Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (352)

Search Parameters:
Keywords = spectral redundancy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 5310 KiB  
Article
Prediction of the Calorific Value and Moisture Content of Caragana korshinskii Fuel Using Hyperspectral Imaging Technology and Various Stoichiometric Methods
by Xuehong De, Haoming Li, Jianchao Zhang, Nanding Li, Huimeng Wan and Yanhua Ma
Agriculture 2025, 15(14), 1557; https://doi.org/10.3390/agriculture15141557 - 21 Jul 2025
Viewed by 190
Abstract
Calorific value and moisture content are the key indices to evaluate Caragana pellet fuel’s quality and combustion characteristics. Calorific value is the key index to measure the energy released by energy plants during combustion, which determines energy utilization efficiency. But at present, the [...] Read more.
Calorific value and moisture content are the key indices to evaluate Caragana pellet fuel’s quality and combustion characteristics. Calorific value is the key index to measure the energy released by energy plants during combustion, which determines energy utilization efficiency. But at present, the determination of solid fuel is still carried out in the laboratory by oxygen bomb calorimetry. This has seriously hindered the ability of large-scale, rapid detection of fuel particles in industrial production lines. In response to this technical challenge, this study proposes using hyperspectral imaging technology combined with various chemometric methods to establish quantitative models for determining moisture content and calorific value in Caragana korshinskii fuel. A hyperspectral imaging system was used to capture the spectral data in the 935–1720 nm range of 152 samples from multiple regions in Inner Mongolia Autonomous Region. For water content and calorific value, three quantitative detection models, partial least squares regression (PLSR), random forest regression (RFR), and extreme learning machine (ELM), respectively, were established, and Monte Carlo cross-validation (MCCV) was chosen to remove outliers from the raw spectral data to improve the model accuracy. Four preprocessing methods were used to preprocess the spectral data, with standard normal variate (SNV) preprocessing performing best on the quantitative moisture content detection model and Savitzky–Golay (SG) preprocessing performing best on the calorific value detection method. Meanwhile, to improve the prediction accuracy of the model to reduce the redundant wavelength data, we chose four feature extraction methods, competitive adaptive reweighted sampling (CARS), successive pojections algorithm (SPA), genetic algorithm (GA), iteratively retains informative variables (IRIV), and combined the three models to build a quantitative detection model for the characteristic wavelengths of moisture content and calorific value of Caragana korshinskii fuel. Finally, a comprehensive comparison of the modeling effectiveness of all methods was carried out, and the SNV-IRIV-PLSR modeling combination was the best for water content prediction, with its prediction set determination coefficient (RP2), root mean square error of prediction (RMSEP), and relative percentage deviation (RPD) of 0.9693, 0.2358, and 5.6792, respectively. At the same time, the moisture content distribution map of Caragana fuel particles is established by using this model. The SG-CARS-RFR modeling combination was the best for calorific value prediction, with its RP2, RMSEP, and RPD of 0.8037, 0.3219, and 2.2864, respectively. This study provides an innovative technical solution for Caragana fuel particles’ value and quality assessment. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

