019. During the pilot program, 23,405 neonates were tested for the deletion of exon 7 of the SMN1 gene, the most common cause of 5q SMA. We used the SALSA® MC002 SMA Newborn Screen Kit (MRC Holland) to specifically detect homozygous deletions of SMN1 exon 7. We used the restriction fragment length polymorphism (RFLP) approach to validate detected homozygous deletions and the SALSA MLPA Probemix P060 SMA Carrier Kit (MRC Holland) to determine the SMN2 exon 7 copy number to prescribe gene therapy for 5q SMA. Three newborns with a homozygous deletion of the SMN1 gene were detected. The calculated birth prevalence of 1:7801 appears to be similar to the results in other European countries. The children did not show any signs of respiratory involvement or bulbar weakness immediately after birth. Until now, no 5q SMA case missed by NBS has been detected. Full article
Show Figures

Figure 1

6 pages, 970 KiB  
Case Report
Sporadic Spinal-Onset Amyotrophic Lateral Sclerosis Associated with Myopathy in Three Unrelated Portuguese Patients
by Miguel Oliveira Santos, Marta Gromicho, Ana Pronto-Laborinho and Mamede de Carvalho
Brain Sci. 2023, 13(2), 220; https://doi.org/10.3390/brainsci13020220 - 28 Jan 2023
Cited by 2 | Viewed by 2613
Abstract
Amyotrophic lateral sclerosis (ALS) and myopathy have been already described as part of a common genetic syndrome called multisystem proteinopathy. They may occur together or not, and can be associated with other clinical features such as frontotemporal dementia and Paget’s bone disease. In [...] Read more.
Amyotrophic lateral sclerosis (ALS) and myopathy have been already described as part of a common genetic syndrome called multisystem proteinopathy. They may occur together or not, and can be associated with other clinical features such as frontotemporal dementia and Paget’s bone disease. In addition, primary skeletal muscle involvement has been also reported in inherited forms of lower motor neuron disease, in spinal–bulbar muscular atrophy and in spinal muscular atrophy. We aim to characterize three sporadic, spinal-onset ALS patients, one with a concurrent non-specific myopathy, and two with a previous diagnosis of myopathy before upper and lower motor neuron signs emerged. Perhaps our sporadic ALS cases associated with myopathy share a common, but still unknown, pathogenic background. These cases raise the paradigm of a possible interplay between skeletal muscle degeneration and motor neuron damage. Full article
(This article belongs to the Section Sensory and Motor Neuroscience)
Show Figures

Figure 1

17 pages, 1383 KiB  
Review
The Role of Sphingomyelin and Ceramide in Motor Neuron Diseases
by Gavin McCluskey, Colette Donaghy, Karen E. Morrison, John McConville, William Duddy and Stephanie Duguez
J. Pers. Med. 2022, 12(9), 1418; https://doi.org/10.3390/jpm12091418 - 30 Aug 2022
Cited by 19 | Viewed by 8270
Abstract
Amyotrophic Lateral Sclerosis (ALS), Spinal Bulbar Muscular Atrophy (SBMA), and Spinal Muscular Atrophy (SMA) are motor neuron diseases (MNDs) characterised by progressive motor neuron degeneration, weakness and muscular atrophy. Lipid dysregulation is well recognised in each of these conditions and occurs prior to [...] Read more.
Amyotrophic Lateral Sclerosis (ALS), Spinal Bulbar Muscular Atrophy (SBMA), and Spinal Muscular Atrophy (SMA) are motor neuron diseases (MNDs) characterised by progressive motor neuron degeneration, weakness and muscular atrophy. Lipid dysregulation is well recognised in each of these conditions and occurs prior to neurodegeneration. Several lipid markers have been shown to predict prognosis in ALS. Sphingolipids are complex lipids enriched in the central nervous system and are integral to key cellular functions including membrane stability and signalling pathways, as well as being mediators of neuroinflammation and neurodegeneration. This review highlights the metabolism of sphingomyelin (SM), the most abundant sphingolipid, and of its metabolite ceramide, and its role in the pathophysiology of neurodegeneration, focusing on MNDs. We also review published lipidomic studies in MNDs. In the 13 studies of patients with ALS, 12 demonstrated upregulation of multiple SM species and 6 demonstrated upregulation of ceramides. SM species also correlated with markers of clinical progression in five of six studies. These data highlight the potential use of SM and ceramide as biomarkers in ALS. Finally, we review potential therapeutic strategies for targeting sphingolipid metabolism in neurodegeneration. Full article
Show Figures

