Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = spectral traits (ST)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
48 pages, 16390 KB  
Review
Remote Sensing of Geomorphodiversity Linked to Biodiversity—Part III: Traits, Processes and Remote Sensing Characteristics
by Angela Lausch, Michael E. Schaepman, Andrew K. Skidmore, Eusebiu Catana, Lutz Bannehr, Olaf Bastian, Erik Borg, Jan Bumberger, Peter Dietrich, Cornelia Glässer, Jorg M. Hacker, Rene Höfer, Thomas Jagdhuber, Sven Jany, András Jung, Arnon Karnieli, Reinhard Klenke, Toralf Kirsten, Uta Ködel, Wolfgang Kresse, Ulf Mallast, Carsten Montzka, Markus Möller, Hannes Mollenhauer, Marion Pause, Minhaz Rahman, Franziska Schrodt, Christiane Schmullius, Claudia Schütze, Peter Selsam, Ralf-Uwe Syrbe, Sina Truckenbrodt, Michael Vohland, Martin Volk, Thilo Wellmann, Steffen Zacharias and Roland Baatzadd Show full author list remove Hide full author list
Remote Sens. 2022, 14(9), 2279; https://doi.org/10.3390/rs14092279 - 9 May 2022
Cited by 27 | Viewed by 8405
Abstract
Remote sensing (RS) enables a cost-effective, extensive, continuous and standardized monitoring of traits and trait variations of geomorphology and its processes, from the local to the continental scale. To implement and better understand RS techniques and the spectral indicators derived from them in [...] Read more.
Remote sensing (RS) enables a cost-effective, extensive, continuous and standardized monitoring of traits and trait variations of geomorphology and its processes, from the local to the continental scale. To implement and better understand RS techniques and the spectral indicators derived from them in the monitoring of geomorphology, this paper presents a new perspective for the definition and recording of five characteristics of geomorphodiversity with RS, namely: geomorphic genesis diversity, geomorphic trait diversity, geomorphic structural diversity, geomorphic taxonomic diversity, and geomorphic functional diversity. In this respect, geomorphic trait diversity is the cornerstone and is essential for recording the other four characteristics using RS technologies. All five characteristics are discussed in detail in this paper and reinforced with numerous examples from various RS technologies. Methods for classifying the five characteristics of geomorphodiversity using RS, as well as the constraints of monitoring the diversity of geomorphology using RS, are discussed. RS-aided techniques that can be used for monitoring geomorphodiversity in regimes with changing land-use intensity are presented. Further, new approaches of geomorphic traits that enable the monitoring of geomorphodiversity through the valorisation of RS data from multiple missions are discussed as well as the ecosystem integrity approach. Likewise, the approach of monitoring the five characteristics of geomorphodiversity recording with RS is discussed, as are existing approaches for recording spectral geomorhic traits/ trait variation approach and indicators, along with approaches for assessing geomorphodiversity. It is shown that there is no comparable approach with which to define and record the five characteristics of geomorphodiversity using only RS data in the literature. Finally, the importance of the digitization process and the use of data science for research in the field of geomorphology in the 21st century is elucidated and discussed. Full article
Show Figures