35 pages, 58241 KiB  
Article
DGMNet: Hyperspectral Unmixing Dual-Branch Network Integrating Adaptive Hop-Aware GCN and Neighborhood Offset Mamba
by Kewen Qu, Huiyang Wang, Mingming Ding, Xiaojuan Luo and Wenxing Bao
Remote Sens. 2025, 17(14), 2517; https://doi.org/10.3390/rs17142517 - 19 Jul 2025
Viewed by 188
Abstract
Hyperspectral sparse unmixing (SU) networks have recently received considerable attention due to their model hyperspectral images (HSIs) with a priori spectral libraries and to capture nonlinear features through deep networks. This method effectively avoids errors associated with endmember extraction, and enhances the unmixing [...] Read more.
Hyperspectral sparse unmixing (SU) networks have recently received considerable attention due to their model hyperspectral images (HSIs) with a priori spectral libraries and to capture nonlinear features through deep networks. This method effectively avoids errors associated with endmember extraction, and enhances the unmixing performance via nonlinear modeling. However, two major challenges remain: the use of large spectral libraries with high coherence leads to computational redundancy and performance degradation; moreover, certain feature extraction models, such as Transformer, while exhibiting strong representational capabilities, suffer from high computational complexity. To address these limitations, this paper proposes a hyperspectral unmixing dual-branch network integrating an adaptive hop-aware GCN and neighborhood offset Mamba that is termed DGMNet. Specifically, DGMNet consists of two parallel branches. The first branch employs the adaptive hop-neighborhood-aware GCN (AHNAGC) module to model global spatial features. The second branch utilizes the neighborhood spatial offset Mamba (NSOM) module to capture fine-grained local spatial structures. Subsequently, the designed Mamba-enhanced dual-stream feature fusion (MEDFF) module fuses the global and local spatial features extracted from the two branches and performs spectral feature learning through a spectral attention mechanism. Moreover, DGMNet innovatively incorporates a spectral-library-pruning mechanism into the SU network and designs a new pruning strategy that accounts for the contribution of small-target endmembers, thereby enabling the dynamic selection of valid endmembers and reducing the computational redundancy. Finally, an improved ESS-Loss is proposed, which combines an enhanced total variation (ETV) with an l1/2 sparsity constraint to effectively refine the model performance. The experimental results on two synthetic and five real datasets demonstrate the effectiveness and superiority of the proposed method compared with the state-of-the-art methods. Notably, experiments on the Shahu dataset from the Gaofen-5 satellite further demonstrated DGMNet’s robustness and generalization. Full article
(This article belongs to the Special Issue Artificial Intelligence in Hyperspectral Remote Sensing Data Analysis)
Show Figures

Figure 1

28 pages, 5450 KiB  
Article
DFAST: A Differential-Frequency Attention-Based Band Selection Transformer for Hyperspectral Image Classification
by Deren Fu, Yiliang Zeng and Jiahong Zhao
Remote Sens. 2025, 17(14), 2488; https://doi.org/10.3390/rs17142488 - 17 Jul 2025
Viewed by 140
Abstract
Hyperspectral image (HSI) classification faces challenges such as high dimensionality, spectral redundancy, and difficulty in modeling the coupling between spectral and spatial features. Existing methods fail to fully exploit first-order derivatives and frequency domain information, which limits classification performance. To address these issues, [...] Read more.
Hyperspectral image (HSI) classification faces challenges such as high dimensionality, spectral redundancy, and difficulty in modeling the coupling between spectral and spatial features. Existing methods fail to fully exploit first-order derivatives and frequency domain information, which limits classification performance. To address these issues, this paper proposes a Differential-Frequency Attention-based Band Selection Transformer (DFAST) for HSI classification. Specifically, a Differential-Frequency Attention-based Band Selection Embedding Module (DFASEmbeddings) is designed to extract original spectral, first-order derivative, and frequency domain features via a multi-branch structure. Learnable band selection attention weights are introduced to adaptively select important bands, capture critical spectral information, and significantly reduce redundancy. A 3D convolution and a spectral–spatial attention mechanism are applied to perform fine-grained modeling of spectral and spatial features, further enhancing the global dependency capture of spectral–spatial features. The embedded features are then input into a cascaded Transformer encoder (SCEncoder) for deep modeling of spectral–spatial coupling characteristics to achieve classification. Additionally, learnable attention weights for band selection are outputted for dimensionality reduction. Experiments on several public hyperspectral datasets demonstrate that the proposed method outperforms existing CNN and Transformer-based approaches in classification performance. Full article
Show Figures

Figure 1

25 pages, 14195 KiB  
Article
Maize Classification in Arid Regions via Spatiotemporal Feature Optimization and Multi-Source Remote Sensing Integration
by Guang Yang, Jun Wang and Zhengyuan Qi
Agronomy 2025, 15(7), 1667; https://doi.org/10.3390/agronomy15071667 - 10 Jul 2025
Viewed by 298
Abstract
This study addresses the challenges of redundant crop identification features and low computational efficiency in complex agricultural environments, particularly in arid regions. Focusing on the Hexi region of Gansu Province, we utilized the Google Earth Engine (GEE) to integrate Sentinel-2 optical imagery (10 [...] Read more.
This study addresses the challenges of redundant crop identification features and low computational efficiency in complex agricultural environments, particularly in arid regions. Focusing on the Hexi region of Gansu Province, we utilized the Google Earth Engine (GEE) to integrate Sentinel-2 optical imagery (10 bands) and Sentinel-1 radar data (VV/VH polarization), constructing a 96-feature set that comprises spectral, vegetation index, red-edge, and texture variables. The recursive feature elimination random forest (RF-RFE) algorithm was employed for feature selection and model optimization. Key findings include: (1) Variables driven by spatiotemporal differentiation were effectively selected, with red-edge bands (B5–B7) during the grain-filling stage in August accounting for 56.7% of the top 30 features, which were closely correlated with canopy chlorophyll content (p < 0.01). (2) A breakthrough in lightweight modeling was achieved, reducing the number of features by 69%, enhancing computational efficiency by 62.5% (from 8 h to 3 h), and decreasing memory usage by 66.7% (from 12 GB to 4 GB), while maintaining classification accuracy (PA: 97.69%, UA: 97.20%, Kappa: 0.89). (3) Multi-source data fusion improved accuracy by 11.54% compared to optical-only schemes, demonstrating the compensatory role of radar in arid, cloudy regions. This study offers an interpretable and transferable lightweight framework for precision crop monitoring in arid zones. Full article
(This article belongs to the Section Precision and Digital Agriculture)
Show Figures

