Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (80)

Search Parameters:
Keywords = spike L18F

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 5780 KiB  
Article
Multiscale Modeling and Dynamic Mutational Profiling of Binding Energetics and Immune Escape for Class I Antibodies with SARS-CoV-2 Spike Protein: Dissecting Mechanisms of High Resistance to Viral Escape Against Emerging Variants
by Mohammed Alshahrani, Vedant Parikh, Brandon Foley and Gennady Verkhivker
Viruses 2025, 17(8), 1029; https://doi.org/10.3390/v17081029 - 23 Jul 2025
Viewed by 482
Abstract
The rapid evolution of SARS-CoV-2 has underscored the need for a detailed understanding of antibody binding mechanisms to combat immune evasion by emerging variants. In this study, we investigated the interactions between Class I neutralizing antibodies—BD55-1205, BD-604, OMI-42, P5S-1H1, and P5S-2B10—and the receptor-binding [...] Read more.
The rapid evolution of SARS-CoV-2 has underscored the need for a detailed understanding of antibody binding mechanisms to combat immune evasion by emerging variants. In this study, we investigated the interactions between Class I neutralizing antibodies—BD55-1205, BD-604, OMI-42, P5S-1H1, and P5S-2B10—and the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein using multiscale modeling, which combined molecular simulations with the ensemble-based mutational scanning of the binding interfaces and binding free energy computations. A central theme emerging from this work is that the unique binding strength and resilience to immune escape of the BD55-1205 antibody are determined by leveraging a broad epitope footprint and distributed hotspot architecture, additionally supported by backbone-mediated specific interactions, which are less sensitive to amino acid substitutions and together enable exceptional tolerance to mutational escape. In contrast, BD-604 and OMI-42 exhibit localized binding modes with strong dependence on side-chain interactions, rendering them particularly vulnerable to escape mutations at K417N, L455M, F456L and A475V. Similarly, P5S-1H1 and P5S-2B10 display intermediate behavior—effective in some contexts but increasingly susceptible to antigenic drift due to narrower epitope coverage and concentrated hotspots. Our computational predictions show strong agreement with experimental deep mutational scanning data, validating the accuracy of the models and reinforcing the value of binding hotspot mapping in predicting antibody vulnerability. This work highlights that neutralization breadth and durability are not solely dictated by epitope location, but also by how binding energy is distributed across the interface. The results provide atomistic insight into mechanisms driving resilience to immune escape for broadly neutralizing antibodies targeting the ACE2 binding interface—which stems from cumulative effects of structural diversity in binding contacts, redundancy in interaction patterns and reduced vulnerability to mutation-prone positions. Full article
Show Figures

Graphical abstract

29 pages, 3956 KiB  
Article
Integrative Computational Modeling of Distinct Binding Mechanisms for Broadly Neutralizing Antibodies Targeting SARS-CoV-2 Spike Omicron Variants: Balance of Evolutionary and Dynamic Adaptability in Shaping Molecular Determinants of Immune Escape
by Mohammed Alshahrani, Vedant Parikh, Brandon Foley and Gennady Verkhivker
Viruses 2025, 17(6), 741; https://doi.org/10.3390/v17060741 - 22 May 2025
Viewed by 801
Abstract
In this study, we conducted a comprehensive analysis of the interactions between the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein and four neutralizing antibodies—S309, S304, CYFN1006, and VIR-7229. Using integrative computational modeling that combined all-atom molecular dynamics (MD) simulations, mutational scanning, and [...] Read more.
In this study, we conducted a comprehensive analysis of the interactions between the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein and four neutralizing antibodies—S309, S304, CYFN1006, and VIR-7229. Using integrative computational modeling that combined all-atom molecular dynamics (MD) simulations, mutational scanning, and MM-GBSA binding free energy calculations, we elucidated the structural, energetic, and dynamic determinants of antibody binding. Our findings reveal distinct dynamic binding mechanisms and evolutionary adaptation driving the broad neutralization effect of these antibodies. We show that S309 targets conserved residues near the ACE2 interface, leveraging synergistic van der Waals and electrostatic interactions, while S304 focuses on fewer but sensitive residues, making it more susceptible to escape mutations. The analysis of CYFN-1006.1 and CYFN-1006.2 antibody binding highlights broad epitope coverage with critical anchors at T345, K440, and T346, enhancing its efficacy against variants carrying the K356T mutation, which caused escape from S309 binding. Our analysis of broadly potent VIR-7229 antibody binding to XBB.1.5 and EG.5 Omicron variants emphasized a large and structurally complex epitope, demonstrating certain adaptability and compensatory effects to F456L and L455S mutations. Mutational profiling identified key residues crucial for antibody binding, including T345, P337, and R346 for S309 as well as T385 and K386 for S304, underscoring their roles as evolutionary “weak spots” that balance viral fitness and immune evasion. The results of the energetic analysis demonstrate a good agreement between the predicted binding hotspots, reveal distinct energetic mechanisms of binding, and highlight the importance of targeting conserved residues and diverse epitopes to counteract viral resistance. Full article
Show Figures

