Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (11)

Search Parameters:
Keywords = soybean 7S globulin

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 704 KiB  
Article
Purification of Prudu6 from Almond and Its Cross-Reactivity with Glym6 from Soybean
by Changbao Hu, Qishu Luo, Lihua Zhou, Weichao Zhu, Kuan Gao, Qin Geng, Xin Li, Anshu Yang, Ping Tong, Zhihua Wu and Hongbing Chen
Int. J. Mol. Sci. 2025, 26(11), 5425; https://doi.org/10.3390/ijms26115425 - 5 Jun 2025
Cited by 1 | Viewed by 636
Abstract
Almond (Prunus dulcis) is a tree nut with high nutritional value that is widely cultivated and consumed globally. Prudu6, an 11S globulin, is one of the main allergens in almond, which can trigger a series of severe allergic reactions. To our [...] Read more.
Almond (Prunus dulcis) is a tree nut with high nutritional value that is widely cultivated and consumed globally. Prudu6, an 11S globulin, is one of the main allergens in almond, which can trigger a series of severe allergic reactions. To our knowledge, its correlation with Glym6, another 11S globulin, in terms of allergenicity has not yet been studied. In this study, natural Prudu6 was obtained by the optimized column chromatography method. Its structure was studied by the CD spectra, ultraviolet spectra and bioinformatics method. Then, WB and ELISA were performed to analyze the cross-reactivity. Prudu6 of high purity (>85%) was obtained by one-step chromatography. Strong cross-reactivity was found between Prudu6 and Glym6, which were also the main actors in the cross-reactivity between almond and soybean. For IgE in sera from almond-allergic patients, Glym6 demonstrated considerable affinity compared with Prudu6, while Prudu6 could hardly inhibit Glym6 in the soybean group. Three groups of epitope structures were found to be common in both proteins. These similar epitopes were regarded as the core structures causing the cross-reactivity between Prudu6 and Glym6. Full article
(This article belongs to the Special Issue Genetics and Novel Techniques for Soybean Pivotal Characters)
Show Figures

Figure 1

19 pages, 1786 KiB  
Article
Contamination of Wheat Flour and Processed Foodstuffs with Soybean and Mustard Allergenic Proteins
by Mariachiara Bianco, Domenico De Palma, Antonio Pagano, Ilario Losito, Tommaso R. I. Cataldi and Cosima D. Calvano
Int. J. Mol. Sci. 2025, 26(8), 3891; https://doi.org/10.3390/ijms26083891 - 20 Apr 2025
Viewed by 549
Abstract
In recent years, sustainable agricultural practices in wheat cultivation have garnered significant attention, particularly those focused on minimizing pesticide and herbicide usage to safeguard the environment. One effective approach is green manuring, which entails rotating wheat with crops such as soybean and mustard [...] Read more.
In recent years, sustainable agricultural practices in wheat cultivation have garnered significant attention, particularly those focused on minimizing pesticide and herbicide usage to safeguard the environment. One effective approach is green manuring, which entails rotating wheat with crops such as soybean and mustard to harness their natural pesticidal and herbicidal properties. While this method presents clear environmental advantages, it also poses a risk of cross-contamination, as these globally recognized allergens may unintentionally pass through wheat-based products. To protect consumers with allergies, there is an urgent need for a reliable analytical method to detect and quantify these allergenic proteins in wheat-derived foodstuffs. In this study, we assessed various protein extraction protocols to optimize the recovery of soybean and mustard allergens from wheat flour. The extracted proteins were analyzed using a bottom-up proteomics approach involving trypsin digestion, coupled with reversed-phase liquid chromatography and mass spectrometry in multiple reaction monitoring (MRM) mode. Two key allergenic proteins, Glycinin G1 and 11S Globulin, were selected as representative for soybean and mustard, respectively. The identified quantifier marker of Glycinin G1 was VLIVPQNFVVAAR (m/z 713.4312+), while FYLAGNQEQEFLK (m/z 793.8962+) and VFDGELQEGR (m/z 575.2802+) were designated as qualifier markers. The selection of specific marker peptides for mustard proved challenging due to the high structural similarity among proteins from Sinapis alba and other members of the Brassicaceae family. For 11S Globulin, FNTLETTLTR (m/z 598.3192+) was recognized as the quantifier marker, with VTSVNSYTLPILQYIR (m/z 934.0192+) serving as the qualifier marker. The developed method underwent thorough validation for linearity, limit of detection (LOD), limit of quantification (LOQ), recovery, repeatability, and reproducibility, as well as potential matrix and processing effects. This strategy successfully facilitated the identification and quantification of soybean and mustard allergenic proteins in complex, processed food matrices, including naturally contaminated flour and cookies. These findings enhance food safety monitoring and regulatory compliance, thereby helping to mitigate allergen-related risks in wheat-based products. Full article
Show Figures