Figure 1

25 pages, 867 KiB  
Article
Remote Sensing Reveals Multi-Dimensional Functional Changes in Fish Assemblages Under Eutrophication and Hydrological Stress
by Anastasiia Zymaroieva, Dmytro Bondarev, Olga Kunakh, Jens-Christian Svenning and Oleksander Zhukov
Fishes 2025, 10(7), 338; https://doi.org/10.3390/fishes10070338 - 9 Jul 2025
Viewed by 341
Abstract
Understanding how fish communities respond to long-term environmental changes in regulated floodplain ecosystems is essential for managing biodiversity amid increasing anthropogenic and climatic pressures. This study evaluates the spatiotemporal dynamics of functional diversity in juvenile fish assemblages within the Dnipro-Orilskiy Nature Reserve (Ukraine) [...] Read more.
Understanding how fish communities respond to long-term environmental changes in regulated floodplain ecosystems is essential for managing biodiversity amid increasing anthropogenic and climatic pressures. This study evaluates the spatiotemporal dynamics of functional diversity in juvenile fish assemblages within the Dnipro-Orilskiy Nature Reserve (Ukraine) from 1997 to 2015. By employing a combination of extensive ichthyological field surveys and satellite-derived environmental indices (including NDVI, chlorophyll-a, turbidity, and spectral proxies for algal blooms), we assessed the impacts of eutrophication, hydrological alterations, and climate warming on functional structure. Our results reveal three key responses in fish functional diversity: (1) a decline in functional specialization and imbalance, indicating the loss of unique ecological roles and increased redundancy; (2) a rise in functional divergence, reflecting a shift toward species with outlying trait combinations; and (3) a complex pattern in functional richness, with trends varying by site and trait structure. These shifts are linked to increasing eutrophication and warming, particularly in floodplain areas. Remote sensing effectively captured spatial variation in eutrophication-related water quality and proved to be a powerful tool for linking environmental change to fish community dynamics, not least in inaccessible areas. Full article
Show Figures

Figure 1

24 pages, 3937 KiB  
Article
HyperTransXNet: Learning Both Global and Local Dynamics with a Dual Dynamic Token Mixer for Hyperspectral Image Classification
by Xin Dai, Zexi Li, Lin Li, Shuihua Xue, Xiaohui Huang and Xiaofei Yang
Remote Sens. 2025, 17(14), 2361; https://doi.org/10.3390/rs17142361 - 9 Jul 2025
Viewed by 306
Abstract
Recent advances in hyperspectral image (HSI) classification have demonstrated the effectiveness of hybrid architectures that integrate convolutional neural networks (CNNs) and Transformers, leveraging CNNs for local feature extraction and Transformers for global dependency modeling. However, existing fusion approaches face three critical challenges: (1) [...] Read more.
Recent advances in hyperspectral image (HSI) classification have demonstrated the effectiveness of hybrid architectures that integrate convolutional neural networks (CNNs) and Transformers, leveraging CNNs for local feature extraction and Transformers for global dependency modeling. However, existing fusion approaches face three critical challenges: (1) insufficient synergy between spectral and spatial feature learning due to rigid coupling mechanisms; (2) high computational complexity resulting from redundant attention calculations; and (3) limited adaptability to spectral redundancy and noise in small-sample scenarios. To address these limitations, we propose HyperTransXNet, a novel CNN-Transformer hybrid architecture that incorporates adaptive spectral-spatial fusion. Specifically, the proposed HyperTransXNet comprises three key modules: (1) a Hybrid Spatial-Spectral Module (HSSM) that captures the refined local spectral-spatial features and models global spectral correlations by combining depth-wise dynamic convolution with frequency-domain attention; (2) a Mixture-of-Experts Routing (MoE-R) module that adaptively fuses multi-scale features by dynamically selecting optimal experts via Top-K sparse weights; and (3) a Spatial-Spectral Tokens Enhancer (SSTE) module that ensures causality-preserving interactions between spectral bands and spatial contexts. Extensive experiments on the Indian Pines, Houston 2013, and WHU-Hi-LongKou datasets demonstrate the superiority of HyperTransXNet. Full article
(This article belongs to the Special Issue AI-Driven Hyperspectral Remote Sensing of Atmosphere and Land)
Show Figures