Graphical abstract

19 pages, 827 KiB  
Review
Omicron Variant Could Be an Antigenic Shift of SARS-CoV-2
by Anju Kaushal
COVID 2025, 5(5), 73; https://doi.org/10.3390/covid5050073 - 14 May 2025
Viewed by 1006
Abstract
In the past 5 years, the COVID-19 pandemic has experienced frequently changing variants contextualizing immune evasion. The emergence of Omicron with >30–50 mutations on the spike gene has shown a sharp divergence from its relative VOCs, such as WT, Alpha, Beta, Gamma, and [...] Read more.
In the past 5 years, the COVID-19 pandemic has experienced frequently changing variants contextualizing immune evasion. The emergence of Omicron with >30–50 mutations on the spike gene has shown a sharp divergence from its relative VOCs, such as WT, Alpha, Beta, Gamma, and Delta. The requisition of prime boosting was essential within 3–6 months to improve the Nab response that had been not lasted for longer. Omicron subvariant BA.1.1 was less transmissible, but with an extra nine mutations in next variant BA.2 made it more transmissible. This remarkable heterogeneity was reported in ORF1ab or TRS sites, ORF7a, and 10 regions in the genomic sequences of Omicron BA.2 and its evolving subvariants BA.4.6, BF.7, BQ.2, BF. 7, BA.2.75.2, and BA.5 (BQ.1 and BQ.1.1). The mutational stability of subvariants XBB, XBB 1, XBB 1.5, and XBB 1.6 conferred a similar affinity towards ACE-2. This phenomenon has been reported in breakthrough infections and after booster vaccinations producing hybrid immunity. The reduced pathogenic nature of Omicron has implicated its adaptation either through immunocompromised individuals or other animal hosts. The binding capacity of RBD and ACE-2, including the proteolytic priming via TMPRSS2, reveals its (in-vitro) transmissibility behavior. RBD mutations signify transmissibility, S1/S2 enhances virulence, while S2 infers the effective immunogenic response. Initial mutations D614G, E484A, N501Y, Q493K, K417N, S477N, Y505H, and G496S were found to increase the Ab escape. Some mutations such as, R346K, L452R, and F486Vwere seen delivering immune pressure. HR2 region (S2) displayed mutations R436S, K444T, F486S, and D1199N with altered spike positions. Later on, the booster dose or breakthrough infections contributed to elevating the immune profile. Several other mutations in BA.1.1-N460K, R346T, K444T, and BA.2.75.2-F486S have also conferred the neutralization resistance. The least studied T-cell response in SARS-CoV-2 affects HLA- TCR interactions, thus, it plays a role in limiting the virus clearance. Antigenic cartographic analysis has also shown Omicron’s drift from its predecessor variants. The rapidly evolving SARS-CoV-2 variants and subvariants have driven the population-based immunity escape in fully immunized individuals within short period. This could be an indication that Omicron is heading towards endemicity and may evolve in future with subvariants could lead to outbreaks, which requires regular surveillance. Full article
(This article belongs to the Section Human or Animal Coronaviruses)
Show Figures

