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Abstract: The status, changes, and disturbances in geomorphological regimes can be regarded as
controlling and regulating factors for biodiversity. Therefore, monitoring geomorphology at local,
regional, and global scales is not only necessary to conserve geodiversity, but also to preserve
biodiversity, as well as to improve biodiversity conservation and ecosystem management. Numerous
remote sensing (RS) approaches and platforms have been used in the past to enable a cost-effective,
increasingly freely available, comprehensive, repetitive, standardized, and objective monitoring
of geomorphological characteristics and their traits. This contribution provides a state-of-the-art
review for the RS-based monitoring of these characteristics and traits, by presenting examples
of aeolian, fluvial, and coastal landforms. Different examples for monitoring geomorphology as
a crucial discipline of geodiversity using RS are provided, discussing the implementation of RS
technologies such as LiDAR, RADAR, as well as multi-spectral and hyperspectral sensor technologies.
Furthermore, data products and RS technologies that could be used in the future for monitoring
geomorphology are introduced. The use of spectral traits (ST) and spectral trait variation (STV)
approaches with RS enable the status, changes, and disturbances of geomorphic diversity to be
monitored. We focus on the requirements for future geomorphology monitoring specifically aimed at
overcoming some key limitations of ecological modeling, namely: the implementation and linking
of in-situ, close-range, air- and spaceborne RS technologies, geomorphic traits, and data science
approaches as crucial components for a better understanding of the geomorphic impacts on complex
ecosystems. This paper aims to impart multidimensional geomorphic information obtained by RS for
improved utilization in biodiversity monitoring.

Keywords: geomorphology; terrain; surface; geodiversity; fluvial; aeolian; coastal; traits; spectral traits;
remote sensing; earth observation; DEM; DTM; DSM; monitoring

1. Introduction

The evolutionary and ecological processes, structures, and functions of life on Earth are strongly
influenced by multi-facetted geophysical processes, shaping geomorphic factors, and geodiversity on all
spatio-temporal scales [1,2]. Geodiversity, including the lithosphere, the atmosphere, the hydrosphere,
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and the cryosphere [3], is the controlling and regulating factor for landscape processes and thus
a decisive factor for biodiversity. Organisms both respond to [4] and significantly alter their abiotic
environment, affecting, for example, nutrient loads, weathering rates, sediment transport, and water
cycles. Indeed, recent work has shown that knowledge of geodiversity has a paradigm-shifting ability
to improve predictions about the effects of environmental change on biodiversity [5,6] and that the
successful conservation of biodiversity requires the conservation of geodiversity [7]. Of particular
importance is the link with the maintenance or restoration of species diversity, ecosystem resilience,
and connectivity in the face of climate change [7,8]. Monitoring geodiversity and its relation to
biodiversity, ecosystem, and ecological integrity [1,9,10] is thus essential if we are to effectively manage
our natural resources.

In the last decade, global conservation organisations have started to recognize that protected
areas should address aspects of geodiversity and that geodiversity is part of natural diversity [11–13].
Consequently, these factors are increasingly being integrated into nature conservation planning and
management measures, and adopted by nature conservation designations such as the Geoconservation
programme of the International Union for the Conservation of Nature (IUCN, 2018) [11]. Gray et al. [14]
provided an integrative review as a contribution to the sustainable management of ecosystems
based on geodiversity, defining geodiversity as the diversity of abiotic features and their surface
and subsurface processes or generally as the abiotic diversity of the Earth’s surface, which is
represented by various geomorphic characteristics. Lausch et al. [3] extended this approach by
defining geodiversity as “the range and variability of geo-components and their intraspecific and
interspecific interactions on all levels of organization of their geo-components”. In the latter, five basic
characteristics of geodiversity were defined, namely: geo-genesis diversity (GGD), geo-taxonomic
diversity (GTaxD), geo-structural diversity (GSD), geo-functional diversity (GFD), as well as geo-trait
diversity (GTD). Numerous interpretations of the geodiversity definition exist and the question as
to whether a geocompartment belongs to geodiversity or not sometimes becomes a controversial
issue [15]. All definitions of geodiversity account for geomorphic characteristics and their traits.

The physical and chemical weathering of rocks and mass movements induce the formation
of particular geomorphic structures and patterns, which form the basis of different geomorphic
functions [16]. In this way, specific landforms developed from the geological process of geo-genesis
(e.g., kettle holes from retreating glaciers, gullies from fluvial processes or various mountain, volcano,
and coast types), creating specific microrefugia with characteristic morphological, hydrological,
climatic, lithological, and soil patterns. Geomorphic diversity therefore creates the basis for niches and
habitat diversity.

Mountains are landforms [1] that can act as central interfaces with all other geo-factors, such as
the climate, water, lithology, and soil, defining biodiversity at alpha, beta, and gamma levels,
i.e., through species richness, or Shannon or Simpson diversity (see also [17]). They help when
explaining patterns in the distribution of flora and fauna [18,19], leading not only to the development
of distinct plant strategies and plant functional types [20,21], but also to spatial differentiation and
speciation in animal populations due to barrier effects. Consequently, landforms, such as landslide
scars [16,22] or water channels [23], make a crucial contribution to the richness, composition, and the
occurrence of characteristic species traits and communities. Furthermore, geomorphic variables
derived from digital elevation models (DEM) explain “the potential to open new research avenues
for a variety of research disciplines that require detailed geomorphometric and land and aquatic
surface information” [24]. A comprehensive overview of the state on landslides and quaternary climate
changes is given by Pánek [25].

Geomorphic characteristics and their traits exist on all spatio-temporal scales [26,27], creating a
strong link to biodiversity patterns and their interactions on a local, regional and even landscape
scale [3]. Numerous studies have investigated the importance of individual geo-components to
biodiversity from the local or the patch scale [28,29] to the global scale [30,31] and investigated on
which scales geodiversity is most relevant for biodiversity [32].
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Patterns of bio- and geodiversity are particularly defined by topography, which defines the
terrain, the three-dimensional quality of the surface, and the identification of specific landforms [33].
For example, topographic complexity is one of the main factors influencing the global patterns of
mountain biodiversity [34]. Furthermore, topography explains the distribution of genetic diversity in
one of the most fragile European hotspots of plant species [35]. The combination of both topography
and climate also greatly influences the distribution patterns of vegetation on Earth [36]. More broadly,
changes in species distribution, abundance, performance, and richness are shaped by geomorphic
traits such as slope, aspect, curvature, variables of morphometry, lighting, visibility, soil moisture,
or hydrological factors, such as channels, drainage networks, flow directions, or valley depths.
Yet, current large-scale biodiversity models mainly focus on coarse and easily measured macroclimatic
and topographic predictor variables, whilst largely ignoring other key aspects of the Earth’s surface
and subsurface. Moreover, most analyses of biodiversity change do not consider the range of spatial
and temporal scales at which geomorphic processes and traits act and the mechanisms by which
they influence biodiversity. Despite meta-analyses [37] and recent progress (e.g., [5,6]). there remain
fundamental gaps in synthesizing and integrating the links between biodiversity and geodiversity,
especially for biogeography, macroecology, conservation planning, and global change biology [38].

Remote sensing (RS) can monitor geomorphic traits and changes in them. Due to sensor-specific
RS characteristics such as spatial, spectral, temporal, or directional resolution, RS measurements with,
e.g., insufficient spatial resolution, can lead to a loss of important information and subsequently to
erroneous statements or input variables for ecosystem models [37–40]. In combination with modelling
approaches, RS research is used to improve topographic base maps and to monitor landscape
management, geoengineering, geomorphology, geohydrology, and geoecology [39–41]. RS is of
particular importance in the prediction of geohazards, such as volcano eruptions and earthquakes,
flooding, landslides, permafrost-related hazards, mass movements, soil erodibility. and erosion on
land and in coastal waters [42,43]. Recent RS technologies such as the satellite-based light detection
and ranging (LiDAR), global ecosystem dynamics investigation (GEDI) [44,45], as well as upcoming
radio direction and ranging (RADAR) technologies such as the Tandem-L [46,47], NISAR (NASA-ISRO
Synthetic Aperture RADAR) or even Rose-L (Copernicus High Priority Candidate Mission), alone and
in combination with imaging spectroscopy [48] and thermal infrared (TIR) sensor technology such as
the Copernicus Hyperspectral Imaging Mission (CHIME) [49], the Hyperspectral Infrared Imager
Mission (HyspIRI, [50]) and Environmental Mapping and Analysis Program (EnMAP, [51]), open up
new opportunities for a global monitoring of geo-and biodiversity and their interactions [3,52–54].

With the target-oriented open data policies for RS data [55–57], the continuity of RS time series
like Landsat-5–9 [58] and increasingly more freely available RS-data products [59], the monitoring of
geomorphology with RS sensors on close-range, as well as airborne and spaceborne platforms has been
integrated for some years now into ecological modelling and geoengineering in science, economics,
planning, and political decision-making processes. Indeed, the growing number of existing and
future RS sensors and new technologies provide researchers, planners and political decision-makers
tremendous opportunities. However, it is becoming increasingly difficult to get a proper overview or
an understanding of which RS sensors, missions, and platforms can be used to monitor geomorphic
characteristics and their traits. The goals of this paper are therefore as follows:

• To document the state of the art of existing and upcoming RS technologies in air- and spaceborne RS
for monitoring terrain and surfaces by using examples of aeolian-, fluvial- and coastal- landforms
and their traits.

• To provide a short overview of existing RS data products in the context of geomorphology.
• To present a concise overview of the geomorphic characteristics and their traits that can be

recorded by RS.

The following chapters present the state-of-the-art for monitoring geomorphic landforms using
airborne (UAV, airplanes), spaceborne (satellite) RS sensors (Figure 1). We discuss different technologies,
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such as RADAR, LiDAR, thermal, multispectral, and hyperspectral sensors, that can be used for
monitoring geomorphic characteristics and their traits. Furthermore, we address current and future
satellite-borne sensors and missions as well as existing RS data products that enable the recording and
monitoring of geomorphology, land terrain, and land surfaces.
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Figure 1. Different air- and spaceborne remote sensing platforms for assessing geomorphological
landforms and their traits: (a) unmanned aerial vehicles (UAVs) or drones, (b) microlight-gravity-controlled
aircrafts (c) gyrocopter-microlight helicopter, (d) ECO-Dimona aircraft (top) and Cessna aircraft (bottom),
and (e) satellite (from Lausch et al. [3]).

2. Remote Sensing Techniques for Monitoring Geomorphology—Terrain and Surfaces

Both land surface and relief influence the distribution and characteristics of geographic patterns of
biodiversity by isolating and connecting plant and animal populations [60]. Surface elevation provides
the foundation for many aspects of biodiversity, such as the vertical and spatial vegetation structure
and fragmentation, homogeneity, biomass, age, and the height of the vegetation. Surface elevation
influences the microclimate and precipitation patterns, affecting species distribution and primary
production. Hence, surface elevation data are important to detect changes in ecosystems. Moreover,
they build the basis for models that represent the height of the terrain surface (digital elevation
models, DEMs) or models that represent surface heights and the height of buildings or vegetation
(digital surface models, DSMs). If both DEM and DSM are available for an area, then the height
difference from them results in the height of the vegetation or buildings, which is commonly referred
to as the normalised digital surface model (nDSM). DEMs and DSMs are increasingly being combined
with multi-temporal and multi-/hyperspectral RS data to describe biodiversity features in their complex
multidimensionality. These models are of major importance for quantifying, modelling and monitoring
plant and animal species distributions, especially at small spatial scales [32,61]. Terrain features
such as slope aspect, slope gradient and terrain position are crucial variables that are derived from
a DEM. These variables are essential for landscape analysis, evaluation, and modelling in geo- and
biodiversity [62,63]. High resolution spatial 3D vegetation geometry is increasingly used as information
for modelling animal movement and migration behaviours [64] and to describe the microclimate of
animal and plant species habitats [65,66].

For a long time ground-based in-situ point measurement methods were the only way to collect
the base data for elevation maps. Surveyors traditionally used instruments such as tapes, compasses,
theodolites, sextants, and aneroid barometers for mapping. The development of plane tables and
alidades increased the precision of measurements. With the invention of tachymeters that determine
distances through traveling time or the phase shift of light and the differential global navigation
satellite system (CDGNSS), measurement precision has become even more accurate to the order of
centimetres [67]. With these technologies, digital data collection has also emerged in the field of
mapping, reducing the amount of cumbersome and laborious work. Nevertheless, these techniques
are still labour intensive and only enable point measurements. For these reasons, it was difficult to
achieve a universal ground-based survey of elevation data that fulfil the requirements of biodiversity
studies and modern monitoring approaches.

In the 19th century, airborne stereo-photogrammetry was developed [68], but considerable efforts
still had to be made to obtain the desired results. Air- and spaceborne RS were able to overcome
this limitation, enabling acquisitions of elevation data from the local to the global scale. The most
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ground-breaking development in terms of the acquisition of a global high-resolution digital terrain
database was the International Shuttle RADAR Topography Mission—SRTM, which was on-board the
Space Shuttle Endeavour for 11 days in February 2000 using a C-/X-band RADAR. This ultimately
led to 1 or 3 arc degree global coverage [69].

Round about the same time airborne LiDAR systems became available [70] which were able to map
surfaces at very high resolution from the local to the regional scale. Today, these systems are arguably the
most commonly used systems in geomorphic-relevant applications [71]. Other systems are airborne and
spaceborne SAR (synthetic aperture RADAR) and InSAR systems (interferometric SAR, [72]) that enable
geomorphology to be monitored with accuracy levels to the mm. For example, SAR interferometers
enable the monitoring of unstable slopes in high mountain ranges [73,74].

Over recent years, the automatic photogrammetric processing of aerial images developed to
a level where even laypeople were easily able to generate high resolution DEMs. As this method only
requires a camera and a positioning system, it enables the wide-spread use of UAVs and airplanes to
map the landscape. Numerous examples of how terrain, surfaces, and their changes can be derived
using air- and spaceborne RS techniques are shown in Figure 2.

Remote Sens. 2020, 12, x FOR PEER REVIEW 6 of 62 

board the Space Shuttle Endeavour for 11 days in February 2000 using a C-/X-band RADAR. This 
ultimately led to 1 or 3 arc degree global coverage [69]. 

Round about the same time airborne LiDAR systems became available [70] which were able to 
map surfaces at very high resolution from the local to the regional scale. Today, these systems are 
arguably the most commonly used systems in geomorphic-relevant applications [71]. Other systems 
are airborne and spaceborne SAR (synthetic aperture RADAR) and InSAR systems (interferometric 
SAR, [72]) that enable geomorphology to be monitored with accuracy levels to the mm. For example, 
SAR interferometers enable the monitoring of unstable slopes in high mountain ranges [73,74].  

Over recent years, the automatic photogrammetric processing of aerial images developed to a 
level where even laypeople were easily able to generate high resolution DEMs. As this method only 
requires a camera and a positioning system, it enables the wide-spread use of UAVs and airplanes to 
map the landscape. Numerous examples of how terrain, surfaces, and their changes can be derived 
using air- and spaceborne RS techniques are shown in Figure 2. 