Figure 1

15 pages, 1009 KiB  
Article
Quantitative Detection of Mixed Gas Infrared Spectra Based on Joint SAE and PLS Downscaling with XGBoost
by Xichao Zhou, Baigen Wang, Xingjiang Bao, Hongtao Qi, Yong Peng, Zishang Xu and Fan Zhang
Processes 2025, 13(7), 2112; https://doi.org/10.3390/pr13072112 - 3 Jul 2025
Viewed by 301
Abstract
In view of the bottleneck problems of serious spectral peak cross-interference, redundant data dimensions, and inefficient traditional dimensionality reduction methods in the infrared spectral analysis of mixed gases, this paper studies a joint dimensionality reduction strategy combining stacked self encoder (SAE) and partial [...] Read more.
In view of the bottleneck problems of serious spectral peak cross-interference, redundant data dimensions, and inefficient traditional dimensionality reduction methods in the infrared spectral analysis of mixed gases, this paper studies a joint dimensionality reduction strategy combining stacked self encoder (SAE) and partial least squares (PLS) and constructs an XGBoost regression model for quantitative detection. The experimental data are from the real infrared spectrum dataset of the National Institute of Standards and Technology (NIST) database, covering key industrial gases such as CO, CH4, etc. Compared with the traditional principal component analysis (PCA), which relies on the variance contribution rate and leads to dimensional redundancy, and the calculation efficiency of dimension parameters that need to be cross-verified for PLS dimension reduction alone, the SAE-PLS joint strategy has two advantages: first, the optimal dimension reduction is automatically determined by SAE’s nonlinear compression mechanism, which effectively overcomes the limitations of linear methods in spectral nonlinear feature extraction; and second, the feature selection is carried out by combining the variable importance projection index of PLS. Compared with SAE, the compression efficiency is significantly improved. The XGBoost model was selected because of its adaptability to high-dimensional sparse data. Its regularization term and feature importance weighting mechanism can suppress the interference of spectral noise. The experimental results show that the mean square error (MSE) on the test set is reduced to 0.012% (71.4% lower than that of random forest), and the correlation coefficient (R2) is 0.987. By integrating deep feature optimization and ensemble learning, this method provides a new solution with high efficiency and high precision for industrial process gas monitoring. Full article
Show Figures

Figure 1

23 pages, 3677 KiB  
Article
HG-Mamba: A Hybrid Geometry-Aware Bidirectional Mamba Network for Hyperspectral Image Classification
by Xiaofei Yang, Jiafeng Yang, Lin Li, Suihua Xue, Haotian Shi, Haojin Tang and Xiaohui Huang
Remote Sens. 2025, 17(13), 2234; https://doi.org/10.3390/rs17132234 - 29 Jun 2025
Viewed by 391
Abstract
Deep learning has demonstrated significant success in hyperspectral image (HSI) classification by effectively leveraging spatial–spectral feature learning. However, current approaches encounter three challenges: (1) high spectral redundancy and the presence of noisy bands, which impair the extraction of discriminative features; (2) limited spatial [...] Read more.
Deep learning has demonstrated significant success in hyperspectral image (HSI) classification by effectively leveraging spatial–spectral feature learning. However, current approaches encounter three challenges: (1) high spectral redundancy and the presence of noisy bands, which impair the extraction of discriminative features; (2) limited spatial receptive fields inherent in convolutional operations; and (3) unidirectional context modeling that inadequately captures bidirectional dependencies in non-causal HSI data. To address these challenges, this paper proposes HG-Mamba, a novel hybrid geometry-aware bidirectional Mamba network for HSI classification. The proposed HG-Mamba synergistically integrates convolutional operations, geometry-aware filtering, and bidirectional state-space models (SSMs) to achieve robust spectral–spatial representation learning. The proposed framework comprises two stages. The first stage, termed spectral compression and discrimination enhancement, employs multi-scale spectral convolutions alongside a spectral bidirectional Mamba (SeBM) module to suppress redundant bands while modeling long-range spectral dependencies. The second stage, designated spatial structure perception and context modeling, incorporates a Gaussian Distance Decay (GDD) mechanism to adaptively reweight spatial neighbors based on geometric distances, coupled with a spatial bidirectional Mamba (SaBM) module for comprehensive global context modeling. The GDD mechanism facilitates boundary-aware feature extraction by prioritizing spatially proximate pixels, while the bidirectional SSMs mitigate unidirectional bias through parallel forward–backward state transitions. Extensiveexperiments on the Indian Pines, Houston2013, and WHU-Hi-LongKou datasets demonstrate the superior performance of HG-Mamba, achieving overall accuracies of 94.91%, 98.41%, and 98.67%, respectively. Full article
(This article belongs to the Special Issue AI-Driven Hyperspectral Remote Sensing of Atmosphere and Land)
Show Figures