Figure 1

61 pages, 21354 KB  
Review
Linking the Remote Sensing of Geodiversity and Traits Relevant to Biodiversity—Part II: Geomorphology, Terrain and Surfaces
by Angela Lausch, Michael E. Schaepman, Andrew K. Skidmore, Sina C. Truckenbrodt, Jörg M. Hacker, Jussi Baade, Lutz Bannehr, Erik Borg, Jan Bumberger, Peter Dietrich, Cornelia Gläßer, Dagmar Haase, Marco Heurich, Thomas Jagdhuber, Sven Jany, Rudolf Krönert, Markus Möller, Hannes Mollenhauer, Carsten Montzka, Marion Pause, Christian Rogass, Nesrin Salepci, Christiane Schmullius, Franziska Schrodt, Claudia Schütze, Christian Schweitzer, Peter Selsam, Daniel Spengler, Michael Vohland, Martin Volk, Ute Weber, Thilo Wellmann, Ulrike Werban, Steffen Zacharias and Christian Thieladd Show full author list remove Hide full author list
Remote Sens. 2020, 12(22), 3690; https://doi.org/10.3390/rs12223690 - 10 Nov 2020
Cited by 34 | Viewed by 12415
Abstract
The status, changes, and disturbances in geomorphological regimes can be regarded as controlling and regulating factors for biodiversity. Therefore, monitoring geomorphology at local, regional, and global scales is not only necessary to conserve geodiversity, but also to preserve biodiversity, as well as to [...] Read more.
The status, changes, and disturbances in geomorphological regimes can be regarded as controlling and regulating factors for biodiversity. Therefore, monitoring geomorphology at local, regional, and global scales is not only necessary to conserve geodiversity, but also to preserve biodiversity, as well as to improve biodiversity conservation and ecosystem management. Numerous remote sensing (RS) approaches and platforms have been used in the past to enable a cost-effective, increasingly freely available, comprehensive, repetitive, standardized, and objective monitoring of geomorphological characteristics and their traits. This contribution provides a state-of-the-art review for the RS-based monitoring of these characteristics and traits, by presenting examples of aeolian, fluvial, and coastal landforms. Different examples for monitoring geomorphology as a crucial discipline of geodiversity using RS are provided, discussing the implementation of RS technologies such as LiDAR, RADAR, as well as multi-spectral and hyperspectral sensor technologies. Furthermore, data products and RS technologies that could be used in the future for monitoring geomorphology are introduced. The use of spectral traits (ST) and spectral trait variation (STV) approaches with RS enable the status, changes, and disturbances of geomorphic diversity to be monitored. We focus on the requirements for future geomorphology monitoring specifically aimed at overcoming some key limitations of ecological modeling, namely: the implementation and linking of in-situ, close-range, air- and spaceborne RS technologies, geomorphic traits, and data science approaches as crucial components for a better understanding of the geomorphic impacts on complex ecosystems. This paper aims to impart multidimensional geomorphic information obtained by RS for improved utilization in biodiversity monitoring. Full article
Show Figures

Graphical abstract

51 pages, 5899 KB  
Review
Linking Remote Sensing and Geodiversity and Their Traits Relevant to Biodiversity—Part I: Soil Characteristics
by Angela Lausch, Jussi Baade, Lutz Bannehr, Erik Borg, Jan Bumberger, Sabine Chabrilliat, Peter Dietrich, Heike Gerighausen, Cornelia Glässer, Jorg M. Hacker, Dagmar Haase, Thomas Jagdhuber, Sven Jany, András Jung, Arnon Karnieli, Roland Kraemer, Mohsen Makki, Christian Mielke, Markus Möller, Hannes Mollenhauer, Carsten Montzka, Marion Pause, Christian Rogass, Offer Rozenstein, Christiane Schmullius, Franziska Schrodt, Martin Schrön, Karsten Schulz, Claudia Schütze, Christian Schweitzer, Peter Selsam, Andrew K. Skidmore, Daniel Spengler, Christian Thiel, Sina C. Truckenbrodt, Michael Vohland, Robert Wagner, Ute Weber, Ulrike Werban, Ute Wollschläger, Steffen Zacharias and Michael E. Schaepmanadd Show full author list remove Hide full author list
Remote Sens. 2019, 11(20), 2356; https://doi.org/10.3390/rs11202356 - 11 Oct 2019
Cited by 61 | Viewed by 23624
Abstract
In the face of rapid global change it is imperative to preserve geodiversity for the overall conservation of biodiversity. Geodiversity is important for understanding complex biogeochemical and physical processes and is directly and indirectly linked to biodiversity on all scales of ecosystem organization. [...] Read more.
In the face of rapid global change it is imperative to preserve geodiversity for the overall conservation of biodiversity. Geodiversity is important for understanding complex biogeochemical and physical processes and is directly and indirectly linked to biodiversity on all scales of ecosystem organization. Despite the great importance of geodiversity, there is a lack of suitable monitoring methods. Compared to conventional in-situ techniques, remote sensing (RS) techniques provide a pathway towards cost-effective, increasingly more available, comprehensive, and repeatable, as well as standardized monitoring of continuous geodiversity on the local to global scale. This paper gives an overview of the state-of-the-art approaches for monitoring soil characteristics and soil moisture with unmanned aerial vehicles (UAV) and air- and spaceborne remote sensing techniques. Initially, the definitions for geodiversity along with its five essential characteristics are provided, with an explanation for the latter. Then, the approaches of spectral traits (ST) and spectral trait variations (STV) to record geodiversity using RS are defined. LiDAR (light detection and ranging), thermal and microwave sensors, multispectral, and hyperspectral RS technologies to monitor soil characteristics and soil moisture are also presented. Furthermore, the paper discusses current and future satellite-borne sensors and missions as well as existing data products. Due to the prospects and limitations of the characteristics of different RS sensors, only specific geotraits and geodiversity characteristics can be recorded. The paper provides an overview of those geotraits. Full article
Show Figures