 
Figure 2. Elevation, terrain and surfaces as crucial characteristics for all geomorphological landforms 
can be monitored with different air- and spaceborne RS technologies: (a) Digital Elevation Model 
(DEM)—GTOPO30, (b) an oblique, three-dimensional (3D) perspective of the DEM of the 
downstream area of Wadi El-Ambagi derived from a WorldView-2 stereo pair [75], (c) Digital Surface 
Model DSM and DEM derived from airborne LiDAR, area of reforestation in the former open-cast 
mining region Lausitz, Germany, (d) DEM of a rainforest area in Cape York (Australia) showing 
mining exploration scars and revealing groups of Brush Turkey mounds (airborne LiDAR—RIEGL 
Q680i-S), (e) 50 cm DEM of a mine site rehabilitation area near Morawa (Australia, airborne LiDAR—
RIEGL Q680i-S), (f) DSM and DEM derived from airborne LiDAR acquisitions of an open pit mining 
dump of Wintershall in Germany, (2 km × 2 km, >12 points/m2), (g) low resolution DEM of a 
dunescape in Tasmania (airborne LiDAR—RIEGL Q680i-S), (h) 25 cm DEM of sand dunes at the 
Tubridgi Coast in North West Australia (airborne LiDAR—RIEGL Q680i-S) and, (i) a land surface 
with 3D sinkholes in Israel (UAV). 

2.1. Stereophotogrammetry and Related Approaches 

Figure 2. Elevation, terrain and surfaces as crucial characteristics for all geomorphological landforms
can be monitored with different air- and spaceborne RS technologies: (a) Digital Elevation Model
(DEM)—GTOPO30, (b) an oblique, three-dimensional (3D) perspective of the DEM of the downstream
area of Wadi El-Ambagi derived from a WorldView-2 stereo pair [75], (c) Digital Surface Model DSM
and DEM derived from airborne LiDAR, area of reforestation in the former open-cast mining region
Lausitz, Germany, (d) DEM of a rainforest area in Cape York (Australia) showing mining exploration
scars and revealing groups of Brush Turkey mounds (airborne LiDAR—RIEGL Q680i-S), (e) 50 cm DEM
of a mine site rehabilitation area near Morawa (Australia, airborne LiDAR—RIEGL Q680i-S), (f) DSM
and DEM derived from airborne LiDAR acquisitions of an open pit mining dump of Wintershall in
Germany, (2 km × 2 km, >12 points/m2), (g) low resolution DEM of a dunescape in Tasmania (airborne
LiDAR—RIEGL Q680i-S), (h) 25 cm DEM of sand dunes at the Tubridgi Coast in North West Australia
(airborne LiDAR—RIEGL Q680i-S) and, (i) a land surface with 3D sinkholes in Israel (UAV).
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2.1. Stereophotogrammetry and Related Approaches

Stereophotogrammetry requires the acquisition of image data of the same area from slightly
different positions. Due to the different viewing angles along the flight path of a platform, differences in
elevation result in a different parallax, which can be measured and converted into elevation differences.
Aerial images, for example, are often acquired with an overlap of more than 50% along the track.
This allows stereoscopic measurements in the overlapping area. Pushbroom-like line scanners can be
installed in such a way that enable forward view, nadir view, and backward view image strips to be
recorded separately, allowing stereoscopic measurements. While airborne RS data can only be recorded
under optimal weather conditions (no clouds, suitable lighting conditions), the data quality of optical
data decreases enormously under cloud cover or poor lighting conditions. However, VNIR (visible and
near infrared) can also be acquired below any clouds or even during heavy rain. This depends on
the desired total signal-to-noise ratio (SNR), the flight altitude and the speed of, e.g., the aircraft or
UAV. The advantage of airborne RS data is that the people interested in (or paying for) it have some
control over the acquisition time, the spatial and spectral characteristics of the RS data. For spaceborne
sensors this is rarely the case. One further advantage is that the resolution and precision of airborne is
generally much higher than spaceborne RS, but the covered area is much bigger for spaceborne RS.
For instance, for UAV we can have cm resolution and precision, while for spaceborne we have only
very recently had m resolution (see also chapter 2.4, Table 1)

Radargrammetry could solve this matter since it resorts to SAR data, for the acquisition of which
illumination conditions (active sensor) and cloud cover are not that relevant (for a frequency ≤4 GHz
electromagnetic (EM) waves penetrate clouds). Furthermore, there is a dependency with regard to
different cloud types. In general, the approach of radargrammetry is identical to stereophotogrammetry
except for the fact that the amplitude of the SAR signal is used instead of optical data. Because of the
specifics of the RADAR geometry, additional processing steps are required. Due to the fact that the
geometric resolution of RADAR used to be lower than the optical data, which were used during the
photogrammetric DEM generation, and because the SAR-inherent speckle causes a degradation of the
results, so far SAR data have not been widely used for elevation models. However, with the launch of
sensors such as TanDEM-X, TerraSAR-X, Cosmo-Skymed, and ALOS-2 PALSAR, providing data with
a geometric resolution as high as 1 m, radargrammetry has recently become a valid approach to fill
gaps in cloud-prone regions or feature other peculiarities that complicate the stereophotogrammetry
or InSAR [76].

Over recent years, UAVs have been increasingly used for monitoring the status, changes or
disturbances of geomorphic characteristics [77–80]. Once the hardware, operator training and licencing,
UAV licensing, insurance, and institutional certification (although not yet universal, but heading that
way for many countries) have been organized, data can be recorded at a comparatively low cost for many
applications. The image parameters, such as spectral channels, image overlap, and geometric resolution
can be determined according to the mission requirements [81]. The overlap between the images
enables stereoscopic image processing, the generation of seamless image mosaics, and the triangulation
of high-density 3D point clouds (Figure 3). For the operational delineation of these products,
several commercial and open source software packages are available. This kind of software commonly
comprises bundle adjustment and structure from motion (SfM) algorithms [82,83]. In particular,
this approach is increasingly being used to record geomorphic characteristics [84].
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Figure 3. Three-dimensional (3D) representations derived from overlapping images: (a) Representations
of 3D plant species structure “Onobrychis viciifolia” and “Daucus carot” created with Structure
from Motion (SfM) techniques as well as the use of a Time of Flight (TOF) 3D camera, a laser
light sheet triangulation system and a coded light projection system (from Kröhnert et al., [85]),
(b) Structure from Motion (SfM) techniques based dense point cloud that shows a gypsum mine
close to Nordhausen, Germany. In total 250 RGB (red-green-blue) pictures, average point density
1020 points/m2, UAV, (c–e) Digital Surface Model (DSM)—Santis Sankt Gallen, Switzerland, Aerial Laser
Scanner (ALS)—LiDAR (RIEGL), point density (15 points/m2), total 51 million points, airplane.

Based on the point cloud DSMs (digital surface models) and after vegetation filtering, DEMs can
be delineated by rasterizing the point clouds. UAV-based DSMs and DEMs can therefore be used to
accurately measure the canopy height [86]. Due to regulations and technical limitations, however,
UAVs are currently only used for acquisition at a local scale. When considering a visual line of sight,
i.e., a maximum distance of 100–500 m between the pilot and the UAV (a legal requirement in many
countries), a theoretical area of 78.5 ha can be covered in one flight. It is possible to increase the
monitoring area to be recorded by changing the UAV pilot’s location, transferring control to another
pilot (at a different location) during the flight, or establishing technical BVLOS (beyond visual line of
sight) systems. For the retrieval of elevation data products based on stereophotogrammetry and related
approaches, equal points or image objects must be identified and accurately detected in all overlapping
images. Particularly, in areas with low contrast (e.g., snow-covered areas), the number of reliable points
can be very low. Furthermore, this method is not viable over water. In such areas a large number of
ground control points (GCP) is therefore required, leading to higher production costs. In many cases,
the number and positional accuracy of detectable points per unit area rises with increasing spatial
resolution. A high point density enables small raster cells in the final elevation model.

In 2009, NASA’s Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER)
aboard the Earth Observation satellite Terra provided a global DSM based on spaceborne optical data.
Image acquisitions from two different angles along the satellite’s track allowed a stereographic analysis,
resulting in absolute heights with an average standard deviation of 13 m [87,88]. A possible limitation
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for some disciplines may be the spatial resolution of 30 m. Hence, more recent developments have
focused on improving the spatial resolution, starting with an optical sensor, the Panchromatic Remote
Sensing Instrument for Stereo Mapping (PRISM) aboard the Advanced Land Observing Satellite
(ALOS) that was in operation from 2006 to 2011. The current global DSM yields a spatial resolution of
around 5 m with a height root mean square error (RMSE) of 5 m [89,90]. Aldorsari and Jacobsen [91]
and Alganci et al. [92] provided a quality assessment of DEM models from different spaceborne sensors.

As discussed above, radargrammetry can be a valuable approach in areas where no optical
data is available. In fact, the German mission TanDEM-X mission (two twin satellites flying in
a helix-formation) provided a suitable dataset for the generation of global radargrammetry-based
elevation models like the WorldDEM. Airbus is promoting the WorldDEM, but the WorldDEM is
an interferometric product: The description of WorldDEMcore: “This Digital Surface Model (DSM)
represents the surface of the Earth including buildings, infrastructure and vegetation. This unedited
DSM is output of the interferometric processing without any refinement. This product usually contains
RADAR specific artefacts, voids, and can include processing artefacts”. Source: https://api.oneatlas.
airbus.com/documents/2018-07_WorldDEM_TechnicalSpecs_Version2.4_I1.0.pdf. However, since the
TanDEM-X mission has InSAR capabilities (see Section 4.3), enabling even more accurate elevation
models, a global radargrammetry-based model might not be produced.

2.2. Approaches by InSAR

InSAR-based elevation models rely on the phase signal of electromagnetic waves. The SAR phase
basically depends on object trait characteristics (controlling the scattering process) and the distance
between SAR and the Earth’s surface [93,94]. Thus, at least two phase data sets are required to separate
both impacts. In the case of InSAR, both phase data sets are acquired from slightly different positions
(the maximum distance is determined by the critical baseline) and feature the same polarisation [94,95].
Thus, the object phase can be assumed equal in both images and is cancelled out when the phase
differences are computed. Ultimately, the remaining range difference is exploited. The range difference
can be used to infer the height of any given point. Thus, InSAR is the only instrument that provides
continuous (resolution or sub aperture cell-wise) height measurements from space, even in the presence
of cloud. The height value of each resolution cell represents the location of the scattering phase centre.

In the case of surface scattering, where the scattering process takes place at the boundary
between air and a surface (e.g., bare soil), the scattering phase centre represents the elevation of this
boundary. For volume scattering, where the scattering process takes place at several locations along
a vertical profile (e.g., the forest canopy), the scattering phase centre is located somewhere within
this volume [96–98]. The ultimate position in a forest canopy primarily depends on the canopy gap
fraction and the attenuation of the electromagnetic wave by individual trees, but only hiding the
desired geomorphic traits (the ground). Low attenuation results in deep penetration of the wave
and thus in a reduced height of the scattering phase centre, whereby penetration increases with an
increasing wavelength [97–100]. In terms of environmental conditions it maximized for very dry
or frozen conditions and can reach several meters of penetration for L-band data (~1–2 GHz) [99].
Accordingly, DSMs based on InSAR (and radargrammetry) do not necessarily represent the real surface
of a vegetation layer, which results in an underestimation of the nDSM. Nevertheless, SAR-based
nDSMs can be used as a proxy for tree height (Figure 4e1–e3).

https://api.oneatlas.airbus.com/documents/2018-07_WorldDEM_TechnicalSpecs_Version2.4_I1.0.pdf
https://api.oneatlas.airbus.com/documents/2018-07_WorldDEM_TechnicalSpecs_Version2.4_I1.0.pdf
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Figure 4. Digital Surface Model (DSM) recorded by different sensors and mounted on various RS
platforms: (a) DSM—Terrestrial Laser Scanner—LiDAR (RIEGL VUX-1), point density (250 points/m2),
on UAV (RiCopter), (b) DSM with Terrestrial Laser Scanner—LiDAR (RIEGL VUX-1), point density
(30 points/m2), on airplane, Cologne, Germany, (c) DSM—RGB (Sony NEX-7 RGB) image data-based
point cloud (natural colour), on UAV (modified after Thiel et al. [86], (d) DSM—RGB image based
point cloud, on airplane, (e) DSM comparisons of (e1) a Terrestrial Laser Scanner (TLS) DSM point
cloud, (e2) a TanDEM-X DSM (satellite) and (e3, blue color) the DTM from the Federal LiDAR survey
(airplane). The maximum extent of the TLS dataset is approximately 200 m and the resolution of
the TanDEM-X DSM is 5 × 5 m2. (e2) Note that the TanDEM-X DSM is located within the canopy,
illustrating the true backscatter center of the RADAR returns.

The ideal configuration of an InSAR system aiming to generate elevation models is achieved
when both phase images are acquired at the same time. This configuration is referred to as a single
pass. To date, two spaceborne missions have acquired single-pass InSAR data. The Shuttle RADAR
Topography Mission (SRTM) was the first mission to generate a near-global DSM. The slightly different
viewing angle was achieved by extending a 60 m mast from the payload bay of the Space Shuttle
Endeavour, which hosted one of the antennas on its end. The other antenna was mounted at the
payload bay of the shuttle. Within 11 days a full coverage of the globe from 56◦S to 60◦N of C-band
InSAR data was achieved. At the same time, the German Aerospace Center (DLR) operated a second
X-band interferometer. Due to its smaller swath width, however, it was not possible to cover the entire
area from 56◦S to 60◦N. Based on the C-band data, several elevation products have been released,
the most recent of which was SRTM Plus or SRTM NASA V3, with a raster cell size of 30 m × 30 m [101].
Most voids are filled using the ASTER Global Digital Elevation Model—ASTER GDEM2 [87] and
the ASTER GDEM3 (ASTGTM) [88]. A release took place in 2016, with preliminary results already
showing an RMSE of the elevation of 2.3 m compared to ICESat/GLAS data [102].

The second single-pass spaceborne mission (operated by DLR) is a constellation of two satellites
with X-band sensors on board that fly in a helix formation, namely TanDEM-X and TerraSAR-X.
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The concerted orbits result in a slightly different viewing angle as required for elevation sensitive
interferometers. Between 2010 and 2015, all land masses on Earth were scanned several times resulting
in a global DEM of to date unprecedented resolution and accuracy. The raster cell size is 10 m × 10 m,
the absolute vertical mean error of the DEM is smaller than +/−0.20 m and the RMSE is smaller than
1.4 m [103]. The TanDEM-X DEM was completed in September 2016. Currently, a new single-pass
InSAR mission is being prepared under the guidance of DLR. Besides the mentioned spaceborne
missions, several airborne systems operate as single-pass interferometers. Some of these systems
(e.g., F-SAR, PAMIR) acquire very high resolution InSAR data (resolution cell <1 m2).

Another configuration for the acquisition of InSAR data is the repeat-pass constellation. In this
constellation phase, image pairs are not acquired at the same time. The minimum time lag for
repeat-pass spaceborne systems that is suitable for InSAR is one day [104]. This one-day time lag was
achieved for the first time during the ERS −1/−2 tandem operation phase when one of the two ERS
satellites acquired the first phase image and the other satellite acquired the second phase image.
A recent mission that features this minimum time lag is COSMO-SkyMed, which comprised four
satellites in total. The orbits were chosen in such a way that the repeat-pass interval along the same
ground track varies between one and 15 days. In contrast, the European Sentinel-1 constellation
comprises two satellites. Each of the satellites repeats the same ground track every 12 days. The 180◦

orbital phase difference of both Sentinels results in a combined repeat-pass interval of 6 days.
Single SAR satellites commonly feature a larger time lag between both InSAR acquisitions.