Figure 1

13 pages, 3019 KiB  
Article
QTL Identification and Candidate Gene Prediction for Spike-Related Traits in Barley
by Xiaofang Wang, Junpeng Chen, Qingyu Cao, Chengyang Wang, Genlou Sun and Xifeng Ren
Agronomy 2025, 15(5), 1185; https://doi.org/10.3390/agronomy15051185 - 14 May 2025
Viewed by 457
Abstract
Barley (Hordeum vulgare L.) is one of the most important cereal crops in the world, and its production is important to humans. Barley spike morphology is highly correlated with yield and is also a complex multigene-controlled quantitative trait. To date, a considerable [...] Read more.
Barley (Hordeum vulgare L.) is one of the most important cereal crops in the world, and its production is important to humans. Barley spike morphology is highly correlated with yield and is also a complex multigene-controlled quantitative trait. To date, a considerable number of spike-related quantitative trait loci (QTLs) have been reported in barley, but the large physical distances between most of them and the lack of follow-up studies have made it difficult to use them in molecular-assisted breeding in barley. To explore more novel and yield-enhancing spike QTLs, in this study, a high-density genetic linkage map was developed based on a population of 172 F2:12 recombinant inbred lines (RILs) developed from a cross between the barley variety Yongjiabaidamai (YJ) and Hua 30 (H30), and used to map the spike length (SL), rachis node number (SRN), and spike density (SD). A total of 50 additive QTLs (LOD > 3) were mapped in four environments, four of them being stable and major QTLs. The qSL2-5 overlaps with the zeo1 gene, comparing the gene sequences of both parents and combining with previous studies, zeo1 was determined to be the SL regulatory gene in qSL2-5. The qSRN2-1 overlaps with vrs1, but it has not been previously reported that vrs1 affects SRN. Notably, two novel QTLs, one each on chromosomes 2H (qSL2-1) and 5H (qSL5-1), respectively, were first identified in this study. The qSL2-1 has only 0.06 Mb and contains three high-confidence genes. In addition, this study explored the relationship between three spike traits, and found that SL was affected by both SRN and SD, while there was almost no relationship between SRN and SD. We also explored the effect of these QTLs on grain weight per spike (GWPS) to assess their effect on yield and found that qSRN2-1 and qSL5-1 had a greater effect on GWPS, suggesting that they are potential loci to increase yield. Full article
(This article belongs to the Section Crop Breeding and Genetics)
Show Figures

Figure 1

14 pages, 9003 KiB  
Article
Isolation and Characterization of Porcine Epidemic Diarrhea Virus G2c Strains Circulating in China from 2021 to 2024
by Xi Lu, Chen Chen, Zixuan Wang and Anding Zhang
Vet. Sci. 2025, 12(5), 444; https://doi.org/10.3390/vetsci12050444 - 6 May 2025
Viewed by 894
Abstract
Porcine epidemic diarrhea virus (PEDV) is a major pathogen responsible for viral diarrhea in pigs, causing particularly high mortality in neonatal piglets. In recent years, genetic variations in PEDV have resulted in alterations in both its virulence and antigenicity, leading to a reduced [...] Read more.
Porcine epidemic diarrhea virus (PEDV) is a major pathogen responsible for viral diarrhea in pigs, causing particularly high mortality in neonatal piglets. In recent years, genetic variations in PEDV have resulted in alterations in both its virulence and antigenicity, leading to a reduced efficacy of existing vaccines. In this study, diarrheal samples were collected from four commercial pig farms in the Hubei, Guangxi, and Jiangxi provinces, China, which experienced vaccine failure. RT-qPCR confirmed PEDV infection, and three PEDV strains, 2021-HBMC, 2024-JXYX, and 2024-JXNC, were successfully isolated. Sequence analysis and phylogenetic tree construction classified these strains into the G2c genotype, the predominant subtype in China. The neutralization assays revealed a significant reduction in the neutralizing titers of these strains against the immune serum compared with the AJ1102 reference strain. Further amino acid sequence analysis of the spike (S) protein identified several mutations in key neutralizing epitopes compared with the AJ1102 strain, including S27L, E57A, N139D, M214T, and P229L in the S-NTD epitope; A520S, F539L, K566N, D569E, G612V, P634S, E636V/K in the COE epitope; and Y1376H in the 2C10 epitope, along with several deletions at N-glycosylation sites (347NSSD and 510NITV). Additionally, whole-genome sequencing and recombination analysis indicated that the 2021-HBMC strain may have resulted from a recombination event. The findings of this study underscore the challenge posed by the continuous genetic evolution of PEDV to vaccine efficacy and provide valuable insights for future vaccine development and control strategies. Full article
Show Figures