Graphical abstract

16 pages, 1768 KiB  
Article
Maize Seed Variety Classification Based on Hyperspectral Imaging and a CNN-LSTM Learning Framework
by Shuxiang Fan, Quancheng Liu, Didi Ma, Yanqiu Zhu, Liyuan Zhang, Aichen Wang and Qingzhen Zhu
Agronomy 2025, 15(7), 1585; https://doi.org/10.3390/agronomy15071585 - 29 Jun 2025
Viewed by 488
Abstract
Maize seed variety classification has become essential in agriculture, driven by advancements in non-destructive sensing and machine learning techniques. This study introduced an efficient method for maize variety identification by combining hyperspectral imaging with a framework that integrates Convolutional Neural Networks (CNNs) and [...] Read more.
Maize seed variety classification has become essential in agriculture, driven by advancements in non-destructive sensing and machine learning techniques. This study introduced an efficient method for maize variety identification by combining hyperspectral imaging with a framework that integrates Convolutional Neural Networks (CNNs) and Long Short-Term Memory (LSTM) networks. Spectral data were acquired by hyperspectral imaging technology from five maize varieties and processed using Savitzky–Golay (SG) smoothing, along with standard normal variate (SNV) preprocessing. To enhance feature selection, the competitive adaptive reweighted sampling (CARS) algorithm was applied to reduce redundant information, identifying 100 key wavelengths from an initial set of 774. This method successfully minimized data dimensionality, reduced variable collinearity, and boosted the model’s stability and computational efficiency. A CNN-LSTM model, built on the selected wavelengths, achieved an accuracy of 95.27% in maize variety classification, outperforming traditional chemometric models like partial least squares discriminant analysis, support vector machines, and extreme learning machines. These results showed that the CNN-LSTM model excelled in extracting complex spectral features and offering strong generalization and classification capabilities. Therefore, the model proposed in this study served as an effective tool for maize variety identification. Full article
(This article belongs to the Collection AI, Sensors and Robotics for Smart Agriculture)
Show Figures