For instance, the repeat cycle of RADARSAT−2 is 24 days and 14 days for ALOS-2. The major
disadvantage of repeat-pass systems is that they require stable biophysical conditions on the Earth’s
surface. Change, caused by the movement of vegetation due to wind, plant growth variations in
moisture content, and traits of the soil or vegetation, affects the scattering processes and leads to
a decorrelation between both phase images. Small changes might just cause a degradation of the
InSAR data quality while major changes can result in complete decorrelation, inducing an entire
loss of the interferometric information. In general, the probability of decorrelation increases with
increasing length of repeat-pass intervals. When working with shorter wavelengths, such as X-band
or C-band, vegetated areas are often completely decorrelated after several days. On the other hand,
X-band data-based interferograms featuring high coherence can be retrieved when vegetation is absent
and the surface parameters such as roughness and upper soil moisture remain stable. As longer
wavelengths, such as L-band or particularly P-band, interact with larger (and thus temporally
more stable) objects, sufficient coherence between both acquisitions can be found even for repeat-pass
intervals of several days. ESA’s forthcoming Earth Explorer mission BIOMASS (first P-band repeat-pass
interferometer in space) and CONAE’s SAOCOM mission (L-band) rely on this physical context.
Another important fact is that electromagnetic waves featuring longer wavelengths are capable of
penetrating deeper into media such as forest canopies. For example, P-band has the capability of
penetrating through dense vegetation. Thus, BIOMASS will be the first spaceborne SAR mission
providing DEMs in areas covered by dense forest such as tropical forest, while previous SAR missions
only provide DSM-like DEMs (DEM plus a height component related to vegetation height). The aspired
cell size of the BIOMASS mission DEM raster data is approximately 200 m × 200 m. An important
concern of repeat-pass InSAR systems is related to the varying impact of tropospheric conditions,
which can result in defective elevation measurements, in particular with shorter wavelengths.

The absolute height accuracy of InSAR-based elevation products enables geomorphic changes,
i.e., in the terrain or surface to be detected at several metres only. Accordingly, InSAR-based elevation
models therefore enable the detection of new clear cuts in forests, but are usually not accurate enough
for the detection of subsidence in mining or karst areas. By using more than two phase images however,
terrain changes can be measured with an accuracy of several millimetres, even with spaceborne
sensors. The approach for the delineation of elevation changes is called Differential SAR Interferometry
(DInSAR) [105,106]. Analogically to InSAR, stable environmental conditions are required for all
(at least) three phase images. Therefore, areas with vegetation cover can hardly be investigated with
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DInSAR. The use of long wavelengths such as the L- or P-band can remedy this [107,108]. A special
form of DInSAR is the persistent scatterer interferometry (PSI) [109] (see also Figure 5). This technique
only considers temporally stable scattering objects (persistent scatterers), which are selected using
specific filter approaches. Subsequently, relative phase changes and thus elevation changes between
these scattering objects are computed. This technique allows the integration of phase images from
long time periods up to several years. Thus, elevation changes can be monitored over a very long
time and movement rates can be determined with accuracy. However, persistent scatterers are
hardly found in areas with vegetation cover, while a relatively high density is typical for urban areas.
As DInSAR and PSI use repeat-pass data acquisition techniques, atmospheric impacts need to be
considered. The common approach is to screen the temporal stack and to eliminate corrupted/strongly
affected images.

Based on PSI there are numerous applications for monitoring surface deformations in mining,
landslide monitoring intensity [110,111], ice motion research [112], seismotectonics or volcanology [109].
Figure 5 shows subsidence revealed by PSI for the city of Sondershausen, Germany. The subsidence
rate was delineated based on ERS−1/−2 data from 1995–2005, ASAR data from 2004–2010, and PALSAR
data from 2007–2010. In the PSI deformation maps persistent scatterers located in the urban area are
depicted in front of a geocoded SAR image. The colour of the persistent scatterer points indicates the
rate of vertical displacement (in mm/year) [113].
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Figure 5. Persistent Scatterer Interferometry PSI reveals subsidence for the city of Sondershausen,
Germany. The subsidence rate was delineated based on (1) ERS−1/−2 data from 1995–2005, (2) ASAR data
from 2004–2010, and (3) PALSAR data from 2007–2010. In the PSI deformation maps persistent scatterers
located in the urban area are depicted in front of a geocoded SAR image. The colour of the persistent
scatterer points indicates the rate of vertical displacement in mm/year. Based on the PSI deformation
maps (left hand) geometric models of the subsidence were derived (right hand column of figures;
modified after Salepci [113].
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2.3. LiDAR and RADAR Altimeters

LiDAR technologies are the most widely used technology to date (from the local to the global scale)
for recording the status and changes in geomorphology [114,115]. LiDAR systems actively generate
laser pulses (shots) and their respective “echoes” (returns) are registered by a co-mounted telescope.
Each pulse illuminates a defined area of the Earth’s surface (a footprint). Therefore, LiDAR systems
enable RS information of the terrain and surfaces to be recorded, as well as numerous geomorphic
traits along the shot [110,116–118]. The spatial density of the samples depends on the LiDAR system
specifications. Recent airborne systems can achieve several measurements per square meter. The point
density of LiDAR systems can range from 5–250 points/m2 (Figure 6).
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Figure 6. Erosion gullies in Northern Queensland (Australia) represented (a) by a 10 cm-Digital Elevation
Model (DEM) derived from multiple overpasses with the RIEGL Q680i-S LiDAR and (b) by cross-sections
depicted as solid area and line before and after remediation earthworks, respectively.

Depending on the point density, LiDAR technologies can achieve accuracy in the centimetre
range. They are therefore able to derive very high resolution DEMs. Furthermore, in areas with forests,
shrubs and single trees, LiDAR technology can penetrate the vegetation and thus provide qualitative
and quantitative monitoring of terrain under forest. Another advantage of LiDAR data compared to
other RS data is that LiDAR point clouds only cause a small shadow [119], e.g., from trees compared to
20 m pixel image information from Aster sensors or RADAR technologies with a higher geometric
ground resolution, which contain the shadow from trees as spectral information in the RS image.
LiDAR allows digital derivations of DEMs, textures, contours, slope, curvature, surface roughness,
or landslides, as well as numerous other geomorphic characteristics.

There are many different types of LiDARs [71] installed on various RS platforms: the ground-based
LiDAR (TLS—terrestrial laser scanner, [120]) and the MLS—mobile laser scanner, the airborne-based
LiDAR (ALS—airborne laser scanner, installed on UAVs [121], microlights, and airplanes [114]),
and even satellite-based LiDAR (SLS—satellite laser scanner, LiDAR—GEDI-LiDAR [45,122,123],
and ICESat−2; [124], Figure 7). Comparatively simple LiDARs are limited to one or two returns per
shot, usually the first and last return which typically represent the top of the canopy (first) and the
ground (last). In dense vegetation, the last return does not necessarily represent the ground, so special
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algorithms are used to identify true ground returns. More sophisticated LiDARs not only record the
outgoing and returning discrete pulses, but also the full waveforms [114]. This not only enables more
algorithms to be used for monitoring geomorphic characteristics, traits, and changes of that during
post-processing of the data to derive point clouds, but the information contained in the waveforms
themselves (shape, amplitude, etc.) can be used for further analysis.

LiDAR data of this type together with a wide variety of analytical algorithms and optimally
in combination with many more in-situ, close-range, air- and spaceborne RS techniques [125,126]
enable the detection and monitoring of geomorphology. Modern full waveform-resolving LiDARs,
such as the RIEGL Q1560, Q780, and others, are capable of generating rather dense point clouds,
resolving geomorphic and surface characteristics with a resolution as accurate as 10 cm. These LiDARs
are typically operated at wavelengths of 1550 nm or 1064 nm. There are even LiDAR systems under
development that use several different wavelengths to resolve some spectral characteristics together
with point clouds.

The above-mentioned LiDAR systems are usually flown on manned aircraft, including rather
small ones. Recently, LiDAR systems have also been developed for small UAVs [121]. Most of the
UAV-deployed LiDARs are comparatively simple systems, which do not match the capabilities and
the accuracy of the larger LiDARs. One of the main reasons for this is that GPS/INSS systems for
UAV do not have the performance compared to airborne GPS/INS technologies. This area is indeed
under intense development and new and improved systems are constantly emerging. At this stage,
the most advanced and capable UAV-deployable LiDAR system is the RIEGL VUX with its various
sub-types [127], including the integrated UAV-RiCOPTER. However, since the UAV can be operated at
a very low flight speed with great overlap between the tracks and variable flight altitude, the resulting
sample point density can be very high (~250 points/m2). Another feature is the wide scanning angle of
the small field of view (FOV) of LiDAR RIEGL VUX-1UAV [128]. 2D–4 D geomorphic characteristics
such as the walls of mountains, micro-morphological structures and textures, landslide mapping
or the monitoring of soil erosions can be sampled with a high density of pulses [129]. When such
systems are implemented, users are able to independently obtain up-to-the-minute DEMs and DSMs,
which are of particular importance when attempting to solve specific local and regional issues requiring
user-defined spatial and temporal resolution.

The highest precision of LiDAR measurements can be achieved with ground-based TLS
systems [120]. Such systems are typically installed on top of a tripod and scan their surrounding area
with an accuracy of a few millimetres. The scanning range can be up to 6000 m (e.g., RIEGL VZ-6000).
To scan the entire area of interest, a combination of scans from several scanning positions might be
necessary. Analogous to UAV-based LiDAR data, TLS data capture vertical structures enabling the
delineation of 3D features beyond DSMs or DEMs. The acquisition of TLS data is very time consuming
and thus restricted to small areas. There are also mobile laser scanning (MLS) systems, which are
basically TLS-systems mounted onto a moving ground-based platform (vehicles, vessels, railcars,
even bicycles or pedestrians) [115].

LiDAR systems can also be operated from space. Although capable of providing global datasets,
spaceborne LiDAR systems currently have some critical limitations. Due to physical constraints the
footprint will always be relatively large (e.g., 50–120 m for ICESat/GLAS; [124,130,131]), which results
in inaccurate elevation measurements, in particular in steep terrain. Furthermore, the point density is
relatively low (ICESat/GLAS: 175 m spacing along the flight track, 3 km spacing between the three
laser beams across the track). The NASA mission GEDI LiDAR (GEDI—Global Ecosystem Dynamics
Investigation), launched on 5th December 2018 attempted to overcome some of these limitations.
The GEDI Ecosystem LiDAR is a high resolution laser monitoring the Earth’s forests and topography
from the International Space Station (ISS, https://gedi.umd.edu/) [45,122,132]. The footprint has a
reduced diameter of 25 m, the along-track spacing of the separate footprints is 25 m, and the across track
spacing between each of the ten tracks is 600 m. However, the sampling density will not be sufficient to
generate detailed DSMs or DEMs. Small footprint airborne LiDARs overcome this limitation, as they

https://gedi.umd.edu/
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sample the Earth’s surface with a very high level of detail. Unfortunately, global datasets cannot be
acquired when reasonable time and expenditure are taken into account.Remote Sens. 2020, 12, x FOR PEER REVIEW 15 of 62 
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Figure 7. Simulated Global Ecosystem Dynamics Investigation GEDI waveforms (a) are vertical
aggregations of point clouds (b) in GEDI sized footprints, which have been modeled to match expected
pulse shape and spatial distribution of reflected energy for GEDI. ICESat-2 simulations (c) use degraded
point clouds along transects with added background noise. Simulated photon returns are classified as
noise, ground, or vegetation returns (taken from Duncanson et al. [132], License Nr: 4856241027296).

RADAR altimeters (RAs) rely on similar functional principles as LiDAR. The RA emits
electromagnetic pulses and receives the echo. Based on the traveling time, the distance between the
sensor and the surface can be delineated. In contrast to LiDAR, RAs use microwaves. Several satellites
were equipped with an RA instrument (e.g., ERS−1/−2, ENVISAT, Sentinel-3). Analogically to small
field of view of LiDARs, many RA systems feature the capability of waveform recording and analysis.
However, compared to spaceborne LiDARs, spaceborne RAs feature an even larger footprint and
a lower sampling density and are thus less suited to generate DEMs or DSMs. The main focus of most
RAs is on marine applications, such as sea surface height, wave heights, or wind fields [133].

2.4. Criteria for Acquiring Elevation Data and Surface Data with RS

The criteria for recording and acquiring elevation and surface data using RS can only be briefly
mentioned here. Comparative reviews and papers for acquiring elevation data include those of
Alganci [92] and Hawker [134].

2.4.1. Acquiring Elevation Data with RS

Exogenous processes (e.g., weathering, deposition, and the accumulation of rock material
through wind, water, ice, and climate change), endogenous processes (e.g., tectonic plate
movements, volcanic activity, earthquakes) and their interactions, as well as anthropogenic drivers
(e.g., river regulation, coal mining, salt and sand quarrying, or fracking) are structure-forming and
lead to the formation and alteration of geomorphic traits, such as elevation, slope, aspect, curvature,
and others, of the geosphere. The following factors are therefore essential to acquire digital elevation
and surface data and their changes using RS:

• The characteristics and the combinations of exogenous and endogenous geomorphic processes
(the scope, length, intensity, consistency, dominance or overlay of the driver) lead to formation of
specific geomorphological traits such as geological shapes, patterns, and structures. These process
characteristics, in turn, define the characteristics and the accuracy of the monitoring, the possibilities
of classification and the acquistion of relief parameters and thus other aspects derived from the
topography and physiography like elevation, slope, aspect or curvature.
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• Geomorphic trait characteristics, their composition, and configuration, such as the 2D–4 D shape,
structure, patterns, density, or distribution of the geomorphic traits and trait variations in space
and over time.

• The spatial, spectral, radiometric, angular, and temporal characteristics of the RS sensors
(see Figure 8, Table 1).

• The choice of the RS platform that influences the spatial and temporal resolution and ultimately
the recordability and precision of the RS sensor properties of the geomorphic traits. With airborne
LiDAR systems more accurate derivations of the DEM/DSM can be made compared to with
spaceborne terrain RS approaches.

• The choice of the classification method (pixel-based, spectral-based, geographic objects based
GEOBIA) and how well the applied classification algorithm and its assumptions fit the RS data
and the spectral traits of geomorphology.

• A multi-variate and multi-temporal implementation of RS sensors such as RGB, multi-spectral,
hyperspectral, LiDAR, RADAR or microwave radiometer, which not only increase the number
but also the characteristics and diversity of traits and trait variations that can be recorded by RS.

• The coupling of in-situ, close range RS (ALS) with air- and spaceborne RS approaches, enabling the
optimal calibration and validation of air- and spaceborne RS data.
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Figure 8. For discrimination and thus for successful monitoring, in addition to the characteristics and the
distribution of geomorphic traits and their changes, it is also the spatial characteristics of the RS sensors
used that are of major importance–in this case the spatial resolution. DEM comparison of a post-mining
potash tailings pile, Teutschenthal-Bahnhof, near Halle, Germany (see also Schwefel et al., [135]),
(a) LiDAR (DEM 1)—1 m, (b) photo of the post-mining landscape with a 95 m high potash tailings pile,
(c) SRTM (DEM 90)—90 m, (d) Aster (DEM 30)—30 m, (e) DEM generated from height information of the
land surveying office—LVermGeo (DEM 10)—10 m, (f) SAR (DEM 5)—5 m, (g) LiDAR (DEM 1)—1 m.
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Table 1. Semantic categorization of potentials and practicality of RS platforms and RS techniques for
elevation data acquisition; inspired by Mulder et al., [136]: −− = no, − = low, + = medium and ++ =

high agreement.