Figure 1

17 pages, 3690 KiB  
Article
An In-Depth Characterization of SARS-CoV-2 Omicron Lineages and Clinical Presentation in Adult Population Distinguished by Immune Status
by Greta Marchegiani, Luca Carioti, Luigi Coppola, Marco Iannetta, Leonardo Alborghetti, Vincenzo Malagnino, Livia Benedetti, Maria Mercedes Santoro, Massimo Andreoni, Loredana Sarmati, Claudia Alteri, Francesca Ceccherini-Silberstein and Maria Concetta Bellocchi
Viruses 2025, 17(4), 540; https://doi.org/10.3390/v17040540 - 8 Apr 2025
Viewed by 626
Abstract
This retrospective study analyzed SARS-CoV-2 Omicron variability since its emergence, focusing on immunocompromised (IPs) and non-immunocompromised adult people (NIPs). Phylogenetic analysis identified at least five major Omicron lineage groups circulating in Central Italy, from December 2021 to December 2023: (a) BA.1 (34.0%), (b) [...] Read more.
This retrospective study analyzed SARS-CoV-2 Omicron variability since its emergence, focusing on immunocompromised (IPs) and non-immunocompromised adult people (NIPs). Phylogenetic analysis identified at least five major Omicron lineage groups circulating in Central Italy, from December 2021 to December 2023: (a) BA.1 (34.0%), (b) BA.2 + BA.4 (25.8%), (c) BA.5 + BF (10.8%), (d) BQ + BE + EF (9.2%), and (e) Recombinants (20.2%). The BA.2 + BA.4 lineages were more common in IPs compared to NIPs (30.9% vs. 17.8%, respectively; p = 0.011); conversely, Recombinants were less prevalent in IPs than in NIPs (16.0% vs. 27.1%, respectively; p = 0.018). High-abundant single nucleotide polymorphisms (SNPs; prevalence ≥ 40%) and non-synonymous SNPs (prevalence ≥ 20%) increased during the emergence of new variants, rising from BA.1 to Recombinants (54 to 92, and 43 to 70, respectively, both p < 0.001). Evaluating the genetic variability, 109 SNPs were identified as being involved in significant positive or negative associations in pairs (phi > 0.70, p < 0.001), with 19 SNPs associated in 3 distinct clusters (bootstrap > 0.96). Multivariate regression analysis showed that hospitalization was positively associated with one specific cluster, including S686R and A694S in Spike and L221F in Nucleocapsid (AOR: 2.74 [95% CI: 1.13–6.64, p = 0.025]), and with increased age (AOR:1.03 [95% CI: 1.00–1.06], p = 0.028). Conversely, negative associations with hospitalization were observed for female gender and previous vaccination status (AORs: 0.34 [95% CI: 0.14–0.83], p = 0.017 and 0.19 (95% CI: 0.06–0.63, p = 0.006, respectively). Interestingly, the S686R SNP located in a furin cleavage site suggests its potential pathogenetic role. The results show how Omicron genetic diversification significantly influences disease severity and hospitalization, together with age, sex, and vaccination status as key factors. Full article
(This article belongs to the Special Issue Coronaviruses Pathogenesis, Immunity, and Antivirals (2nd Edition))
Show Figures

Figure 1

23 pages, 4569 KiB  
Article
Epimaps of the SARS-CoV-2 Receptor-Binding Domain Mutational Landscape: Insights into Protein Stability, Epitope Prediction, and Antibody Binding
by Eleni Pitsillou, Assam El-Osta, Andrew Hung and Tom C. Karagiannis
Biomolecules 2025, 15(2), 301; https://doi.org/10.3390/biom15020301 - 18 Feb 2025
Cited by 1 | Viewed by 1439
Abstract
The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants poses an ongoing threat to the efficacy of vaccines and therapeutic antibodies. Mutations predominantly affect the receptor-binding domain (RBD) of the spike protein, which mediates viral entry. The RBD is also a [...] Read more.
The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants poses an ongoing threat to the efficacy of vaccines and therapeutic antibodies. Mutations predominantly affect the receptor-binding domain (RBD) of the spike protein, which mediates viral entry. The RBD is also a major target of monoclonal antibodies that were authorised for use during the pandemic. In this study, an in silico approach was used to investigate the mutational landscape of SARS-CoV-2 RBD variants, including currently circulating Omicron subvariants. A total of 40 single-point mutations were assessed for their potential effect on protein stability and dynamics. Destabilising effects were predicted for mutations such as L455S and F456L, while stabilising effects were predicted for mutations such as R346T. Conformational B-cell epitope predictions were subsequently performed for wild-type (WT) and variant RBDs. Mutations from SARS-CoV-2 variants were located within the predicted epitope residues and the epitope regions were found to correspond to the sites targeted by therapeutic antibodies. Furthermore, homology models of the RBD of SARS-CoV-2 variants were generated and were utilised for protein–antibody docking. The binding characteristics of 10 monoclonal antibodies against WT and 14 SARS-CoV-2 variants were evaluated. Through evaluating the binding affinities, interactions, and energy contributions of RBD residues, mutations that were contributing to viral evasion were identified. The findings from this study provide insight into the structural and molecular mechanisms underlying neutralising antibody evasion. Future antibody development could focus on broadly neutralising antibodies, engineering antibodies with enhanced binding affinity, and targeting spike protein regions beyond the RBD. Full article
Show Figures