Graphical abstract

16 pages, 725 KiB  
Review
Skeletal Muscle Pathogenesis in Polyglutamine Diseases
by Caterina Marchioretti, Emanuela Zuccaro, Udai Bhan Pandey, Jessica Rosati, Manuela Basso and Maria Pennuto
Cells 2022, 11(13), 2105; https://doi.org/10.3390/cells11132105 - 3 Jul 2022
Cited by 3 | Viewed by 4848
Abstract
Polyglutamine diseases are characterized by selective dysfunction and degeneration of specific types of neurons in the central nervous system. In addition, nonneuronal cells can also be affected as a consequence of primary degeneration or due to neuronal dysfunction. Skeletal muscle is a primary [...] Read more.
Polyglutamine diseases are characterized by selective dysfunction and degeneration of specific types of neurons in the central nervous system. In addition, nonneuronal cells can also be affected as a consequence of primary degeneration or due to neuronal dysfunction. Skeletal muscle is a primary site of toxicity of polyglutamine-expanded androgen receptor, but it is also affected in other polyglutamine diseases, more likely due to neuronal dysfunction and death. Nonetheless, pathological processes occurring in skeletal muscle atrophy impact the entire body metabolism, thus actively contributing to the inexorable progression towards the late and final stages of disease. Skeletal muscle atrophy is well recapitulated in animal models of polyglutamine disease. In this review, we discuss the impact and relevance of skeletal muscle in patients affected by polyglutamine diseases and we review evidence obtained in animal models and patient-derived cells modeling skeletal muscle. Full article
(This article belongs to the Special Issue Skeletal Muscle Atrophy: Mechanisms at a Cellular Level)
Show Figures

Figure 1

12 pages, 6555 KiB  
Article
Affection of Respiratory Muscles in ALS and SMA
by Wiebke Hermann, Simona Langner, Maren Freigang, Stefanie Fischer, Alexander Storch, René Günther and Andreas Hermann
J. Clin. Med. 2022, 11(5), 1163; https://doi.org/10.3390/jcm11051163 - 22 Feb 2022
Cited by 11 | Viewed by 2771
Abstract
Respiratory dysfunction is a common cause of morbidity and mortality in motor neuron disease (MND). However, classical volitional measures of respiratory function in these patients are impeded by, e.g., bulbar paralysis or progressive disability. Diaphragm ultrasound imaging might be a valuable tool for [...] Read more.
Respiratory dysfunction is a common cause of morbidity and mortality in motor neuron disease (MND). However, classical volitional measures of respiratory function in these patients are impeded by, e.g., bulbar paralysis or progressive disability. Diaphragm ultrasound imaging might be a valuable tool for assessing respiratory impairment, albeit different ultrasound measures have not been systematically investigated in adult MND patients and, in particular, have not yet been comparatively applied in adult patients with amyotrophic lateral sclerosis (ALS) and spinal muscular atrophy (SMA). We hypothesized that in contrast to ALS patients, adult SMA patients show a relative sparing of diaphragm function. We retrospectively analyzed diaphragm ultrasound imaging data of 40 patients with ALS and 23 patients with SMA in comparison to a multitude of established parameters of respiratory function. Indeed, ALS patients showed more severe diaphragm dysfunction than adult SMA patients, however, diaphragm dysfunction was also common in adult SMA patients. Notably, dynamic measures of diaphragm function rather than thickness measures were impaired in ALS compared to SMA. Thus, diaphragm ultrasound imaging might be a useful tool to evaluate respiratory dysfunction in adult MND patients. Future larger and prospective studies are needed to validate our initial findings. Full article
(This article belongs to the Special Issue Amyotrophic Lateral Sclerosis: Latest Advances and Prospects)
Show Figures

Figure 1

Back to TopTop