Acqui-si-tion Tech-nique
High

Spatial
Resolu-tion

Wide Area
Coverage

High
Temporal
Refresh

High
Vertical
Accuracy

High
Complex-ity
of Retrieval

Canopy
Pene-tra-tion for
DEM/(no DSM)

Weather/Il-lumi-na-tion
Indepen-dence

Spaceborne Repeat-Pass InSAR + ++ + + + ++ ++

Spaceborne Single-Pass InSAR + ++ ++ + - ++ ++

Spaceborne LiDAR + ++ + + - + +

Spaceborne RADAR Altimeter − + + ++ - + ++

Spaceborne Radar-grammetry + ++ ++ + - ++ ++

Spaceborne Photo-grammetry + + + + - - -

Airborne InSAR ++ + - - + ++ +

Airborne LiDAR ++ - - ++ + + -

Airborne Radar-grammetry ++ - - + + ++ +

Airborne Photo-grammetry ++ + - + + - -

UAV-borneLiDAR ++ - ++ ++ + ++ +

UAV-borne Photo-grammetry ++ - ++ ++ - - -

High spatial resolution: ++ High [0.1–0.5 m], + Medium [0.5–50 m], + Low [50–500 m]. Wide area coverage:
++ Wide [>1000 km2], + Medium [<1000 km2], + Small [<100 km2]. High temporal refresh: ++ High [<1 day],
+ Medium [<1 week], + Low [<1 month]. High vertical accuracy: ++ High [<1 m], + Medium [<2 m], + Low
[<5 m]. High complexity of retrieval: ++ High [expert level], + Medium [advanced level], + Low [beginner
level]. Canopy penetration for DEM, (no DSM): ++ High [ground visible], + Medium [ground partly visible],
+ Low [ground invisible]. Weather/illumination independence: ++ High [full independence], + Medium [partly
independent], + Low [no independence].

2.4.2. Acquiring Surface Data on Vegetation and Urban Structures

In addition to the aforementioned criteria, others also need to be taken into consideration when
recording surface data using RS. To record geomorphic traits such as the DEM, structure-forming
traits (i.e., structure, diversity, gradients of relief structures) play a decisive role in discriminating and
deriving relief parameters.

To derive surface elevation such as the height of vegetation as well as structural traits (i.e., the height
of buildings, bushes and trees) other spectral traits of the vegetation (e.g., chlorophyll content,
xanthophyll, morphological and phenological plant traits, or 2D–4 D traits of the vegetation height)
can also be used for discrimination. In this way, plant species, plant communities or the characteristics
of vegetation diversity can be monitored using RS, when their spectral biotic traits differ in time
or space.

Urban surface structures on the other hand can be distinguished by the characteristic 3D geometry
of the building height or building characteristics (i.e., roof incline, building geometry), which can
be recorded either by LiDAR or RADAR RS technologies. In addition to recording 3D buildings,
TIR, multispectral, or hyperspectral RS technologies can be used to detect other traits such as the
characteristics of buildings, the degree of sealed surfaces and other aspects. Comparative reviews
and papers on the acquisition and discrimination of plant species [137], the monitoring of vegetation
diversity [54,138], forest health [139,140], as well as anthropogenic structures and traits [141,142] are
all important in this context.

Since various DEMs/DSMs derived from different RS technologies are already available, Table 2
shows the numerous studies assessing the accuracy of DSM’s, whereas Table 3 summarizes the
specifications of output DEMs of the RS technologies. Table 4 then goes on to provide an overview of
RS-assisted derivation of terrain and landscape surfaces and its traits (Table 5).

3. Aeolian Landforms

There is a very strong connection between the global anthropogenic impacts of the 21st century
(climate change, land use intensity, deforestation and urbanization) and increasing desertification,
sand storms, wind-, water-, and soil-erosion, all leading to the degradation of large areas of the Earth’s
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surface [143,144]. Dune landscapes cover vast areas of the Earth’s terrestrial surface and as a result of
desertification are showing an annual increase of 70,000 km2 [145]. The increase in human-induced soil
degradation is even stronger, equating to 1964 million hectares in the world [143,146]. Desertification
processes not only lead to changes in geodiversity but also threaten biodiversity and major ecosystem
services [143]. “The loss of our soils is thus one of the greatest crises of our time” [147].

The Earth’s surface is constantly shaped by wind, which leads to the discharge, deflation, erosion,
transport, turbulence, saturation, collision as well as the sedimentation and accumulation of fine
particles of different sizes and properties [148]. The type and characteristics of aeolian changes are
determined by the following factors: (i) weather conditions such as consistency, continuity, intensity,
extend or wind direction (wind force, rolling or sliding (creeping), the Bernoulli effect of winds—(lift),
bouncing (saltation) and the impact of one particle upon another, as well as (ii) aeolian traits such as size,
shape and biochemical-biophysical composition. However, RS approaches influence the discrimination
and the monitoring of aeolian geomorphic traits, due to (iii) the properties of RS technologies: the spatial,
spectral, radiometric, temporal and angular resolution, as well as the RS platform and the classification
strategies selected for monitoring (see also Section 3).

This is an extremely complex procedure to monitor and assess wind erosion and degradation
processes in landscapes. An indicator complex comprised of agro-ecological indicators (i.e., surface soil
texture, foliar cover, litter and rock fragmentation cover, biological soil crusts, canopy height and 3D
geometric growth form), air characteristics, and quality indicators (i.e., visibility, or PM2.5 concentration)
as well as model calculations (soil moisture or net soil loss or surface) must be included in the modelling
when monitoring and assessing wind erosion. Here, it becomes clear that “the quality of ecosystem
models is only as good as the quality and/or degree of uncertainty of the model’s input data” [42].

Originally, the monitoring of aeolian land forms started with the combined use of in-situ
measurements (sand traps, meteorological/geochemical measurements) and model calculations [149].
Nowadays, with its different sensor characteristics and various platforms, RS is an essential technology
for monitoring aeolian structural diversity [150] (see also Table 5). With the implementation of RS,
numerous geomorphic diversity characteristics are used, i.e., the spatial-temporal patterns of dunes
(length, minimum spacing density, orientation, height and sinuosity, [151,152], the composition and
configuration of aeolian dune patterns i.e., the complexity, diversity, shapes, patterns and heterogeneity
based on Landsat and SRTM RS data [153] or multisensory data using Landsat-7 ETM+ and data
from Digital Orthophoto Quarter Quadrangles (DOQQs) [154]. Mechanisms that lead to the history
of aeolian patterns based on RADAR have been monitored by multiple complementary RADAR RS
sensor complexes (SIR-C imaging, SRTM interferometry-derived elevations and RADAR sounding or
ground penetrating RADAR (GPR)) [155]. Other essential RS technologies are also available to assess
the volume and changes or intensity of sedimentation or dune migration [150]. Although numerous
papers have provided reviews or detailed insights into dune landscapes, few papers have actually
discussed the spatial distribution and thus the characteristics of geomorphic structural diversity,
which is imperative for understanding dune landscapes [156]. The reason for this is that as patch
mosaics and different patterns, aeolian land forms induce very distinct geomorphic characteristics
and consequently specific morphometric traits, patterns, and functions, which are the outcome of
turbulences, changes, and disturbances in ecology [157,158].

Digital photogrammetry using aerial images was the first method for assessing dunes and
their movements [159]. Nowadays, various optical (i.e., Landsat, Sentinel-2) as well as RADAR RS
technologies such as SRTM are implemented not only to understand geo-ecological relationships
and their complex effect mechanisms and interactions of dune ecosystems, but also to investigate
spatio-temporal dune patterns, their migration or processes, and the spreading of desertification [143,152,160].
In fact, multispectral and multi-temporal RS approaches are increasingly being used to record a number
of aeolian traits such as spatial-temporal dune-field pattern characteristics (i.e., length, minimum
spacing density, orientation, height and sinuosity) [150].
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LiDAR RS technologies have been successful due to their tremendously high spatial resolution and
recording of 2D–4D aeolian structural traits with a high degree of precision detail when monitoring the
disturbances of aeolian land forms [161]. The high-precision 2D–4D monitoring of aeolian structural
traits opens up a whole new understanding of modelling, assessing and predicting complex relationships
and interactions of geodiversity and biodiversity, their changes, disturbances and resilience [162,163].
The special features of LiDAR technologies are the monitoring of 2D–4D dune activity, spatial-temporal
dune patterns and hierarchies, as well as extra-terrestrial dune formations [164].

One of the greatest challenges in aeolian monitoring using RS is the spatio-temporal recording
and delimitation of highly dynamic dune migration as well as subtle changes that occur on the surface
due to transported sand. The implementation and the connection of airborne, spaceborne (LiDAR,
optical and RADAR) with high-frequency spatial and temporal close-range terrestrial laser scanning
(TLS), as well as in-situ measurements will enable an almost continuous monitoring and assessment
of 3D–4DD dune dynamics and morphology, their interactions and geomorphic activity, helping to
understand continuous surfaces over longer periods of time [165].

Due to the technological capabilities of LiDAR (i.e., the penetration of vegetation, see Section 4),
it is currently the only technology that can be used, for example, to monitor remaining historically
preserved migrating sand dunes that are situated under vegetation such as forests (see Figure 9).Remote Sens. 2020, 12, x FOR PEER REVIEW 20 of 62 
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Figure 9. Walking dune near Königs Wusterhausen, southeast of Berlin (Germany) depicted (a) as Digital
Surface Model (DSM), (b) a Digital Elevation Model (DEM) as shaded relief, and (c) as a 3D Profile view
of the DSM whereby of the dune surface appears orange and the forest vegetation green. The data basis
was generated by Airborne Laser Scanning (ALS) with a RIEGL-LiDAR (point density >5 points/m2)
carried by airplane.

4. Fluvial Landforms

Fluvial landforms are the product of flowing water accumulating in creeks, streams and rivers.
This includes to changes in or the formation of terraces, sediment deposits, river beds, floodplains
and river valleys. Fluvial systems typically have a large inherent diversity. As a geomorphic driver,
a river is able to sort particle sizes of soil and gravel by different flow velocity, and to abandon
channels to establish new types of ecosystems. Therefore, fluvial landform systems are highly complex
and extremely dynamic from a geomorphological perspective [166,167]. However, the resilience of
rivers is not only altered by natural processes and interactions (i.e., water, sediment, geology, soil,
and vegetation), but also increasingly by the complex interactions between natural and anthropogenic
drivers and impacts, which can ultimately tip the ecological balance (see changes in rivers feeding the
Aral Sea) [168].
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Water engineering measures such as river relocation or the straightening of rivers, the reduction
of retention surfaces, drainage, land use intensity and urbanization all lead to tremendous changes
and disruptions to surface and subsurface runoff. The consequences are immense: an increased
risk of flooding, erosion, and sedimentation in streams and rivers, leading to changes and disturbances in
biodiversity, entire ecosystems, and the self-purification function of water. According to Grimaldi et al. [169]
flood events are the “most frequent, disastrous and widespread natural hazards of the world”
(see also [170]). Every year some 20,000 people die as a result of flood events [171]. From 1995–2015
alone, ca. 109 million people were affected by flood damage, amounting to costs of around USD
75 billion per year [172].

Due to the very complex and highly dynamic nature of river systems, their forms, meandering
processes, sedimentation processes and water quality have been successfully recorded for some time
now using various RS technologies. These observations allow important considerations to be drawn
about different disturbances such as water pollution, river straightening, bank protection measures,
or the intensification of land use. However, considerations can also be drawn for example about
disturbances or changes in surface runoff after heavy rainfall [173–176]. For the monitoring of fluvial
systems using RS, GIS and topographic information, in-situ measurements as well as close-range and
air- and spaceborne RS technologies are often used in combination with one another. The detailed object
based classification of morphology forms using LiDAR data and the classification of hyperspectral data
shows the distribution of heavy metal content in soils and vegetation in flood plain areas [177–179].
Various sensor technologies are implemented for this purpose such as digital cameras, video cameras,
heat-, infrared-, hyper-, and multispectral sensors, RADAR, and LIDAR [167,168,180] (see also Table 5).
In this way Pekel et al. [181] were able to impressively show global surface water distribution and its
long-term changes using global time series RS data (Landsat-5 TM, -7 ETM+, and -8 OLI). In the face of
climate change the monitoring of global surface water distribution as well as changes and disturbances
to it, will become a highly relevant topic.

Aerial photos of rivers and floodplain geomorphology were the first RS technologies to record
fluvial landforms [182]. The first RADAR technologies [183] as well as optical RS sensor systems like
Landsat [184] were early applications that monitored the irrigation and drainage systems of areas
as well as the first morphometric characteristics of river systems. Landsat and other spaceborne data
are also widely used to analyse river morphology and morphodynamics, such as meandering and
avulsions [185], as well as to monitor decadal length changes in the fluvial planform of rivers [186]
(see also Section 4.2). Due to the unique characteristics of RADAR technologies (24-h and all-weather
capability) as well as their ability to record flood events, RADAR RS is a crucial resource and
technology for the mapping and prediction of flood events, and as a basis for geo-hydraulic modelling
data [169,187,188].

On finer spatial scales airborne LiDAR-RS deliver crucial 3D–4D information with a very high
degree of detail for geo-hydrological modelling (see also Section 4.3), which is essential for the successful
mapping and monitoring of fluvial systems [161].

4.1. Flood Events and Floodplain Risks

RS plays a crucial role in recording, assessing [189], modelling, and forecasting [190] flash floods
and flood hazards, in assessing their vulnerability, and in the valuation and prediction of flood
risks in riverine landscapes as well as coastal areas as a consequence of extreme events such as
monsoons, tsunamis or hurricanes. For these purposes, a number of optical RS sensors are used such as
Landsat, Sentinel-2 [191], RADAR technologies such as ASAR, ENVISAT, TerraSAR, or RADARSAT,
Sentinel-1 [177,192], as well as airborne LiDAR systems [42] (see also Table 5).

To investigate the effects and the resilience of fluvial landforms to anthropogenic disturbances
such as mining or water engineering measures, multi-source information is often used comprising
of historic maps, aerial images, digital orthophotos, b and different RS sensors on various platforms.
Ghoshal et al. [193] proved for example through bathymetric surveys that fluvial systems recovered
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over a century from the damage caused by hydraulic mining operations (1853–1884) in Sierra Nevada
in California. In fact, they found that the fluvial processes investigated from 1906 to 2006, erosion,
sedimentation, redistribution of sediment, as well as volume changes, led to a stabilization of the
river ecosystem. During the course of the recovery process, channels of up to ~13 m cut into the
mining sediments. These fluvial processes led to a drastic reduction in the local flooding incidence in
the region.

Certain fluvial traits are known to play a crucial role in flood hazards and inundation modelling,
such as the DEM and derived data like elevation, slope, curvature, the stream power index (SPI),
the topographic wetness index (TWI), distributed roughness values, land use land cover (LULC)
information, river density, distance to rivers, or different plant traits, such as phenology or plant
density, that can be derived from various technologies [192].