Figure 1

19 pages, 4301 KiB  
Article
Fungicidal Effect of Strong Oxidative Free Radicals Against Fusarium graminearum and Their Impact on Wheat Growth and Yield
by Huanhuan Zhang, Bo Zhang, Huagang He, Lulu Zhang, Xinkang Hu and Chundu Wu
Agriculture 2025, 15(4), 404; https://doi.org/10.3390/agriculture15040404 - 14 Feb 2025
Cited by 2 | Viewed by 683
Abstract
Fusarium head blight (FHB), caused by Fusarium graminearum, is a significant fungal disease that adversely affects wheat production and food security. This study systematically evaluated the fungicidal efficacy of strong oxidative radicals (SORs) against F. graminearum and their effects on wheat growth [...] Read more.
Fusarium head blight (FHB), caused by Fusarium graminearum, is a significant fungal disease that adversely affects wheat production and food security. This study systematically evaluated the fungicidal efficacy of strong oxidative radicals (SORs) against F. graminearum and their effects on wheat growth and yield through a combination of in vitro and field experiments. In vitro experiments revealed that solutions containing different concentrations of radicals effectively suppressed the fungus. The results suggested that SOR solutions exhibited potent fungicidal activity against F. graminearum. At a concentration of 4.0 mg/L, the spore mortality rate was 96.8%, and at 5.0 mg/L, the rate reached 99.4%. The optimal concentration for the elimination of F. graminearum spores was determined to be 2.5 × 105 CFU/mL. The optimal treatment duration for SORs was 10 min. Furthermore, field trials investigated the effects of SORs on wheat growth, and agronomic traits were assessed, along with their efficacy in controlling FHB in field trials, both as a standalone treatment and in combination with commercial pesticides. The results indicated that the application of SORs alone achieved an 87.9% control efficacy, demonstrating significant potential for disease control. Furthermore, SORs positively influenced wheat agronomic traits such as plant height, spike length, grain weight per plant, grain number per plant and grain yield, providing a promising new approach for the green control of FHB. Full article
(This article belongs to the Section Crop Protection, Diseases, Pests and Weeds)
Show Figures

Figure 1

16 pages, 3197 KiB  
Article
Genome Characterization of Mammalian Orthoreovirus and Porcine Epidemic Diarrhea Virus Isolated from the Same Fattening Pig
by Xiaoxuan Li, Jiakai Zhao, Jingjie Li, Yangzong Xiri, Zhixiang Liu, Qin Zhao and Yani Sun
Animals 2025, 15(2), 156; https://doi.org/10.3390/ani15020156 - 9 Jan 2025
Viewed by 1184
Abstract
In 2020, severe diarrhea occurred in four-month-old fattening pigs from nine farms in Shandong Province, China. Fecal samples were collected from diseased pigs and tested by PCR for the presence of mammalian orthoreovirus (MRV), porcine epidemic diarrhea virus (PEDV), porcine deltacoronavirus (PDCoV), porcine [...] Read more.
In 2020, severe diarrhea occurred in four-month-old fattening pigs from nine farms in Shandong Province, China. Fecal samples were collected from diseased pigs and tested by PCR for the presence of mammalian orthoreovirus (MRV), porcine epidemic diarrhea virus (PEDV), porcine deltacoronavirus (PDCoV), porcine rotavirus A (PoRVA), transmissible gastroenteritis virus (TGEV), porcine kobuvirus (PKV), and pseudorabies virus (PRV). The viral RNA of MRV and PEDV was detected in the fecal samples. The genome sequences of MRV and PEDV were successfully amplified from the same fecal sample. Genomic and phylogenetic analysis showed that the MRV isolate named MRV2-SD/2020 belongs to serotype 2 MRV (MRV2) and may originate from the reassortment of human and porcine MRVs. Compared with other MRV2 strains, there were four other unique amino acid mutations (L274I, F302L, V347I, and T440M) in the receptor binding region. For the PEDV isolate named PEDV-SD/2020, the nearly complete genome was amplified from the positive fecal samples. Phylogenetic analysis showed that it was classified into the G2a genotype. Compared with CV777 and other PEDV variant strains, its spike (S) protein exhibited two unique mutations (S663T and L966M). This study first reports the co-infection of PEDV and MRV2 in the pigs and provides a new direction for the prevention and control of the diarrhea diseases. Full article
(This article belongs to the Section Pigs)
Show Figures