Figure 1

28 pages, 6846 KiB  
Article
Phase–Frequency Cooperative Optimization of HMDV Dynamic Inertial Suspension System with Generalized Ground-Hook Control
by Yihong Ping, Xiaofeng Yang, Yi Yang, Yujie Shen, Shaocong Zeng, Shihang Dai and Jingchen Hong
Machines 2025, 13(7), 556; https://doi.org/10.3390/machines13070556 - 26 Jun 2025
Viewed by 151
Abstract
Hub motor-driven vehicles (HMDVs) suffer from poor handling and stability due to an increased unsprung mass and unbalanced radial electromagnetic forces. Although traditional ground-hook control reduces the dynamic tire load, it severely worsens the body acceleration. This paper presents a generalized ground-hook control [...] Read more.
Hub motor-driven vehicles (HMDVs) suffer from poor handling and stability due to an increased unsprung mass and unbalanced radial electromagnetic forces. Although traditional ground-hook control reduces the dynamic tire load, it severely worsens the body acceleration. This paper presents a generalized ground-hook control strategy based on impedance transfer functions to address the parameter redundancy in structural methods. A quarter-vehicle model with a switched reluctance motor wheel hub drive was used to study different orders of generalized ground-hook impedance transfer function control strategies for dynamic inertial suspension. An enhanced fish swarm parameter optimization method identified the optimal solutions for different structural orders. Analyses showed that the third-order control strategy optimized the body acceleration by 2%, reduced the dynamic tire load by 8%, and decreased the suspension working space by 22%. This strategy also substantially lowered the power spectral density for the body acceleration and dynamic tire load in the low-frequency band of 1.2 Hz. Additionally, it balanced computational complexity and performance, having slightly higher complexity than lower-order methods but much less than higher-order structures, meeting real-time constraints. To address time-domain deviations from generalized ground-hook control in semi-active systems, a dynamic compensation strategy was proposed: eight topological structures were created by modifying the spring–damper structure. A deviation correction mechanism was devised based on the frequency-domain coupling characteristics between the wheel speed and suspension relative velocity. For ride comfort and road-friendliness, a dual-frequency control criterion was introduced: in the low-frequency range, energy transfer suppression and phase synchronization locking were realized by constraining the ground-hook damping coefficient or inertance coefficient, while in the high-frequency range, the inertia-dominant characteristic was enhanced, and dynamic phase adaptation was permitted to mitigate road excitations. The results show that only the T0 and T5 structures met dynamic constraints across the frequency spectrum. Time-domain simulations showed that the deviation between the T5 structure and the third-order generalized ground-hook impedance model was relatively small, outperforming traditional and T0 structures, validating the model’s superior adaptability in high-order semi-active suspension. Full article
(This article belongs to the Special Issue New Journeys in Vehicle System Dynamics and Control)
Show Figures

Figure 1

21 pages, 41092 KiB  
Article
UAV as a Bridge: Mapping Key Rice Growth Stage with Sentinel-2 Imagery and Novel Vegetation Indices
by Jianping Zhang, Rundong Zhang, Qi Meng, Yanying Chen, Jie Deng and Bingtai Chen
Remote Sens. 2025, 17(13), 2180; https://doi.org/10.3390/rs17132180 - 25 Jun 2025
Viewed by 388
Abstract
Rice is one of the three primary staple crops worldwide. The accurate monitoring of its key growth stages is crucial for agricultural management, disaster early warning, and ensuring food security. The effective collection of ground reference data is a critical step for monitoring [...] Read more.
Rice is one of the three primary staple crops worldwide. The accurate monitoring of its key growth stages is crucial for agricultural management, disaster early warning, and ensuring food security. The effective collection of ground reference data is a critical step for monitoring rice growth stages using satellite imagery, traditionally achieved through labor-intensive field surveys. Here, we propose utilizing UAVs as an alternative means to collect spatially continuous ground reference data across larger areas, thereby enhancing the efficiency and scalability of training and validation processes for rice growth stage mapping products. The UAV data collection involved the Nanchuan, Yongchuan, Tongnan, and Kaizhou districts of Chongqing City, encompassing a total area of 377.5 hectares. After visual interpretation, centimeter-level high-resolution labels of the key rice growth stages were constructed. These labels were then mapped to Sentinel-2 imagery through spatiotemporal matching and scale conversion, resulting in a reference dataset of Sentinel 2 data that covered growth stages such as jointing and heading. Furthermore, we employed 30 vegetation index calculation methods to explore 48,600 spectral band combinations derived from 10 Sentinel-2 spectral bands, thereby constructing a series of novel vegetation indices. Based on the maximum relevance minimum redundancy (mRMR) algorithm, we identified an optimal subset of features that were both highly correlated with rice growth stages and mutually complementary. The results demonstrate that multi-feature modeling significantly enhanced classification performance. The optimal model, incorporating 300 features, achieved an F1 score of 0.864, representing a 2.5% improvement over models based on original spectral bands and a 38.8% improvement over models using a single feature. Notably, a model utilizing only 12 features maintained a high classification accuracy (F1 = 0.855) while substantially reducing computational costs. Compared with existing methods, this study constructed a large-scale ground-truth reference dataset for satellite imagery based on UAV observations, demonstrating its potential as an effective technical framework and providing an effective technical framework for the large-scale mapping of rice growth stages using satellite data. Full article
(This article belongs to the Special Issue Recent Progress in UAV-AI Remote Sensing II)
Show Figures