RADAR and LiDAR are the most common RS technologies implemented for the mapping and
monitoring of flood events. In fact, it was the use of RADAR that revolutionized the monitoring
of flash flood hazards [194]. Costache et al. [195] conducted research on flash flood susceptibility
assessments using multi-criteria decision making and machine learning approaches based on SRTM-
and GIS techniques. With the open access of the RS time series for Sentinel-1 data these techniques are
now widely implemented for flood detection and mapping [192,195,196]. Such techniques enabled
the morphological characterization of the Kyagar glacier and the monitoring of glacier lake outburst
floods based on a time series in 2018 Sentinel-1A data [197]. To monitor permanently and temporarily
flooded coastal wetlands, multi-temporal ALOS PALSAR-1 data have been used [198]. If various
RADAR sensors with different sensor specifics are implemented, then more fluvial traits can be
investigated and the weaknesses of the sensors can offset each other. Hong Quang et al. [199] used
hydrological/hydraulic modeling-based thresholding of multi SAR RS sensors (Sentinel-1) to monitor
floods in regions of Vietnam’s Lower Mekong River Basin. Alsdorf et al. [200] used InSAR technologies
to measure water level changes on the Amazon floodplain. For high resolution flood monitoring
an integrated methodology also used passive microwave brightness temperatures and Sentinel SAR
imagery [201]. Furthermore, in a study by Grimaldi et al. [169], SAR RS information was not only
used for mapping flood events without vegetation cover, but also for recording flood irrigation
under vegetation. This study very impressively illustrated the wide application range for fluvial
remote-sensing technologies.

In addition to RADAR RS information various optical RS data, i.e., Landsat, Sentinel-2, RapidEye,
or WorldView, are used for mapping floods [174]. Wang et al. [202] were able to demonstrate an
efficient method for mapping flood extent in a coastal floodplain based on Landsat-5 TM and DEM
data. Furthermore, geomorphic changes in the Jhelum River following an extreme flood event were
recorded in a case study using Landsat-8 OLI data [203]. With the help of time series Landsat-8 OLI
imagery data and the integration of stream gage data, it was also possible to monitor the surface water
extent in Central Valley in California [204]. There are many more studies using multitemporal Landsat
data to map flood hazards over different time intervals [205]. Due to the improved spatial-temporal
resolution of Sentinel-2 data, these are also being increasingly used for mapping flood events [206].
Sentinel-2 satellites provided a near real-time evaluation of catastrophic floods in a case study in the
western part of the Mediterranean [207]. In another study of Ras Ghareb city in Egypt, Sentinel-2
data and fuzzy analytic hierarchy process approaches were also used for monitoring and assessing
urban flash flood impacts [208]. In their case study of winter wheat fields in a semi-arid region,
Olivera-Guerra et al. [209] showed irrigation retrieval from Landsat optical and thermal data integrated
into a crop water balance model.

In spite of numerous existing and future spaceborne optical and RADAR missions to monitor
the fluvial morphology and assessment of flood hazards, LiDAR data are increasingly becoming
an essential basis for recording detailed 2D–4D spatial-temporal geomorphological-hydrological
information and for hydraulic analysis and modelling [161,210]. Webster et al. [211] used topographic
LiDAR to map the flood hazard from storm-surge events for Charlottetown on Prince Edward Island
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in Canada. Moreover, numerous research papers have been based on the use of high-density LiDAR
data, often in combination with 2D streamflow hydraulic modelling using high-density LiDAR for
mapping high accuracy urban, river or coastal flood risks [212–215]. Morrissey et al. [216] used LiDAR
data for modelling groundwater flooding in a lowland karst catchment. Furthermore, an increasing
number of combinations and the linking of different sensors and RS platforms have been used to
monitor flood events, e.g., web cameras with airborne LiDAR RS data [217]. Due to a high degree of
flexibility with comparatively low costs, an increasing number of different RS sensors are being used
on UAV platforms for monitoring floods [218,219].

In their research, Kulp and Strauss [42] were able to prove just how important sensor characteristics
are for the quality of a model to predict flood risk. It goes without saying that models and model
predictions are only as good as the quality of their input data. With the implementation of airborne
LiDAR and calculations from a detailed DEM of coastal regions Kulp and Strauss [42] were able to
prove that more than three times as many people are threatened by climate change and rising sea levels
than was previously assumed based on models using SRTM DEM data.

4.2. Fluvial and Tidal Channel Migration

Channel “migration rates are key to understanding biogeochemical fluxes” [220], and are thus
important indicators for water quality, the climate, and ultimately biodiversity. Natural channel
migrations are episodic and dynamic processes on large spatial and temporal scales. Consequently,
the monitoring and assessment of the river conditions, rates of change and in particular the assessment
of resilience of river systems (especially after water engineering measures), has to be the kind of
monitoring that incorporates all spatial-temporal scales of geomorphic organization. This not only
enables a better geohydrological understanding of driving forces, processes, and interactions, but also
facilitates a targeted and successful river management.

For some time now aerial image sequences as well as multispectral and multi-temporal RS
technologies have been used to monitor the status, changes and disturbances of fluvial and tidal
environments, channel migration and many other fluvial traits (see Table 5) in the context of different
driving forces [168,174,221,222]. Preliminary research on this topic conducted by Garafalo [223]
investigated the influence of wetland vegetation on tidal stream channel migration and morphology by
using photogrammetric techniques over a period of 32 years (1940 to 1972). This research calculated an
average relative channel migration rate of 0.21 m per annum for salt marsh tidal channels and 0.32 m
per annum for freshwater tidal wetland channels. Using the time-series of aerial photographs and
topographic information, the temporal evolution of natural and artificial abandoned channels of the
River Rhône were analysed along with its controlling factors in a multi-pressure river system over
a period from the mid-19th century until the beginning of the 20th century [224].

With the opening of the Landsat archive, the time series of Landsat RS data (multispectral and
TIR) has become a crucial data source for monitoring fluvial geogenesis, fluvial taxonomy, and fluvial
functionality. Yang et al. [225] used the time-series of Landsat-5 TM data over a 19-year monitoring
period for the Yellow River Delta in China. This covered fluvial traits such as the channel position,
systematic changes to river banks and mid-channel bar dynamics and compared fluvial channel
characteristics and migration in relation to the intensity of both natural and anthropogenic changes
(i.e., from water engineering). Other research work on river- and channel migration, mid-channel bar
dynamics, and channel stability assessment based on Landsat time-series has been conducted by [226–229].

Finotello et al. [222] were able to derive a number of other morphometric traits such as sinuosity,
intrinsic wavelength, curvature and the asymmetry index from Landsat time series data to characterize
meandering patterns and meandering dynamics in tidal and fluvial environments. Sentinel-2 RS data
have also been successfully implemented to characterize bankfull discharge and bankfull channel
geometry indicators (width, depth, and longitudinal channel slope) of an alluvial meandering river
system. RS information are the basis for their morpho-dynamic model that models fluvial processes
like balancing bed sediment or bank and floodplain processes over the entire flow duration curve.
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Naito and Parker [230] also showed the spatiotemporal change of bankfull channel characteristics from
randomly set initial conditions to an equilibrium state at which there is no more change in either space or time.

RADAR RS is extensively used to record fluvial and tidal channel characteristics, their traits and
migration processes [174]. Bhaskar and Kumar [231] used SRTM RS data to monitor channel migration
processes in the Thengapatnam coastal tract bordering the Arabian Sea. With the help of SRTM and
in-situ information they were able to demonstrate that the loss of river meander was caused by a
relative elevation of the land surface or a lowering of the sea level. Lelpi et al. [232] used SRTM RS
data to investigate the relationships between the incidence of floods and the speed of change to the
channel migration rate in arid regions. They achieved this by combining the data from discharge
records with channel migration rates, dynamic time-warping analysis, and chronologically calibrated
subsidence rates derived from RS data. Their results showed a slight decrease in the discharge pattern
of the Mojave river downstream, contradicting the results from previous studies that demonstrated an
increase in the discharge patterns of comparable river systems. Furthermore, their results showed that
ephemeral rivers in arid regions can show a previously unknown margin for maintaining hydraulic
geometries in stratigraphic sequences. A number of other studies also used RADAR data such as
SAR data to characterize fluvial channels [233]. To estimate river discharge, not only optical, but also
RADAR altimetry RS data have proven to be particularly suitable such as ENVISAT, Jason −2 and
−3, Sentinel-3A, CryoSat-2, and AltiKa satellite altimeters RS data [234]. Various morphometric traits,
such as water velocity [235], river width [236], or water height measurements, have also been recorded
using RS technologies [237].

Airborne LiDAR technologies, usually in combination with other sensor types i.e., hyperspectral,
RGB or TIR RS data in terms of deriving numerous hydraulic geometric traits enable a number of
fluvial channel migration characteristics and process rates to be recorded such as grain characteristics,
grain and gravel size, shape or roundness. A detailed overview of the detection and characterization
of fluvial traits, e.g., grain characteristics, grain, and gravel size, shape, or roundness among others,
using LiDAR technologies is provided by [161,168,174](see also Figure 10).
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4.3. Stream Bank Retreat

The degradation of stream bank is caused by a combination of subaerial erosion, river erosion
trees fall as well as river bank slides. Specific local geological conditions, land use intensity, and their
characteristics, the flow regime, as well as the hydrological characteristics of the river catchment also
play a crucial role in this respect. The significance of morphological and biological characteristics
and the conditions of the riparian zones and disturbances to them through river bank deterioration
in the formation of retention zones have long been ignored. For some time, attempts were made to
reduce riverbank migration in agricultural from agricultural and urban areas. Stream bank retreat
plays a major role in hydrodynamic processes, flows, the preservation of water purification processes,
and consequently in the preservation of water quality. It has been proven that rivers with vegetation
as opposed to rivers without vegetation lead to a ten-fold deceleration of river meander migration
and ultimately to an improvement in the water purification process [220]. Furthermore, bank erosion
processes can also monitored with UAV-SfM RGB technologies along complex bank lines of a straight
mid-sized river reach [238].

4.4. Flood Hazard

The significance and selection of suitable RS data play a decisive role in how accurate model
projections will be for potential areas of flooding. This has already been extensively described (see also:
Flood events and floodplain risks using RS, [42]). A study by Micheli and Kirchner [239] used aerial
photos to monitor and assess the effects of wet meadow riparian vegetation on stream bank erosion and
on stream bank migration and erodibility over a 40-year period (1955–1995). Heeren et al. [240] used
the time-series of RGB-data (2003–2008) for the monitoring and assessment of various geomorphic
traits of stream bank retreat. A combination of terrestrial and airborne LiDAR with high spatial
resolution RS–RGB data are crucial RS technologies for monitoring and assessing stream bank
conditions [168,174,241]. UAV-based laser scanning in combination with other sensor technologies
have also been used increasingly more for monitoring and modeling riverscape morphometric and
vegetation traits [242–244].

4.5. Coastal Landforms

Coastal geomorphology describes the dynamic interface between the ocean and land surfaces.
Based on hydrological, lithological and morphological criteria, seven different types—i.e., small delta,
tidal system, lagoon, fjord and fjärd, large river, tidal estuary, ria, karst as well as arheic [245]—of coastline
can be distinguished, which can be recorded using RS methods (see also Table 5). Since the different
types of coasts filter the water differently, the ecosystem services of different coastal types can
be recorded and evaluated based on RS methods. Coasts experience such high dynamics due to
the continuous motion of waves, making them a crucial driver for hydromorphological processes
such as transport, erosion, or sedimentation. The monitoring of changes or disturbances to coastal
geomorphic traits play an important role, particularly in the context of climate change with the
rising of sea levels, a growing world population and the settlement of coastal areas. Current studies
show dramatic changes to the coastline, whereby half of the world’s beaches would disappear by
2100 [246]. In this study, various RS sensor technologies, i.e., optical, RADAR, and LiDAR (Figure 11),
were implemented to record shoreline erosion-accretion trends [247]. Both Allen and Wang [248] and
Green et al. [249] provide a crucial overview of feasible RS approaches to monitor coastal changes and
retreats, the patterns and erosions of coastlines or changing sea levels by nearshore bathymetry and
refer to tools for coastal protection. A UAV overview of how RS is implemented for coasts is provided
by Klemas [250].
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(e) Difference model [m] of the cliff demolition between 1917 and 1916.

RS approaches with partially high temporal (several days) as well as spatial resolution (<1 m)
can monitor changes to the position and configuration of coastal landslides on various spatial scales,
assess their condition and consequently provide crucial predictions about populated and built-up
areas. This is how Moore and Griggs [251] used methods of airborne photogrammetry for monitoring
the long-term cliff retreat and erosion hotspots along the Monterey Bay National Marine Sanctuary
from 1953–1994. They ascertained an average retreat rate of 7–15 cm/year, but additionally identified
episodic hot spot rates for the coast of up to 20–63 cm/year. Time series from Landsat-5 TM and
-8 OLI are ideally suited for a geospatial assessment of several decades of coastal changes or ebb-tidal
delta migration [252,253]. With the help of Google Earth Engine or other cloud-based RS platforms,
one is able to quickly and cost-effectively integrate extensive RS time series data into the mapping of
coastal geomorphological changes and consequently make important predictions about changes [254].
Some studies such as those by Kawakuboa et al. [255] investigated the influence of various biogenous
and geogenous traits i.e., vegetation, water or soil traits on the geomorphic changes of coastlines
in south-eastern Brazil using segmentation techniques based on TM and ETM+ data. Other works
have also focused on assessing channel stability in the lower reaches of the Krishna River (India)
using multi-temporal satellite data over the period 1973–2015 [256]. Various RADAR approaches
have developed semi- or fully automated classifications and filter techniques and strategies for
mapping the processes and changes to coastal geomorphology based on RADAR imagery such as SAR
over longer time periods [257,258]. In this respect, LiDAR techniques are probably one of the most
important RS technologies to investigate 2–4D morphometric changes of shorelines, coastal dunes,
landslides, coastal cliffs or subsidence [161,246,259]. This technology in particular portrays the
extremely high temporal and process dynamics of the transformation in coastal regions through
erosion and sedimentation processes in the coastal environment, even over short periods of time.
For this reason, developments in the implementation of spaceborne GEDI-3D LiDAR are imperative
for successful global coastal monitoring.
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5. A Summary of Future RS Technologies and Existing Data Products for Monitoring
Geomorphological Forms and Traits Relevant to Biodiversity

This section provides a short overview of future RS technologies as well as existing data products,
especially with respect to the Tandem-L mission—a mission proposal suggesting two L-band (~24 cm
wavelength) SAR satellites in helical formation flight [46] (see also Table 6). This tandem formation
enables single-pass interferometry and thereby 3D imaging of the land surface. Hence, a DEM will be
generated that is similar to the operational TanDEM-X formation. However, with Tandem-L a global
high-resolution DEM will be produced every year as opposed to only twice in the mission’s life time as
is the case for TanDEM-X. This is enabled by cutting-edge SAR acquisition technology including digital
feed arrays combined with a mesh reflector as well as signal recoding using digital beamforming [46].
The application of L-band waves, instead of X-band (~3 cm wavelength) makes transmission through
vegetation possible. This allows the creation of a DEM despite distinct vegetation cover where
TanDEM-X products would rather serve as a DSM (or intermediate-height model) due to limited
vegetation canopy penetration at the X-band. Geomorphology mapping with Tandem-L relies on
annual and global DEM analyses, allowing dynamic (inter-annual) surface processes to be monitored.
Hence, vertical soil processes (subsidence, dolines, uplifts, as well as cryo- or bioturbation) as well as
topographically induced soil movements (solifluction, soil drifts, mud- and landslides, rock fall) can be
assessed and monitored in unprecedented quality and quantity. Figure 12 shows important current and
future RS missions and sensors to derive the status and changes of geomorphology, whereas Table 7 shows
a selection of RS-aided data products for monitoring terrain, surfaces and fluvial landform data products.
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6. Conclusions and Outlook

Geodiversity controls biodiversity: Geodiversity is the promoting, controlling, regulating,
and limiting factor, as well as the most important for landscape processes, and thus a decisive
factor for biodiversity. Therefore, biodiversity can be regarded as the result of geodiversity as well as
its interactions, disturbances and alterations, implying that a successful conservation of biodiversity
primarily entails the conservation of geodiversity.