Figure 1

20 pages, 1692 KiB  
Article
Serum hsa-miR-22-3p, hsa-miR-885-5p, Lipase-to-Amylase Ratio, C-Reactive Protein, CA19-9, and Neutrophil-to-Lymphocyte Ratio as Prognostic Factors in Advanced Pancreatic Ductal Adenocarcinoma
by Jakub Wnuk, Dorota Hudy, Joanna Katarzyna Strzelczyk, Łukasz Michalecki, Kamil Dybek and Iwona Gisterek-Grocholska
Curr. Issues Mol. Biol. 2025, 47(1), 27; https://doi.org/10.3390/cimb47010027 - 3 Jan 2025
Viewed by 1279
Abstract
Pancreatic cancer (PC) is the seventh most common cause of cancer-related death worldwide. The low survival rate may be due to late diagnosis and asymptomatic early-stage disease. Most patients are diagnosed at an advanced stage of the disease. The search for novel prognostic [...] Read more.
Pancreatic cancer (PC) is the seventh most common cause of cancer-related death worldwide. The low survival rate may be due to late diagnosis and asymptomatic early-stage disease. Most patients are diagnosed at an advanced stage of the disease. The search for novel prognostic factors is still needed. Two miRNAs, miR-22-3p and miR-885-5p, which show increased expression in PC, were selected for this study. The aim of this study was to evaluate the utility of these miRNAs in the prognosis of PC. Other prognostic factors such as lipase-to-amylase ratio (LAR), neutrophil-to-lymphocyte ratio (NLR), and carbohydrate antigen 19-9 (CA19-9) were also evaluated in this study. This study was conducted in 50 patients previously diagnosed with pancreatic ductal adenocarcinoma in clinical stage (CS) III and IV. All patients underwent a complete medical history, physical examination, and routine laboratory tests including a complete blood count, C-reactive protein (CRP), CA19-9, lipase, and amylase. Two additional blood samples were taken from each patient to separate plasma and serum. Isolation of miRNA was performed using TRI reagent with cel-miR-39-3p as a spike-in control. Reverse transcription of miRNA was performed using a TaqMan Advanced miRNA cDNA Synthesis Kit. The relative expression levels of miR-22-3p and miR-885-5p were measured using RT-qPCR. Serum hsa-miR-22-3p was detected in 22 cases (44%), while hsa-miR-885-5p was detected in 33 cases (66%). There were no statistically significant differences in serum or plasma miRNA expression levels between patient groups based on clinical stage, gender, or BMI. There were no statistically significant differences in LAR between patients with different CS. For NLR, CRP and CA19-9 thresholds were determined using ROC analysis (6.63, 24.7 mg/L and 4691 U/mL, respectively). Cox’s F test for overall survival showed statistically significant differences between groups (p = 0.002 for NLR, p = 0.007 for CRP and p = 0.007 for CA19-9). Utility as prognostic biomarkers was confirmed in univariate and multivariate analysis for CA19-9, CRP, and NLR. The selected miRNAs and LAR were not confirmed as reliable prognostic markers in PC. Full article
Show Figures

Figure 1

16 pages, 3479 KiB  
Article
Features of Highly Homologous T-Cell Receptor Repertoire in the Immune Response to Mutations in Immunogenic Epitopes
by Ksenia Zornikova, Dmitry Dianov, Natalia Ivanova, Vassa Davydova, Tatiana Nenasheva, Ekaterina Fefelova and Apollinariya Bogolyubova
Int. J. Mol. Sci. 2024, 25(23), 12591; https://doi.org/10.3390/ijms252312591 - 23 Nov 2024
Cited by 1 | Viewed by 1056
Abstract
CD8+ T-cell immunity, mediated through interactions between human leukocyte antigen (HLA) and the T-cell receptor (TCR), plays a pivotal role in conferring immune memory and protection against viral infections. The emergence of SARS-CoV-2 variants presents a significant challenge to the existing population immunity. [...] Read more.
CD8+ T-cell immunity, mediated through interactions between human leukocyte antigen (HLA) and the T-cell receptor (TCR), plays a pivotal role in conferring immune memory and protection against viral infections. The emergence of SARS-CoV-2 variants presents a significant challenge to the existing population immunity. While numerous SARS-CoV-2 mutations have been associated with immune evasion from CD8+ T cells, the molecular effects of most mutations on epitope-specific TCR recognition remain largely unexplored, particularly for epitope-specific repertoires characterized by common TCRs. In this study, we investigated an HLA-A*24-restricted NYN epitope (Spike448-456) that elicits broad and highly homologous CD8+ T cell responses in COVID-19 patients. Eleven naturally occurring mutations in the NYN epitope, all of which retained cell surface presentation by HLA, were tested against four transgenic Jurkat reporter cell lines. Our findings demonstrate that, with the exception of L452R and the combined mutation L452Q + Y453F, these mutations have minimal impact on the avidity of recognition by NYN peptide-specific TCRs. Additionally, we observed that a similar TCR responded differently to mutant epitopes and demonstrated cross-reactivity to the unrelated VYF epitope (ORF3a112-120). The results contradict the idea that immune responses with limited receptor diversity are insufficient to provide protection against emerging variants. Full article
Show Figures