Graphical abstract

33 pages, 1356 KB  
Review
Understanding Forest Health with Remote Sensing-Part II—A Review of Approaches and Data Models
by Angela Lausch, Stefan Erasmi, Douglas J. King, Paul Magdon and Marco Heurich
Remote Sens. 2017, 9(2), 129; https://doi.org/10.3390/rs9020129 - 5 Feb 2017
Cited by 146 | Viewed by 23323
Abstract
Stress in forest ecosystems (FES) occurs as a result of land-use intensification, disturbances, resource limitations or unsustainable management, causing changes in forest health (FH) at various scales from the local to the global scale. Reactions to such stress depend on the phylogeny of [...] Read more.
Stress in forest ecosystems (FES) occurs as a result of land-use intensification, disturbances, resource limitations or unsustainable management, causing changes in forest health (FH) at various scales from the local to the global scale. Reactions to such stress depend on the phylogeny of forest species or communities and the characteristics of their impacting drivers and processes. There are many approaches to monitor indicators of FH using in-situ forest inventory and experimental studies, but they are generally limited to sample points or small areas, as well as being time- and labour-intensive. Long-term monitoring based on forest inventories provides valuable information about changes and trends of FH. However, abrupt short-term changes cannot sufficiently be assessed through in-situ forest inventories as they usually have repetition periods of multiple years. Furthermore, numerous FH indicators monitored in in-situ surveys are based on expert judgement. Remote sensing (RS) technologies offer means to monitor FH indicators in an effective, repetitive and comparative way. This paper reviews techniques that are currently used for monitoring, including close-range RS, airborne and satellite approaches. The implementation of optical, RADAR and LiDAR RS-techniques to assess spectral traits/spectral trait variations (ST/STV) is described in detail. We found that ST/STV can be used to record indicators of FH based on RS. Therefore, the ST/STV approach provides a framework to develop a standardized monitoring concept for FH indicators using RS techniques that is applicable to future monitoring programs. It is only through linking in-situ and RS approaches that we will be able to improve our understanding of the relationship between stressors, and the associated spectral responses in order to develop robust FH indicators. Full article
(This article belongs to the Special Issue Remote Sensing of Forest Health)
Show Figures

Graphical abstract

44 pages, 3812 KB  
Review
Understanding Forest Health with Remote Sensing -Part I—A Review of Spectral Traits, Processes and Remote-Sensing Characteristics
by Angela Lausch, Stefan Erasmi, Douglas J. King, Paul Magdon and Marco Heurich
Remote Sens. 2016, 8(12), 1029; https://doi.org/10.3390/rs8121029 - 18 Dec 2016
Cited by 198 | Viewed by 31821
Abstract
Anthropogenic stress and disturbance of forest ecosystems (FES) has been increasing at all scales from local to global. In rapidly changing environments, in-situ terrestrial FES monitoring approaches have made tremendous progress but they are intensive and often integrate subjective indicators for forest health [...] Read more.
Anthropogenic stress and disturbance of forest ecosystems (FES) has been increasing at all scales from local to global. In rapidly changing environments, in-situ terrestrial FES monitoring approaches have made tremendous progress but they are intensive and often integrate subjective indicators for forest health (FH). Remote sensing (RS) bridges the gaps of these limitations, by monitoring indicators of FH on different spatio-temporal scales, and in a cost-effective, rapid, repetitive and objective manner. In this paper, we provide an overview of the definitions of FH, discussing the drivers, processes, stress and adaptation mechanisms of forest plants, and how we can observe FH with RS. We introduce the concept of spectral traits (ST) and spectral trait variations (STV) in the context of FH monitoring and discuss the prospects, limitations and constraints. Stress, disturbances and resource limitations can cause changes in FES taxonomic, structural and functional diversity; we provide examples how the ST/STV approach can be used for monitoring these FES characteristics. We show that RS based assessments of FH indicators using the ST/STV approach is a competent, affordable, repetitive and objective technique for monitoring. Even though the possibilities for observing the taxonomic diversity of animal species is limited with RS, the taxonomy of forest tree species can be recorded with RS, even though its accuracy is subject to certain constraints. RS has proved successful for monitoring the impacts from stress on structural and functional diversity. In particular, it has proven to be very suitable for recording the short-term dynamics of stress on FH, which cannot be cost-effectively recorded using in-situ methods. This paper gives an overview of the ST/STV approach, whereas the second paper of this series concentrates on discussing in-situ terrestrial monitoring, in-situ RS approaches and RS sensors and techniques for measuring ST/STV for FH. Full article
(This article belongs to the Special Issue Remote Sensing of Forest Health)
Show Figures

Figure 1

Back to TopTop