Figure 1

37 pages, 6550 KiB  
Article
Multiphase Transport Network Optimization: Mathematical Framework Integrating Resilience Quantification and Dynamic Algorithm Coupling
by Linghao Ren, Xinyue Li, Renjie Song, Yuning Wang, Meiyun Gui and Bo Tang
Mathematics 2025, 13(13), 2061; https://doi.org/10.3390/math13132061 - 21 Jun 2025
Viewed by 379
Abstract
This study proposes a multi-dimensional urban transportation network optimization framework (MTNO-RQDC) to address structural failure risks from aging infrastructure and regional connectivity bottlenecks. Through dual-dataset validation using both the Baltimore road network and PeMS07 traffic flow data, we first develop a traffic simulation [...] Read more.
This study proposes a multi-dimensional urban transportation network optimization framework (MTNO-RQDC) to address structural failure risks from aging infrastructure and regional connectivity bottlenecks. Through dual-dataset validation using both the Baltimore road network and PeMS07 traffic flow data, we first develop a traffic simulation model integrating Dijkstra’s algorithm with capacity-constrained allocation strategies for guiding reconstruction planning for the collapsed Francis Scott Key Bridge. Next, we create a dynamic adaptive public transit optimization model using an entropy weight-TOPSIS decision framework coupled with an improved simulated annealing algorithm (ISA-TS), achieving coordinated suburban–urban network optimization while maintaining 92.3% solution stability under simulated node failure conditions. The framework introduces three key innovations: (1) a dual-layer regional division model combining K-means geographical partitioning with spectral clustering functional zoning; (2) fault-tolerant network topology optimization demonstrated through 1000-epoch Monte Carlo failure simulations; (3) cross-dataset transferability validation showing 15.7% performance variance between Baltimore and PeMS07 environments. Experimental results demonstrate a 28.7% reduction in road network traffic variance (from 42,760 to 32,100), 22.4% improvement in public transit path redundancy, and 30.4–44.6% decrease in regional traffic load variance with minimal costs. Hyperparameter analysis reveals two optimal operational modes: rapid cooling (rate = 0.90) achieves 85% improvement within 50 epochs for emergency response, while slow cooling (rate = 0.99) yields 12.7% superior solutions for long-term planning. The framework establishes a new multi-objective paradigm balancing structural resilience, functional connectivity, and computational robustness for sustainable smart city transportation systems. Full article
Show Figures

Figure 1

20 pages, 2346 KiB  
Article
A Novel Approach to Pine Nut Classification: Combining Near-Infrared Spectroscopy and Image Shape Features with Soft Voting-Based Ensemble Learning
by Yueyun Yu, Xin Huang, Danjv Lv, Benjamin K. Ng and Chan-Tong Lam
Mathematics 2025, 13(12), 2009; https://doi.org/10.3390/math13122009 - 18 Jun 2025
Viewed by 215
Abstract
Pine nuts hold significant economic value due to their rich plant protein and healthy fats, yet precise variety classification has long been hindered by limitations of traditional techniques such as chemical analysis and machine vision. This study proposes a novel near-infrared (NIR) spectral [...] Read more.
Pine nuts hold significant economic value due to their rich plant protein and healthy fats, yet precise variety classification has long been hindered by limitations of traditional techniques such as chemical analysis and machine vision. This study proposes a novel near-infrared (NIR) spectral feature selection algorithm, termed the improved binary equilibrium optimizer with selection probability (IBiEO-SP), which incorporates a dynamic probability adjustment mechanism to achieve efficient feature dimensionality reduction. Experimental validation on a dataset comprising seven pine nut varieties demonstrated that, compared to particle swarm optimization (PSO) and the genetic algorithm (GA), the IBiEO-SP algorithm improved average classification accuracy by 5.7% (p < 0.01, Student’s t-test) under four spectral preprocessing methods (MSC, SNV, SG1, and SG2). Remarkably, only 2–3 features were required to achieve optimal performance (MSC + random forest: 99.05% accuracy, 100% F1/precision; SNV + KNN: 97.14% accuracy, 100% F1/precision). Furthermore, a multimodal data synergy strategy integrating NIR spectroscopy with morphological features was proposed, and a classification model was constructed using a soft voting ensemble. The final classification accuracy reached 99.95%, representing a 2.9% improvement over single-spectral-mode analysis. The results indicate that the IBiEO-SP algorithm effectively balances feature discriminative power and model generalization needs, overcoming the contradiction between high-dimensional data redundancy and low-dimensional information loss. This work provides a high-precision, low-complexity solution for rapid quality detection of pine nuts, with broad implications for agricultural product inspection and food safety. Full article
(This article belongs to the Special Issue Mathematical Modelling in Agriculture)
Show Figures