Figure 1

19 pages, 1790 KiB  
Article
International Proficiency Test Targeting a Large Panel of Botulinum Neurotoxin Sero- and Subtypes in Different Matrices
by Christine Rasetti-Escargueil, Michel Robert Popoff, Bettina Kampa, Sylvia Worbs, Maud Marechal, Daniel Guerin, Eléa Paillares, Werner Luginbühl and Emmanuel Lemichez
Toxins 2024, 16(11), 485; https://doi.org/10.3390/toxins16110485 - 8 Nov 2024
Cited by 1 | Viewed by 1426
Abstract
Detection of botulinum neurotoxins (BoNTs) involves a combination of technical challenges that call for the execution of inter-laboratory proficiency tests (PTs) to define the performance and ease of implementation of existing diagnostic methods regarding representative BoNT toxin-types spiked in clinical, food, or environmental [...] Read more.
Detection of botulinum neurotoxins (BoNTs) involves a combination of technical challenges that call for the execution of inter-laboratory proficiency tests (PTs) to define the performance and ease of implementation of existing diagnostic methods regarding representative BoNT toxin-types spiked in clinical, food, or environmental matrices. In the framework of the EU project EuroBioTox, we organized an international proficiency test for the detection and quantification of the clinically relevant BoNT/A, B, E, and F sero- and subtypes including concentrations as low as 0.5 ng/mL. BoNTs were spiked in serum, milk, and soil matrices. Here, we evaluate the results of 18 laboratories participating in this PT. Participants have implemented a wide array of detection methods based on functional, immunological, and mass spectrometric principles. Methods implemented in this proficiency test notably included endopeptidase assays either coupled to mass spectrometry (Endopep-MS) or enzyme-linked immunosorbent assays (Endopep-ELISA). This interlaboratory exercise pinpoints the most effective and complementary methods shared by the greatest number of participants, also highlighting the importance of combining the training of selected methods and of distributing toxin reference material to reduce the variability of quantitative data. Full article
Show Figures

Figure 1

17 pages, 15851 KiB  
Article
Cross-Species Susceptibility of Emerging Variants of SARS-CoV-2 Spike
by Meng Li, Fei Lv, Zihao Li, Chenyu Zhao, Xiao Wang, Pingfen Zhu and Xuming Zhou
Genes 2024, 15(10), 1321; https://doi.org/10.3390/genes15101321 - 14 Oct 2024
Cited by 1 | Viewed by 1408
Abstract
Background: The continuous evolution of SARS-CoV-2 and the emergence of novel variants with numerous mutations have heightened concerns surrounding the possibility of cross-species transmission and the establishment of natural animal reservoirs for the virus, but the host range of emerging SARS-CoV-2 variants has [...] Read more.
Background: The continuous evolution of SARS-CoV-2 and the emergence of novel variants with numerous mutations have heightened concerns surrounding the possibility of cross-species transmission and the establishment of natural animal reservoirs for the virus, but the host range of emerging SARS-CoV-2 variants has not been fully explored yet. Methods: We employed an in vitro model comprising VSV∆G* pseudotyped viruses bearing SARS-CoV-2 spike proteins to explore the plausible host range of SARS-CoV-2 emerging variants. Results: The overall host tropism of emerging SARS-CoV-2 variants are consistent with that of the SARS-CoV-2 wuhan-hu-1 strain with minor difference. Pseudotyped viruses bearing spike protein from RaTG13 and RmYN02 can enter cell cultures from a broad range of mammalian species, revealing that mink and hamsters may act as potential intermediate hosts. We further investigated 95 potential site-specific mutations in the SARS-CoV-2 spike protein that could impact viral infectivity across different species. The results showed that 13 of these mutations notably increased the transduction rates by more than two-fold when compared to the wild-type spike protein. Further examination of these 13 mutations within cell cultures from 31 different species revealed heightened sensitivity in cells derived from palm civets, minks, and Chinese horseshoe bats to the VSV∆G*-SARS2-S mutants. Specific mutations, such as L24F, R158G, and L212I, were seen to significantly enhance the capacity for SARS-CoV-2 of cross-species transmission. Conclusions: This study offers critical insights for the ongoing surveillance and monitoring efforts of SARS-CoV-2 evolution, emphasizing the need for the vigilant monitoring of specific mutations in both human and animal populations. Full article
(This article belongs to the Section Animal Genetics and Genomics)
Show Figures