Figure 1

16 pages, 2315 KiB  
Article
Structure and Functional Properties of Proteins from Different Soybean Varieties as Affected by the 11S/7S Globulin Ratio
by Yichen Hou, Lu Huang, Guangliang Xing, Xiaotian Yuan, Xiaoyan Zhang, Dongqing Dai, Xingxing Yuan, Xin Chen and Chenchen Xue
Foods 2025, 14(5), 755; https://doi.org/10.3390/foods14050755 - 23 Feb 2025
Cited by 2 | Viewed by 1626
Abstract
Soybean (Glycine max (L.) Merrill) is a key source of plant protein, with 7S and 11S globulins being the primary fractions. This study investigated the protein content, protein composition, and 11S/7S globulin ratios of 411 soybean samples, and then selected six varieties [...] Read more.
Soybean (Glycine max (L.) Merrill) is a key source of plant protein, with 7S and 11S globulins being the primary fractions. This study investigated the protein content, protein composition, and 11S/7S globulin ratios of 411 soybean samples, and then selected six varieties (S1, S2, S3, S4, S5, and S6) for the analysis of the protein structures and functional properties. The results revealed that varieties with low 11S/7S ratios (S1, S2, and S3) exhibited relatively high random coil contents (20.11–22.94%) and lower β-sheet contents (34.17–38.37%), suggesting the presence of more loosely structured proteins. S2 showed good solubility (73.21%) and water-holding capacity (WHC) (2.73 g/g), which can improve product quality and yield. In contrast, varieties with high 11S/7S ratios (S4, S5, and S6) demonstrated more compact protein structures, increased surface hydrophobicity, larger particle sizes, lower absolute zeta potential values, and greater oil-holding capacity (OHC) values (7.58–8.48 g/g). S4, in particular, demonstrated superior emulsification properties, with emulsion activity index (EAI) (4.71 m2/g) and emulsion stability index (ESI) (58.73 min), which are widely used in the food industry such as in cake, ice cream, and bread. This study provides valuable information for the selection of soybean varieties with optimal 11S/7S ratios for processing soybean products. Full article
(This article belongs to the Section Food Physics and (Bio)Chemistry)
Show Figures

Figure 1

13 pages, 2324 KiB  
Article
Effect of Thermal Treatment on Gelling and Emulsifying Properties of Soy β-Conglycinin and Glycinin
by Wei Zhang, Mengru Jin, Hong Wang, Siqi Cheng, Jialu Cao, Dingrong Kang, Jingnan Zhang, Wei Zhou, Longteng Zhang, Rugang Zhu, Donghong Liu and Guanchen Liu
Foods 2024, 13(12), 1804; https://doi.org/10.3390/foods13121804 - 8 Jun 2024
Cited by 3 | Viewed by 2413
Abstract
This study investigated the impact of different preheat treatments on the emulsifying and gel textural properties of soy protein with varying 11S/7S ratios. A mixture of 7S and 11S globulins, obtained from defatted soybean meal, was prepared at different ratios. The mixed proteins [...] Read more.
This study investigated the impact of different preheat treatments on the emulsifying and gel textural properties of soy protein with varying 11S/7S ratios. A mixture of 7S and 11S globulins, obtained from defatted soybean meal, was prepared at different ratios. The mixed proteins were subjected to preheating (75 °C, 85 °C, and 95 °C for 5 min) or non-preheating, followed by spray drying or non-spray drying. The solubility of protein mixtures rich in the 7S fraction tended to decrease significantly after heating at 85 °C, while protein mixtures rich in the 11S fraction showed a significant decrease after heating at 95 °C. Surprisingly, the emulsion stability index (ESI) of protein mixtures rich in the 7S fraction significantly improved twofold during processing at 75 °C. This study revealed a negative correlation between the emulsifying ability of soy protein and the 11S/7S ratio. For protein mixtures rich in either the 7S or the 11S fractions, gelling proprieties as well as emulsion activity index (EAI) and ESI showed no significant changes after spray drying; however, surface hydrophobicity was significantly enhanced following heating at 85 °C post-spray drying treatment. These findings provide insights into the alterations in gelling and emulsifying properties during various heating processes, offering great potential for producing soy protein ingredients with enhanced emulsifying ability and gelling property. They also contribute to establishing a theoretical basis for the standardized production of soy protein isolate with specific functional characteristics. Full article
(This article belongs to the Special Issue Functionality and Food Applications of Plant Proteins (Volume II))
Show Figures