Figure 1

29 pages, 5178 KiB  
Article
HASSDE-NAS: Heuristic–Adaptive Spectral–Spatial Neural Architecture Search with Dynamic Cell Evolution for Hyperspectral Water Body Identification
by Feng Chen, Baishun Su and Zongpu Jia
Information 2025, 16(6), 495; https://doi.org/10.3390/info16060495 - 13 Jun 2025
Viewed by 410
Abstract
The accurate identification of water bodies in hyperspectral images (HSIs) remains challenging due to hierarchical representation imbalances in deep learning models, where shallow layers overly focus on spectral features, boundary ambiguities caused by the relatively low spatial resolution of satellite imagery, and limited [...] Read more.
The accurate identification of water bodies in hyperspectral images (HSIs) remains challenging due to hierarchical representation imbalances in deep learning models, where shallow layers overly focus on spectral features, boundary ambiguities caused by the relatively low spatial resolution of satellite imagery, and limited detection capability for small-scale aquatic features such as narrow rivers. To address these challenges, this study proposes Heuristic–Adaptive Spectral–Spatial Neural Architecture Search with Dynamic Cell Evaluation (HASSDE-NAS). The architecture integrates three specialized units; a spectral-aware dynamic band selection cell suppresses redundant spectral bands, while a geometry-enhanced edge attention cell refines fragmented spatial boundaries. Additionally, a bidirectional fusion alignment cell jointly optimizes spectral and spatial dependencies. A heuristic cell search algorithm optimizes the network architecture through architecture stability, feature diversity, and gradient sensitivity analysis, which improves search efficiency and model robustness. Evaluated on the Gaofen-5 datasets from the Guangdong and Henan regions, HASSDE-NAS achieves overall accuracies of 92.61% and 96%, respectively. This approach outperforms existing methods in delineating narrow river systems and resolving water bodies with weak spectral contrast under complex backgrounds, such as vegetation or cloud shadows. By adaptively prioritizing task-relevant features, the framework provides an interpretable solution for hydrological monitoring and advances neural architecture search in intelligent remote sensing. Full article
Show Figures

Figure 1

29 pages, 18946 KiB  
Article
YOLO-SBA: A Multi-Scale and Complex Background Aware Framework for Remote Sensing Target Detection
by Yifei Yuan, Yingmei Wei, Xiaoyan Zhou, Yanming Guo, Jiangming Chen and Tingshuai Jiang
Remote Sens. 2025, 17(12), 1989; https://doi.org/10.3390/rs17121989 - 9 Jun 2025
Viewed by 512
Abstract
Remote sensing target detection faces significant challenges in handling multi-scale targets, with the high similarity in color and shape between targets and backgrounds in complex scenes further complicating the detection task. To address this challenge, we propose a multi-Scale and complex [...] Read more.
Remote sensing target detection faces significant challenges in handling multi-scale targets, with the high similarity in color and shape between targets and backgrounds in complex scenes further complicating the detection task. To address this challenge, we propose a multi-Scale and complex Background Aware network for remote sensing target detection, named YOLO-SBA. Our proposed YOLO-SBA first processes the input through the Multi-Branch Attention Feature Fusion Module (MBAFF) to extract global contextual dependencies and local detail features. It then integrates these features using the Bilateral Attention Feature Mixer (BAFM) for efficient fusion, enhancing the saliency of multi-scale target features to tackle target scale variations. Next, we utilize the Gated Multi-scale Attention Pyramid (GMAP) to perform channel–spatial dual reconstruction and gating fusion encoding on multi-scale feature maps. This enhances target features while finely suppressing spectral redundancy. Additionally, to prevent the loss of effective information extracted by key modules during inference, we improve the downsampling method using Asymmetric Dynamic Downsampling (ADDown), maximizing the retention of image detail information. We achieve the best performance on the DIOR, DOTA, and RSOD datasets. On the DIOR dataset, YOLO-SBA improves mAP by 16.6% and single-category detection AP by 0.8–23.8% compared to the existing state-of-the-art algorithm. Full article
Show Figures

Figure 1

Back to TopTop