Figure 1

37 pages, 6270 KiB  
Article
AlphaFold2 Modeling and Molecular Dynamics Simulations of the Conformational Ensembles for the SARS-CoV-2 Spike Omicron JN.1, KP.2 and KP.3 Variants: Mutational Profiling of Binding Energetics Reveals Epistatic Drivers of the ACE2 Affinity and Escape Hotspots of Antibody Resistance
by Nishank Raisinghani, Mohammed Alshahrani, Grace Gupta and Gennady Verkhivker
Viruses 2024, 16(9), 1458; https://doi.org/10.3390/v16091458 - 13 Sep 2024
Cited by 13 | Viewed by 4120
Abstract
The most recent wave of SARS-CoV-2 Omicron variants descending from BA.2 and BA.2.86 exhibited improved viral growth and fitness due to convergent evolution of functional hotspots. These hotspots operate in tandem to optimize both receptor binding for effective infection and immune evasion efficiency, [...] Read more.
The most recent wave of SARS-CoV-2 Omicron variants descending from BA.2 and BA.2.86 exhibited improved viral growth and fitness due to convergent evolution of functional hotspots. These hotspots operate in tandem to optimize both receptor binding for effective infection and immune evasion efficiency, thereby maintaining overall viral fitness. The lack of molecular details on structure, dynamics and binding energetics of the latest FLiRT and FLuQE variants with the ACE2 receptor and antibodies provides a considerable challenge that is explored in this study. We combined AlphaFold2-based atomistic predictions of structures and conformational ensembles of the SARS-CoV-2 spike complexes with the host receptor ACE2 for the most dominant Omicron variants JN.1, KP.1, KP.2 and KP.3 to examine the mechanisms underlying the role of convergent evolution hotspots in balancing ACE2 binding and antibody evasion. Using the ensemble-based mutational scanning of the spike protein residues and computations of binding affinities, we identified binding energy hotspots and characterized the molecular basis underlying epistatic couplings between convergent mutational hotspots. The results suggested the existence of epistatic interactions between convergent mutational sites at L455, F456, Q493 positions that protect and restore ACE2-binding affinity while conferring beneficial immune escape. To examine immune escape mechanisms, we performed structure-based mutational profiling of the spike protein binding with several classes of antibodies that displayed impaired neutralization against BA.2.86, JN.1, KP.2 and KP.3. The results confirmed the experimental data that JN.1, KP.2 and KP.3 harboring the L455S and F456L mutations can significantly impair the neutralizing activity of class 1 monoclonal antibodies, while the epistatic effects mediated by F456L can facilitate the subsequent convergence of Q493E changes to rescue ACE2 binding. Structural and energetic analysis provided a rationale to the experimental results showing that BD55-5840 and BD55-5514 antibodies that bind to different binding epitopes can retain neutralizing efficacy against all examined variants BA.2.86, JN.1, KP.2 and KP.3. The results support the notion that evolution of Omicron variants may favor emergence of lineages with beneficial combinations of mutations involving mediators of epistatic couplings that control balance of high ACE2 affinity and immune evasion. Full article
(This article belongs to the Special Issue Emerging Variants of SARS-CoV-2)
Show Figures

Graphical abstract

16 pages, 7017 KiB  
Article
Rapid and Scalable Production of Functional SARS-CoV-2 Virus-like Particles (VLPs) by a Stable HEK293 Cell Pool
by Sitthiphol Puarattana-aroonkorn, Kannan Tharakaraman, Disapan Suriyawipada, Mathuros Ruchirawat, Mayuree Fuangthong, Ram Sasisekharan and Charlermchai Artpradit
Vaccines 2024, 12(6), 561; https://doi.org/10.3390/vaccines12060561 - 21 May 2024
Cited by 3 | Viewed by 3449
Abstract
At times of pandemics, such as the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, the situation demands rapid development and production timelines of safe and effective vaccines for delivering life-saving medications quickly to patients. Typical biologics production relies on using the lengthy [...] Read more.
At times of pandemics, such as the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, the situation demands rapid development and production timelines of safe and effective vaccines for delivering life-saving medications quickly to patients. Typical biologics production relies on using the lengthy and arduous approach of stable single-cell clones. Here, we used an alternative approach, a stable cell pool that takes only weeks to generate compared to a stable single-cell clone that needs several months to complete. We employed the membrane, envelope, and highly immunogenic spike proteins of SARS-CoV-2 to produce virus-like particles (VLPs) using the HEK293-F cell line as a host system with an economical transfection reagent. The cell pool showed the stability of protein expression for more than one month. We demonstrated that the production of SARS-CoV-2 VLPs using this cell pool was scalable up to a stirred-tank 2 L bioreactor in fed-batch mode. The purified VLPs were properly assembled, and their size was consistent with the authentic virus. Our particles were functional as they specifically entered the cell that naturally expresses ACE-2. Notably, this work reports a practical and cost-effective manufacturing platform for scalable SARS-CoV-2 VLPs production and chromatographic purification. Full article
(This article belongs to the Special Issue Host–Virus Interactions and Vaccine Development)
Show Figures

Figure 1

Back to TopTop