Therefore, the adequate recording of geomorphology as a crucial part of geodiversity is
an important element in monitoring the state, changes and disturbances to geo- and biodiversity,
ecosystem vulnerability as well as ecosystem integrity [1,9,261] and one of the greatest impacts and
thus challenges of the 21st century. Many aspects of geomorphic diversity are changing rapidly due to
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anthropogenic factors (e.g., mining of rare metals, terracing, sand extraction, construction, sea-floor
trawling, training of rivers, dams, water-table lowering). This is highly relevant at the science–policy
interface, e.g., within the context of the Sustainable Development Goals [15], but is rarely considered in
biodiversity conservation planning and the sustainable stewardship of our planet.

Air and spaceborne RS approaches to record geomorphology have been used for some time now
by research and planning institutions, because RS approaches enable a cost-effective, increasingly freely
available, comprehensive, repetitive, standardized, as well as continuous monitoring of geomorphic
characteristics from the local, to the regional and even up to the global level.

This paper review summarizes the state-of-the-art in monitoring for example aeolian-, fluvial and
coastal landforms and their geomorphic traits with air- and spaceborne RS technologies. In particular,
air-and spaceborne RS technologies, as well as different methods for generating DEM and DSM,
are compared, and the advantages and disadvantages of different methods are highlighted.

It also presents numerous examples of monitoring the changes and disturbances of geomorphic
structures and functions. Furthermore, RS data products and future RS technologies are introduced
that are suitable for monitoring geomorphology as crucial part of geodiversity. A particular focus
is on RS technologies such as LiDAR, RADAR, multispectral, hyperspectral, and RS technologies
that can be implemented to record geomorphic traits. Due to their specific RS characteristics,
spaceborne RADAR and airborne LiDAR RS technologies are the most applied technologies for
monitoring aeolian-, fluvial and coastal landforms. LiDAR technologies enable the monitoring of
detailed 2D–4D geomorphic traits. Despite the fact that the in-orbit implementation of the first
spaceborne LiDAR-RS technologies (GEDI-LiDAR) is still in progress, it will play an essential future
role in boosting innovation for monitoring the status, changes, and disturbances of geomorphology from
a local to regional, and even to the global scale. The accuracy of geodiversity and biodiversity models
is partly determined by the quality, accuracy and suitability of their input information. Consequently,
models will only be as reliable for reproducing and forecasting real world conditions and scenarios as
the quality and accuracy of the spatio-temporal input data provided. The paper therefore summarizes
various RS techniques that are applied with varying precision levels to derive DEM and DSM.

One of the most important RS products is the DEM, which has been released with different levels
of detail using various RS techniques with different sensors on the local, regional and global scale.
The DEM can be used to derive a wide range of other structural and functional geomorphic diversity
indicators, which are imperative for the monitoring and modeling of geo- and biodiversity. Furthermore,
the availability of different DEM/DSM products and variants regarding scale and accuracy enable the
optimization of models and predictions in terms of scale-specific representability and plausibility [27].

To understand the complexity, the multidimensionality and the interactions of geomorphic changes,
processes and disturbances, it is imperative to link air-and spaceborne RS technologies—LiDAR,
RADAR, multi- and hyperspectral or airborne geophysical survey technologies on different platforms
with in-situ and close-range RS monitoring approaches. Currently, temporal and spectral high-frequency
wireless sensor networks are being developed for lysimeters (agricultural and forest lysimeters)
and eddy covariance towers, where hyperspectral (400–950 nm) as well as thermal sensor technology
are integrated.

These developments are the basis for the establishment of a European or even a global wireless
sensor network (spectral, geomagnetic, seismic, and other close range technologies for the high
frequency measurements of geohazards) that aim: (1) to calibrate and validate information and spectral
responses from air- and spaceborne RS data with close-range sensor technology, (2) to better understand
and quantify local and regional processes and interactions of geo-biodiversity, land use intensity and
human pressures, (3) to advance data-based modelling that will allow more accurate predictions of
events, as well as (4) to reduce data and model uncertainties, thus ensuring better transferability from
point to area (logical, regional and global).

With the help of spectral traits (ST) and spectral trait variations (STV), the RS approach for
monitoring and understanding geodiversity [3], biodiversity [54], and ecosystem health [139,140]



Remote Sens. 2020, 12, 3690 28 of 61

can record the status, changes, disturbances and processes of geomorphology. In the context of
geomorphology, the trait approach is crucial, as traits or geomorphic traits constitute the singularly
crucial interface between in-situ and RS approaches (close- and air/spaceborne RS) (see Figure 13).Remote Sens. 2020, 12, x FOR PEER REVIEW 29 of 62 
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geomorphology, its traits and its five characteristics (modified after Lausch et al., [3]).

We can only understand and classify the RS geomorphology assessment methods if we understand
the RS approach, RS spectral indicators, and RS data products. This requires a new orientation and
a “new RS based” definition of geomorphology, which allows for a combination of in-situ and RS
approaches. The basis of this should be that geomorphology as a crucial part of geodiversity can be
defined by five essential characteristics and monitored using RS approaches (see Figure 13, modified after
Lausch et al. [3]). These characteristics are: geomorphic trait diversity, geomorphic genesis diversity,
geomorphic taxonomic diversity, geomorphic structural diversity, and geomorphic functional diversity.
Since RS approaches can record traits and trait variations of geomorphology based on the principles of
image spectroscopy, geomorphic trait diversity depicts the essential components that influence the
monitoring of the other four geomorphic diversity characteristics. Geomorphic diversity exists on all
spatio-temporal scales and can therefore be recorded and monitored with different sensor technologies
on different RS platforms.

In subsequent papers, the recording of the five characteristics of geodiversity in terms of different
RS characteristics will be presented and discussed in detail. This new approach and new way of thinking
guarantees a holistic recording and assessment of different geomorphic traits, which are important
for the monitoring of geomorphic (genesis, taxonomic, structural, and functional) diversity patterns.
Therefore, a multi-spectral and multi-temporal RS approach enables the compensation of technological
limitations of the single RS sensors by synergizing multi-sensor RS approaches. There is not a single RS
sensor, RS platform, monitoring approach, or model that is sufficient enough to operate individually to
understand the complexity, the processes, the changes, the disturbances, and the interactions of the
geo- and biodiversity within the ecosystem in the context of the social–human system.

The increasingly successful implementation of multi-sensor and multi-temporal RS techniques for
data assimilation, calibration, and validation have greatly contributed to minimizing uncertainty in
ecological modeling, as well as making robust predictions about extreme events and their impacts,
reducing the need for as many in-situ observations [234,262–264].
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Table 2. Summary of various studies on the accuracy assessment of Digital Surface Models (DSMs, modified after Alganci [92]).

Sensor/Satellite/Mission Scale/Access Sensor Type & Auxiliary DEM Products Nominal Horizontal
Resolution [m] Vertical Accuracy [m] RMSE [m] Reference

Spaceborne Photogrammetric

ALOS AW3D30 Global/open access optical 30 7 (LE 90) 4.4 [265,266]

Terra ASTER Global/open access optical 30 (~13) 5 [87,88]

ASTER GDEM 2 Global/open access optical 30 17 (95% conf.) 2.3 [87]

ASTER GDEM 3 Global/open access optical 72 (2.4 arcsec)
(for Japan only, [267]) 17 (95% conf.) 2.3 [92,102]

SPOT DEM Continents/commercial optical 30 10 NA [266]

IKONOS commercial optical 22 ~1.5 NA [266]

Spaceborne—RADAR

TanDEM-X 90 Global/open access SAR X 30, 90 NA 3.1 [268,269]

TanDEM-X Global/open access SAR X 10 <0.20 <1.4 [103]

TerraSAR-X Global/open access SAR X 10 <0.20 <1.4 [103]

Bare Earth DEM Global/open access SRTM 90 5.9 5.9 [270]

EarthEnv-DEM90 Global/open access SRTM3, ASTER GDEM, GLSDEM SRTM3 90
−6.2 (average in ASTER zone)
−1.64 (average in SRTM zone)0.82
(average in blend zone)

10.554 (in ASTER zone)4.13 (in
SRTM zone)5.362 (in blend zone) [271]

GMTED2010 Global/open access SRTM & 10 other sources 250, 500, 1000 6 (RMSE) 26 [272]

MERIT Global/open access SRTM3, AW3D30, VFP-DEM, ICESat
GLAS 90 <2 (for 58% of globe) 5.0 (LE90) [273]

SRTM Global/open access SAR C-band 30, 90 6–9 (LE90) 6.0 (MAE) [274]

Viewfinder Panorama Global/open access ASTER, SRTM & other sources 90 NA Not reported [275]

SRTM Plus or SRTM NASA
V3 Global/open access SAR C-band 90 6–9 (LE90) 5.9 [266]

ALOS AW3D
(ALOS PALSAR) Global/commercial optical 5 4.10 2.7 [276,277]

PlanetDEM 30 Plus Global/commercial SRTM <10 (LE90) Not reported Not reported [278]

NEXTMap World 10 Global/commercial Not reported 10 5 (RMSE) 10 (LE9) [279]

WorldDEM Global/commercial TanDEM-X 12 <2 (relative), <6 (absolute) <1.4 [268,277]

Tandem-L
(planned) Global SAR L-band ~12 (bare), 25 (forest) 2 (bare), 4 (vegetated) NA [46]
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Table 3. Specification of output Digital Elevation Models (DEMs, modified after Hawker [134]).

Data Source Generation Method Date of the Study Region of the Study Reference

SPOT-5 HRS Parallel projection modeling 2004 Korea, Belgium [280]

SRTM, ASTER Statistical measures 2006 Crete, Greece [281]

IKONOS, QuickBird and OrbView-3 Automatic image matching 2006 Maras and Zonguldak, Turkey; Phoenix,
United States [282]

SPOT-5 in-track HRS and
across-track HRG

Area-based multiscale image
matching method 2006 North of Québec City, Canada [283]

IKONOS, QuickBird Physical and empirical models 2006 North of Québec City, Canada [284]

IKONOS Multi-image matching 2006 Thun, Switzerland [285]

IKONOS, QuickBird, OrbView-3,
Cartosat-1 Automatic image matching 2007 Maras and Zonguldak, Turkey; Phoenix,

United States [286]

IKONOS Automatic image matching 2008 Maras and Istanbul, Turkey [287]

Cartosat-1 Towards automated DEM generation 2008 Catalonia, Spain [239]

Geoeye-1 and Cosmo-SkyMed Rigorous model and RPC model 2010 Rome and Merano, Italy [288]

GeoEye-1 and TerraSAR-X RPC models for optical, radargrammetry
for synthetic aperture RADAR (SAR) 2012 Trento, Italy [289]

WorldView-2 Google
Bias-compensated RPC bundle
block-adjusted images generation, dense
image matching, and DSM generation

2016 Munich, Germany [290]

Google Earth (GE) Terrain extraction from GE 2016 Guangyuan City, China [291]

ALOS PALSAR DEM extraction with InSAR technique 2015 Guangyuan City, China [292]

ASTER GDEM v.2, SRTM-C, TerraSAR-X,
ALOS W3D

Vertical accuracy by dGPS and
morphometric comp 2017 Central Andean Plateu, Argentina [293]

AW3D30, ASTER, SRTM30, SRTM90,
TanDEM-X

Optical stereo mapping (AW3D30,
ASTER) & Single-pass SAR
interferometry (SRTM30, SRTM90,
TanDEM-X)

2020 14 sites in Europe, USA and Antarctica [294]
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Table 4. RS-assisted derivation of terrain and landscape surfaces.

Mission/Platform Sensor
UAV 1

Airborne 2

Spaceborne 3

Sensor Characteristics Spectral Resolution Spectral
Bands/Frequency References

Terrain, Digital Elevation Model (DEM)

SRTM 3 single pass InSAR X-band, C-band [69]

TerraSAR-X 3 single pass InSAR X-band [57]

TanDEM-X 3 single pass InSAR X-band [103,295]

Sentinel-1 A/B 3 repeat pass InSAR C-band [296]

ALOS PALSAR 3 repeat pass InSAR L-band [297]

ALOS-2 PALSAR-2 3 repeat pass InSAR L-band [298]

Terra ASTER 3 dual stereographic imaging system (line scanner) NIR (nadir and 28◦ backward looking) [299]

ALOS PRISM 3 triplet stereographic imaging system (line scanner) Panchromatic: λ = 520—770 nm (forward,
nadir, and backwards looking) [297,300]

ICESat GLAS 3 LiDAR (full waveform) 3 lasers (λ = 1064 nm) [301]

Sentinel-3 SRAL 3 RADAR altimeter Ku-band, C-band [302]

F-SAR2 single pass InSAR
repeat pass InSAR

X-band, S-band
C-band, L-band, P-band [303]

UAVSAR 2 repeat pass InSAR L-band [304]

Orbisar-RFP 2 single pass InSAR X-band, P-band [305]

Pi-SAR-L 2 repeat pass InSAR L-band [306]

Leica DMC III 2 stereographic imaging system (discrete
overlapping images) R, G, B, NIR [307]

Leica ADS40 2 triplet stereographic imaging system (line scanner) R, G, B, NIR (nadir), panchromatic (forward,
nadir, and backwards looking) [308]

Quantum systems TRON1

Quadrocopter-fixed wing hybrid
(platform, gimbal, various camera systems)

stereographic imaging system (discrete
overlapping images) R, G, B (multiple sensors) [309]

Geocopter X8000 1 Octocopter (platform, gimbal,
various camera systems)

stereographic imaging system (discrete
overlapping images)

R, G, B (Sony NEX7)
or similar sensors [86]

DJI Phantom IV Pro 1

Quadrocopter (platform, gimbal, installed camera system)
stereographic imaging system (discrete
overlapping images) R, G, B (1′’ CMOS) [310]

RiCOPTER VUX-SYS1

(platform with integrated VUX1UAV LiDAR scanner)
LiDAR (multiple return, echo intensity recording) One laser (NIR), max. 500,000 shots/s [311]

Quantum systems TRON 1

Quadrocopter-fixed wing hybrid
(platform with integrated YellowScan “SURVEYOR” LiDAR scanner)

LiDAR (two return) One laser (λ = 905 nm), max. 300,000 shots/s [309]
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Table 4. Cont.

Mission/Platform Sensor
UAV 1

Airborne 2

Spaceborne 3

Sensor Characteristics Spectral Resolution Spectral
Bands/Frequency References

Surfaces/vegetation surfaces (digital surface model–DSM)

TanDEM-X 3 single pass InSAR X-band [295]

ALOS PALSAR 3 repeat pass InSAR L-band [297]

ALOS-2 PALSAR-2 3 repeat pass InSAR L-band [298]

ICEStaT GLAS 3 LiDAR (full waveform) 3 lasers (λ = 1064 nm) [301]

F-SAR 2 single pass InSAR
repeat pass InSAR

X-band, S-band
C-band, L-band, P-band [303]

UAVSAR 2 repeat pass InSAR L-band [304]

Orbisar-RFP 2 single pass InSAR X-band, P-band [305]

Pi-SAR-L 2 repeat pass InSAR L-band [306]

Geocopter X8000 1 Octocopter (platform, gimbal, various camera
systems)

stereographic imaging system (discrete
overlapping images)

R, G, B (Sony NEX7)
or similar sensors [86,312]

DJI Phantom IV Pro 1

Quadrocopter (platform, gimbal, installed camera system)
stereographic imaging system (discrete
overlapping images) R, G, B (1” CMOS) [310]

RiCOPTER VUX-SYS 1

(platform with integrated VUX1UAV LiDAR scanner)
LiDAR (multiple return, echo intensity recording) One laser (NIR), max. 500,000 shots/s [311]

Quantum systems TRON 1

Quadrocopter-fixed wing hybrid(platform with integrated
YellowScan “SURVEYOR” LiDAR scanner)

LiDAR (two return) One laser (λ = 905 nm), max. 300,000 shots/s [309]

Geomorphic changes and disturbances—terrain changes, vertical displacements, elevation differences, surface deformations

COSMO Skymed 3
DiffInSAR (in areas with no vegetation)
PSI (essentially in urban areas, suited time series
available for some regions)

X-band [313]

TanDEM-X,TerraSAR-X 3
DiffInSAR (in areas with no vegetation)
PSI (essentially in urban areas, suited time series
available for some regions)

X-band [314,315]

ERS-1, ERS-2 3
DiffInSAR (in areas with no or sparse vegetation)
PSI (essentially in urban areas, suited time series
from 1991 to 2003 available for several regions)

C-band [316–319]

ENVISAT ASAR 3
DiffInSAR (in areas with no or sparse vegetation)
PSI (essentially in urban areas, suited time series
from 2002 to 2012 available for several regions)

C-band [316,320]

Sentinel-1 A/B 3
DiffInSAR (in areas with no or sparse vegetation)
PSI (essentially in urban areas, dense time series
available almost globally since end of 2014)

C-band [317,321]

RADARSAT-2 3
DiffInSAR (in areas with no or sparse vegetation)
PSI (essentially in urban areas, dense time series
rarely available)

C-band [322,323]
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Table 4. Cont.

Mission/Platform Sensor
UAV 1

Airborne 2

Spaceborne 3

Sensor Characteristics Spectral Resolution Spectral
Bands/Frequency References

Geomorphic changes and disturbances—terrain changes, vertical displacements, elevation differences, surface deformations

ALOS PALSAR 3
DiffInSAR (in non-forested areas)
PSI (essentially in urban areas, long and dense
time series rarely available)

L-band [315,320]

ALOS−2 PALSAR-2 3
DiffInSAR (in non-forested areas)
PSI (essentially in urban areas, long and dense
time series rarely available)

L-band [324]

SAOCOM3
DiffInSAR (in non-forested areas)
PSI (essentially in urban areas, long and dense
time series rarely available)

L-band [325]

Airborne LiDAR 2,
e.g., Optech ALTM Gemini

LiDAR (four return, echo intensity recording),
for changes in the order of dm or more

One laser,
max. 167,000 shots/s [71,319,326,327]

UAV photogrammetry 1,
e.g., Octocopter X8000 (platform, gimbal, various camera systems)

stereographic imaging system (discrete
overlapping images)
for changes in the order of several dm or more,
uniformly distributed reference targets required

R, G, B (Sony NEX7)
or similar sensors [328,329]

RiCOPTER VUX-SYS 1

(platform with integrated VUX1UAV LiDAR scanner)
LiDAR (multiple return, echo intensity recording),
for changes in the order of dm or more

One laser (NIR),
max. 500,000 shots/s [311]

Sensor is used on the RS platform: UAV 1—unmanned aerial vehicles (UAV); airborne 2—airborne RS platform; spaceborne 3—spaceborne RS platform.
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Table 5. Remote sensing (RS)-aided derived in monitoring examples in terrain and surfaces, aeolian geomorphology, fluvial geomorphology and coastal geomorphology
landslides and their traits.

Mission/Platform Sensor References

Terrain and Surfaces/Traits

Geomorpho90m (90 m/100 m/250 m)
(Slope, Aspect, Aspect cosine, Aspect sine, Eastness, Northness, Convergence,
Compound topographic index, Stream power index, East-West first order partial
derivative, North-South first order partial derivative, Profile curvature, Tangential
curvature, East-West second order partial derivative, North-South second order
partial derivative, Second order partial derivative, Elevation standard deviation,
Terrain ruggedness index, Roughness, Vector ruggedness measure, Topographic
position index, Maximum multiscale deviation, Scale of the maximum multiscale
deviation, Maximum multiscale roughness, Scale of the maximum multiscale
roughness, Geomorphon

(26 geomorphometric variables derived from MERIT-DEM 3/R—corrected
from the underlying Shuttle RADAR Topography Mission (SRTM3) and
ALOS World 3D—30 m (AW3D30) DEMs)

[24]

Mountain types, relief types, relief classes IKONOS OSA 3/M, DHM25 3/R, GTOPO30–DEM 3/R, LiDAR 2/L [330–332]

Volcano types (volcanic full forms),volcanoes, lava flow fields, hydrothermal
alteration, geothermal explorations, heat fluxes, volcanoes hazard monitoring

Doves-PlanetScop, Terra/Aqua MODIS 3/M, EO-1 ALI 3/M, Landsat-8 OLI
3/M/TIR, Terra ASTER 3/M/TIR, MSG SEVIRI 3/M/TIR, LiDAR 2/L [333–337]

Mountain hazards, mass movement (rock fall probability, boulders, denudation,
mass erosion, rock decelerations, rotation changes, slope stability, rock shapes,
particle shapes, patterns, structures, faults and fractures, holes and depressions)

InSAR 3/R, SAR 3/R, LiDAR 2/L, Digital Orthophoto 1/RGB [338–347]

Landslide chances, landslide evolution Digital Orthophoto 1/RGB [348]

Above ground—chances, disturbances
Opencast mining, sand mining and extraction, tipping, dumps

TanDEM-X 3/R, SRTM DEM 3/R, ALOS PALSAR 3/R, ERS-1 3/R, GeoEye GIS
3/M, WorldView-3 Imager 3/M, IKONOS OSA 3/M, Landsat-5 TM/-7
ETM+/-8 OLI 3/M/TIR, IRS-P6 LISS-III 3/M, High resolution satellite data of
Google 3/M, LiDAR 2/L

[349–355]

Vegetation traits as proxy of the geochemical parameters HyMAP 2/H [356]

Below ground—chances, disturbances Salt mines, fracking ERS-1/-2 3/R, ASAR 3/R, ALOS PALSAR 3/R, Landsat-5 TM/-7 ETM+/-8 OLI
3/M/TIR [113,357]



Remote Sens. 2020, 12, 3690 35 of 61

Table 5. Cont.

Mission/Platform Sensor References

Aeolian geomorphology/traits

Desertification, soil and land-degradation, soil erosion

NOAA/MetOp AVHRR 3/R, ERS−1/−2 3/R, SIR-C 3/R, ENVISAT 3/R, ASAR
3/R, RADARSAT−1 3/R, ALOS PALSAR 3/R, Terra/Aqua MODIS 3/M,, IRS1B
LISS-I/LISS-II 3/M, Sentinel−2 MSI 3/M, Landsat-5 TM/−7 ETM+/-8 OLI 3/M,
LiDAR 2/L

[143,144,358–363]

Dune migration, migration rates, dune expansion, dune activity, moving dunes ALOS PALSAR 3/R, Landsat-8 OLI 3/M, Sentinel-2 MSI 3/M,
Context Camera 2/RGB, LiDAR 2/L [160,161,364–366]

Dune types, dune hierarchies, dune morphometry, dune hierarchies (free
dunes—shifting sand dunes, bounded dunes, dune fields, dune shapes (crescent,
cross, linear, stars, dome, parabolic, longitudinal dune)

SRTM 3/R, SIR-C/X-SAR 3/R, WorldView-2 WV110 3/M, IRS-RS2 LISS-IV 3/M,
Cartosat-1 PAN-F/-A 3/M, Landsat-7 ETM+ 3/M, Landsat MSS 3/M,
LiDAR 2/L

[152,367–371],

Dune spatial-temporal aeolic patterns (length, minimum spacing density,
orientation, height, sinuosity), aeolian dune composition-configuration (complexity,
diversity, shapes, patterns, heterogeneity), dune ridges (lines)

SRTM 3/R, SIR-C 3/R, Landsat-7 ETM+ 3/M, LiDAR 2/L,
Digital Orthophoto 3/RGB [150–155,366]

Volume and their changes, intensity of dune SRTM 3/R, SPOT-5 HRG 3/M, Terra ASTER 3/M, LiDAR 2/L [150,152,163,372]

Fluvial geomorphology/traits

Flooding events, flood mapping, flash-flood susceptibility assessment, flood
inundation modelling, floodplain-risk mapping, erosive impacts, sedimentation

SRTM 3/R, ALOS PALSAR 3/R, ALSAR-1 3/R, SAR 3/R, ALOS-2 3/R,
TerraSAR-X 3/R, RADARSAT-2 3/R, Sentinel-1 3/R, Landsat-5 TM/-7
ETM+/-8 OLI 3/M/TIR, Sentinel-2 MSI 3/M, IRS-1C/-1D LISS-III 3/M,
IKONOS OSA 3/M, DEADALUS 2/H, LiDAR 2/L

[42,177,191,192,195–200,
202–204,207]

Flood mapping under vegetation, irrigation retrieval, groundwater flooding in a
lowland karst catchment SAR 3/R, Landsat-5 TM/-7 ETM+/-8 OLI 3/M [169,209,216]

Vegetation traits as proxy of the geochemical parameters, heavy metal stress in
plants HyMAP 2/H, HySPEX 2/H [179,356]

River detection, small streams detection SAR 3/R, Landsat-5 TM/-7 ETM+/-8 OLI 3/M, Aerial images 2/RGB, Aerial
images 1/RGB, LiDAR 2/L [180,262,373–375]

Channel landforms, hydrogeomorphic units including coarse woody debris,
hydraulic (fluvial) landform classification, taxonomy of fluvial landforms,
hydro-morphological units, riverscape units, river geomorphic units, in-stream
mesohabitats, tidal channel characteristics

SAR 3/R, Aerial images 2/RGB, LiDAR 2/L [373,376–378]

Channel characteristics, floodplain morphology hydraulic channel morphology,
geometries, topography, river width arc length, longitudinal transect, (width, depth,
and longitudinal channel slope, below water line morphology),
Morphometric patterns of meanders (sinuosity, intrinsic wavelength, curvature,
asymmetry), meander dynamics, channel geometry

SAR 3/R, ENVISAT 3/R, Terra/Aqua MODIS 3/M, Landsat-5 TM/-7 ETM+/-8
OLI 3/M, Sentinel-2 MSI 3/M, Aerial images 2/RGB, LiDAR 2/L

[222,230,233,235,236,
262,379–381]
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Table 5. Cont.

Mission/Platform Sensor References

Fluvial geomorphology/traits

Channel migration, channel migration rates, channel planform changes, tidal
channel migration
Channel changes, disturbances, temporal evolution of natural and artificial
abandoned channels, canal position, systematic changes of the river banks and
canal centre lines

SAR 3/R, SRTM 3/R, Landsat-5 TM 3/M, Landsat-7 ETM+/-8 OLI 3/TIR,
Aerial images 2/RGB [223–228,378]

Flow energy of stream power, channel sensitivity to erosion and
deposition processes
Channel stability assessment

Landsat-1 MSS/-5 TM/-8 OLI 3/M, LiDAR 2/L [229,382]

River discharge estimation (river discharge, run-off characteristics)
ENVISAT 3/R, Jason-2/-3 3/R, Sentinel-3A OLCI/SLSTR 3/R, CryoSat-2 3/R,
AltiKa 3/R, ENVISAT 3/R, Advanced RADAR Altimeter (RA-2) 3/R,
Terra/Aqua MODIS 3/M

[234,237]

Water and flow velocity ENVISAT 3/R, Terra/Aqua MODIS 3/M, Aerial images 2/RGB, LiDAR 2/L [235,373,383]

Water height, water level, water depth ENVISAT 3/R, AMSR-E 3/R, TRMM 3/R,
Daedalus 2/H, Aerial images 2/RGB, LiDAR 2/L [237,263,373,384–386]

Fluvial sediment transport, sediment budget, channel bank erosion, exposed
channel substrates and sediments, suspended soil concentration and bed material,
percentage clay, silt and sand in inter-tidal sediments, suspended sediments, flood
bank overbank sedimentation, sediment wave, sand mining

LiDAR 2/L, Radio frequency identification 1/RFID [166,354,380,387]

Stream bank retreat Aerial images 2/RGB, LiDAR 2/L [239–244]

Grain characteristics, grain size, gravel size, shape, bed and bank sediment size Daedalus 2/H, Aerial images 2/RGB, Aerial images 2/RGB, LiDAR 2/L [168,388–392]

Pebble mobility Radio frequency identification technologies 1/RFID [393]

River bathymetry CASI 2/H, Daedalus 2/H, Aerial images 2/RGB, LiDAR 2/L [373,386,394–396]

Coastal geomorphology/traits

Coast taxonomy, coast types
(Small Delta, Tidal system, Lagoon, Fjord and Fjärd, Large River, Tidal Estuary, Ria,
Karst, Arheic)

Different RADAR Sensors 3/R,
Different optical RS Sensors 3/R [245]

Coastal dynamical and bio-geo-chemical patterns NOAA/MetOp AVHRR 3/R, ERS-1 3/R, TOPEX 3/R, Nimbus-7 CZCS 3/M/TIR [397]

Coastal landforms, coastline and shoreline detection SRTM 3/R, ALOS 3/R, NOAA 3/R, Landsat-7 ETM+ 3/M, Terra ASTER3/M,
IKONOS OSA 3/M, LiDAR 2/L [42,398,399]

Spatio-temporal shoreline dynamic, shoreline erosion-accretion trends, coast
changes, cliff retreat, erosion hotspots

SRTM 3/R, SAR 3/R, Landsat-4 MSS/-5 TM 3/M, Landsat-8 OLI 3/M/TIR, SPOT
5 3/M, Sentinel-2 MSI 3/M, Aerial images 2/RGB, LiDAR 2/L

[247,251–253,257,258,
400,401]

Different morphometric shoreline indicators
(morphological reference lines, vegetation limits, instant tidal levels and wetting
limits, tidal datum indicators, virtual reference lines, beach contours, storm lines)

Different optical RS Sensors 3/M, LiDAR 2/L [161,246,402]

Sensor is used on the RS platform: UAV 1—unmanned aerial vehicles (UAV); airborne 2—airborne RS platform; spaceborne 3—spaceborne RS platform. RADAR R, Multispectral (MSP) M,
Hyperspectral (HSP) H, RGB RGB, TIR T, LiDAR L, Radio frequency identification RFID
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Table 6. Important current and future RS missions and sensors to derive the status and changes of terrain and surfaces.

Mission/Platform Sensor
UAV 1

Airborne 2

Spaceborne 3

Sensor Type Frequency/Spectral
Information Launch Time References

BIOMASS 3 repeat pass InSAR, repeat pass fully polarimetric InSAR
(PolInSAR), SAR Tomography (TomoSAR) P-band 2021 [403]

SAOCOM 1A 3

SAOCOM 1B 3

SAOCOM-CS 3

repeat pass InSAR (SAOCOM 1A & 1B), single pass
PolInSAR (SAOCOM 1B & CS) Terrain observation with
Progressive Scans SAR (TopSAR)

L-band 2018/2019 [404]

NiSAR 3 repeat pass InSAR L-band
S-band >2022 [405]

ALOS-4 PALSAR-3 3 repeat pass InSAR L-band 2020 [406]

Tandem-L 3 single pass InSAR, single pass PolInSAR, multi-pass
coherence tomography L-band 2024 [407,408]

ROSE-L repeat pass InSAR L-band 2028 [409]

NovaSAR-S 3 single pass InSAR S-band 2018 [410,411]

GEDI LiDAR 3 LiDAR (full waveform) 3 laser transmitter, 1064 nm 2019 [45,122,123,412]

ICEsat-2 3 LiDAR (full waveform) 1 laser 6 beams,
532 nm (ATLAS) 2018 [124,130,131]

Sensor is used on the RS platform: UAV 1—unmanned aerial vehicles (UAV); airborne 2—airborne RS platform; spaceborne 3—spaceborne RS platform.
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Table 7. Selection of remote sensing (RS)-aided data products for monitoring terrain, surfaces and fluvial landform data products.

Data Products Scale Link References

Various DEMs Global Planetobserver: https://www.planetobserver.com/
products/planetdem/planetdem-30/

[278]

NEXTMap® Elevation Data Suite Global https://www.intermap.com/nextmap [279]

TEMIS-GTOPO30
global digital elevation model (GDEM)—30 m Global http://www.temis.nl/data/gtopo30.html [413,414]

GTOPO30
Earth Resources Observation and Science Center/U.S. Geological Survey/U.S.
Department of the Interior, USGS 30 ARC-second Global Elevation Data, GTOPO30
(Research Data Archive at the National Center for Atmospheric Research,
Computational and Information Systems Laboratory, 1997)

Global http://rda.ucar.edu/datasets/ds758.0/. [415]

ASTER GDEM V3
ASTER Global Digital Elevation Model (GDEM) Version 3 (ASTGTM)1 arc second Global https://lpdaac.usgs.gov/products/astgtmv003/

DOI:10.5067/ASTER/ASTGTM.003 [88]

ALOS Global Digital Surface Model “ALOS World 3D (AW3D30)”
30 m
PRISM DEM

Global http://www.eorc.jaxa.jp/ALOS/en/aw3d30/ [90,297]

SRTM
30 m, 90 m, 1 km
Elevation Data

Global
http://www.landcover.org/data/srtm/
https://developers.google.com/earth-engine/datasets/
catalog/USGS_SRTMGL1_003

[416]

SRTM/SRTM NASA V2 Global https://dds.cr.usgs.gov/srtm/
https://www2.jpl.nasa.gov/srtm/

[293,417]

SRTM Plus/SRTM NASA V3 Global https:
//lpdaac.usgs.gov/products/measures_products_table [101,102]

ALOS DSM: 30 m Global
https://developers.google.com/earth-engine/datasets/
catalog/JAXA_ALOS_AW3D30_V1_1
http://www.eorc.jaxa.jp/ALOS/

[418]

NASADEM Global en/aw3d30/ [102]

TanDEM-X DEM
WorldDEM Global

https://tandemx-science.dlr.de/cgi-bin/wcm.pl?page=
DEM_Promotion_Start_Page
(free samples for scientific purposes)
http://www.intelligence-airbusds.com/worlddem/
(commercial)

[103]

ICESat/GLAS Global https://nsidc.org/data/icesat/data.html [301,329]

GEDI LiDAR Global https://gedi.umd.edu/data/products/ [122]

Global Land Survey Digital Elevation Model (GLSDEM) Global http://www.landcover.org/data/glsdem/ [419]

https://www.planetobserver.com/products/planetdem/planetdem-30/
https://www.planetobserver.com/products/planetdem/planetdem-30/
https://www.intermap.com/nextmap
http://www.temis.nl/data/gtopo30.html
http://rda.ucar.edu/datasets/ds758.0/
https://lpdaac.usgs.gov/products/astgtmv003/
http://www.eorc.jaxa.jp/ALOS/en/aw3d30/
http://www.landcover.org/data/srtm/
https://developers.google.com/earth-engine/datasets/catalog/USGS_SRTMGL1_003
https://developers.google.com/earth-engine/datasets/catalog/USGS_SRTMGL1_003
https://dds.cr.usgs.gov/srtm/
https://www2.jpl.nasa.gov/srtm/
https://lpdaac.usgs.gov/products/measures_products_table
https://lpdaac.usgs.gov/products/measures_products_table
https://developers.google.com/earth-engine/datasets/catalog/JAXA_ALOS_AW3D30_V1_1
https://developers.google.com/earth-engine/datasets/catalog/JAXA_ALOS_AW3D30_V1_1
http://www.eorc.jaxa.jp/ALOS/
https://tandemx-science.dlr.de/cgi-bin/wcm.pl?page=DEM_Promotion_Start_Page
https://tandemx-science.dlr.de/cgi-bin/wcm.pl?page=DEM_Promotion_Start_Page
http://www.intelligence-airbusds.com/worlddem/
https://nsidc.org/data/icesat/data.html
https://gedi.umd.edu/data/products/
http://www.landcover.org/data/glsdem/
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Table 7. Cont.

Data Products Scale Link References

Global ALOS Landforms Global https://developers.google.com/earth-engine/datasets/
catalog/CSP_ERGo_1_0_Global_ALOS_landforms [420]

Global ALOS Topographic Diversity Global https://developers.google.com/earth-engine/datasets/
catalog/CSP_ERGo_1_0_Global_ALOS_topoDiversity [420]

Global ALOS CHILI (Continuous Heat-Insolation Load Index) Global https://developers.google.com/earth-engine/datasets/
catalog/CSP_ERGo_1_0_Global_ALOS_CHILI [420]

Global ALOS mTPI (Multi-Scale Topographic Position Index) Global https://developers.google.com/earth-engine/datasets/
catalog/CSP_ERGo_1_0_Global_ALOS_mTPI [420]

GMTED2010: Global Multi-resolution Terrain Elevation Data 2010 Global https://developers.google.com/earth-engine/datasets/
catalog/USGS_GMTED2010 [272]

Free Global DEM Data Sources–Digital Elevation Models Global https://gisgeography.com/free-global-dem-data-sources/ NA

The global Human Modification dataset (gHM) Global https://developers.google.com/earth-engine/datasets/
catalog/CSP_HM_GlobalHumanModification [421]

Copernicus DEM—Global and European Digital Elevation Model (COP-DEM) Global/EEA39* https://spacedata.copernicus.eu/web/cscda/dataset-details?
articleId=394198 [422]

Geomorpho90m (90 m/100 m/250 m)
(26 geomorphometric variables derived from MERIT-DEM—corrected from the
underlying Shuttle RADAR Topography Mission (SRTM3) and ALOS World 3D—30 m
(AW3D30) DEMs)
Slope, Aspect, Aspect cosine, Aspect sine, Eastness, Northness, Convergence,
Compound topographic index, Stream power index, East-West first order partial
derivative, North-South first order partial derivative, Profile curvature, Tangential
curvature, East-West second order partial derivative, North-South second order partial
derivative, Second order partial derivative, Elevation standard deviation, Terrain
ruggedness index, Roughness, Vector ruggedness measure, Topographic position index,
Maximum multiscale deviation, Scale of the maximum multiscale deviation, Maximum
multiscale roughness, Scale of the maximum multiscale roughness, Geomorphon

Global

http://www.spatial-ecology.net/dokuwiki/doku.php?id=
topovar90m
https://doi.pangaea.de/10.1594/PANGAEA.899135
https://portal.opentopography.org/dataspace/dataset?
opentopoID=OTDS.012020.4326.1

[24]

Physiography US https://developers.google.com/earth-engine/datasets/
catalog/CSP_ERGo_1_0_US_physiography [420]

Physiographic Diversity US https://developers.google.com/earth-engine/datasets/
catalog/CSP_ERGo_1_0_US_physioDiversity [420]

OpenTopography
High-Resolution Topography Data and Tools Global/Regional/Local https://opentopography.org/ NA

https://developers.google.com/earth-engine/datasets/catalog/CSP_ERGo_1_0_Global_ALOS_landforms
https://developers.google.com/earth-engine/datasets/catalog/CSP_ERGo_1_0_Global_ALOS_landforms
https://developers.google.com/earth-engine/datasets/catalog/CSP_ERGo_1_0_Global_ALOS_topoDiversity
https://developers.google.com/earth-engine/datasets/catalog/CSP_ERGo_1_0_Global_ALOS_topoDiversity
https://developers.google.com/earth-engine/datasets/catalog/CSP_ERGo_1_0_Global_ALOS_CHILI
https://developers.google.com/earth-engine/datasets/catalog/CSP_ERGo_1_0_Global_ALOS_CHILI
https://developers.google.com/earth-engine/datasets/catalog/CSP_ERGo_1_0_Global_ALOS_mTPI
https://developers.google.com/earth-engine/datasets/catalog/CSP_ERGo_1_0_Global_ALOS_mTPI
https://developers.google.com/earth-engine/datasets/catalog/USGS_GMTED2010
https://developers.google.com/earth-engine/datasets/catalog/USGS_GMTED2010
https://gisgeography.com/free-global-dem-data-sources/
https://developers.google.com/earth-engine/datasets/catalog/CSP_HM_GlobalHumanModification
https://developers.google.com/earth-engine/datasets/catalog/CSP_HM_GlobalHumanModification
https://spacedata.copernicus.eu/web/cscda/dataset-details?articleId=394198
https://spacedata.copernicus.eu/web/cscda/dataset-details?articleId=394198
http://www.spatial-ecology.net/dokuwiki/doku.php?id=topovar90m
http://www.spatial-ecology.net/dokuwiki/doku.php?id=topovar90m
https://doi.pangaea.de/10.1594/PANGAEA.899135
https://portal.opentopography.org/dataspace/dataset?opentopoID=OTDS.012020.4326.1
https://portal.opentopography.org/dataspace/dataset?opentopoID=OTDS.012020.4326.1
https://developers.google.com/earth-engine/datasets/catalog/CSP_ERGo_1_0_US_physiography
https://developers.google.com/earth-engine/datasets/catalog/CSP_ERGo_1_0_US_physiography
https://developers.google.com/earth-engine/datasets/catalog/CSP_ERGo_1_0_US_physioDiversity
https://developers.google.com/earth-engine/datasets/catalog/CSP_ERGo_1_0_US_physioDiversity
https://opentopography.org/
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Table 7. Cont.

Data Products Scale Link References

Airborne LiDAR data
Open Topography
High-Resolution Topography Data and Tools

Regional

http://gisgeography.com/top-6-free-lidar-data-sources/
http://www.geoportal-th.de/de-de/Downloadbereiche/
Download-Offene-Geodaten-Th%C3%BCringen
http://opentopography.org (US-based, but world-wide
coverage)

[319,327]

RS Global Airborne Laser Scanning Data Providers Database (GlobALS) Global/Regional https://www.facebook.com/GlobALSData/) to [423]

Australia’s terrestrial ecosystem data Australia TERN data Portal
https://portal.tern.org.au/#/1a471b0a NA

Supra National Ground Motion Service Global/Regional/Local

Yearly Sentinel-1 based product s for public (first release
2019)
TerraSAR-X/TanDEM-X based product on request for
commercial use

[424]

Terrafirma Atlas Global/Regional/Local http://www.terrafirma.eu.com/
Open service partnership, production on request [424,425]

Incomplete Inventory Surface Deformation in North America Regional catalogue with sites of suspected anthropogenic
deformation, deformation data [426]

ArcticDEM Mosaic Regional https://developers.google.com/earth-engine/datasets/
catalog/UMN_PGC_ArcticDEM_V3_2m_mosaic [427–429]

EU-DEM, Slope, Aspect, Hillshade EEA39 ** https://land.copernicus.eu/product-portfolio/overview NA

GeoNetworksMultisource, multisensor geospatial data and measurements of
mountain areas Global (https://geonetwork-opensource.org/) [430]

Global River Widths from Landsat (GRWL) Database Global https://doi.org/10.1126/science.aat063 [374]

GFPLAIN250m, a global high-resolution dataset of earth’s floodplains Global https://github.com/fnardi/GFPLAIN with [431]

MERIT Hydro: A High-Resolution Global Hydrography Map Based on Latest
Topography Dataset. Global http://hydro.iis.u-tokyo.ac.jp/~yamadai/MERIT_Hydro/ [432]

Dataset of 100-year flood susceptibility maps US
https://data.4tu.nl/articles/100-year_flood_susceptibility_
maps_for_the_continental_U_S_derived_with_a_
geomorphic_method/12693680

[433]

Global Flood Hazard Global https://data.jrc.ec.europa.eu/collection/floods [434]

Modis Flood Mapping Global https://floodmap.modaps.eosdis.nasa.gov/ [435]

Map of Active Volcanoes and recent Earthquakes world-wide Global https://earthquakes.volcanodiscovery.com/ NA

Volcano hazard monitoring US https://www.usgs.gov/natural-hazards/volcano-hazards/ [333]

** 39 countries in the European Economic Area (EEA39).

http://gisgeography.com/top-6-free-lidar-data-sources/
http://www.geoportal-th.de/de-de/Downloadbereiche/Download-Offene-Geodaten-Th%C3%BCringen
http://www.geoportal-th.de/de-de/Downloadbereiche/Download-Offene-Geodaten-Th%C3%BCringen
http://opentopography.org
https://www.facebook.com/GlobALSData/
https://portal.tern.org.au/#/1a471b0a
http://www.terrafirma.eu.com/
https://developers.google.com/earth-engine/datasets/catalog/UMN_PGC_ArcticDEM_V3_2m_mosaic
https://developers.google.com/earth-engine/datasets/catalog/UMN_PGC_ArcticDEM_V3_2m_mosaic
https://land.copernicus.eu/product-portfolio/overview
https://geonetwork-opensource.org/
https://doi.org/10.1126/science.aat063
https://github.com/fnardi/GFPLAIN
http://hydro.iis.u-tokyo.ac.jp/~yamadai/MERIT_Hydro/
https://data.4tu.nl/articles/100-year_flood_susceptibility_maps_for_the_continental_U_S_derived_with_a_geomorphic_method/12693680
https://data.4tu.nl/articles/100-year_flood_susceptibility_maps_for_the_continental_U_S_derived_with_a_geomorphic_method/12693680
https://data.4tu.nl/articles/100-year_flood_susceptibility_maps_for_the_continental_U_S_derived_with_a_geomorphic_method/12693680
https://data.jrc.ec.europa.eu/collection/floods
https://floodmap.modaps.eosdis.nasa.gov/
https://earthquakes.volcanodiscovery.com/
https://www.usgs.gov/natural-hazards/volcano-hazards/
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