Figure 1

17 pages, 965 KiB  
Article
The Sensitization Profile for Selected Food Allergens in Polish Children Assessed with the Use of a Precision Allergy Molecular Diagnostic Technique
by Izabela Knyziak-Mędrzycka, Emilia Majsiak, Weronika Gromek, Danuta Kozłowska, Jakub Swadźba, Joanna Beata Bierła, Ryszard Kurzawa and Bożena Cukrowska
Int. J. Mol. Sci. 2024, 25(2), 825; https://doi.org/10.3390/ijms25020825 - 9 Jan 2024
Cited by 3 | Viewed by 2576
Abstract
Individual populations show a variety of sensitization patterns, which may be associated with the geographic region, climate, dietary habits, or ways of preparing food. The purpose of this study was to comprehensively assess the food allergy sensitization profile in Polish children, particularly to [...] Read more.
Individual populations show a variety of sensitization patterns, which may be associated with the geographic region, climate, dietary habits, or ways of preparing food. The purpose of this study was to comprehensively assess the food allergy sensitization profile in Polish children, particularly to eight food allergens (so-called “the Big 8”): cow milk, eggs, wheat, soybeans, fish, crustacean shellfish, tree nuts, and peanuts. To assess the prevalence and serum levels of specific immunoglobulins E (sIgE), we analyzed the results obtained from selected laboratories located in all regions of Poland that used the multiplex ALEX® test in the period from 2019 to 2022. Results from 3715 children were obtained. The mean age of the study population was 7.0 years. The results were stratified by age: <12 months (3.63%), 1–5 years (39.54%), 6–13 years (46.32%), and 14–18 years (10.0%). The final analysis included the sIgE results obtained with 95 food extracts and 77 food allergen molecules. The highest rates of sIgE to food allergen extracts were found for peanut (29.20%), hazel (28.20%), and apple (23.60%), and those to allergenic molecules were found for the PR-10 family of molecules (Cor a 1.0401 (23.77%), Mal d 1 (22.37%), Ara h 8 (16.93%), and globulin 7/8S (Ara h 1; 15.59%)). The lowest rates of sIgE reactivity to extracts were found for strawberry (0.40%), oregano (0.30%), and thornback ray (0.16%), and those to allergenic molecules were found for Mal d 2 (0.27%) (thaumatin-like protein, TLP), Ani s 1 (0.30%) (Kunitz-type serine protease inhibitor), and Che a 1 (0.43%) (Ole e 1 family). The rates of sensitization to storage proteins of the analyzed “the Big 8” molecules decreased significantly (p < 0.05) with age. Conversely, the rates of sensitization to PR-10 family proteins increased significantly with age. The three most common allergens in Poland, regardless of whether IgE was assayed against extracts or molecules of food allergens, were peanut, hazel, and apple (in different order depending on the ranking). A detailed analysis of sensitization to the extracts and molecules of main food allergens based on the results of a multiplex ALEX® test demonstrated the sensitization profile in Polish children (including molecular sensitization, particularly the “the Big 8” food allergen molecules), which shows considerable differences in comparison with those in other countries. Serum sIgE analysis of children from all regions of Poland revealed a food allergen molecular sensitization profile that changes with age. Full article
(This article belongs to the Special Issue Molecular Medicine in Asthma and Allergic Diseases 2.0)
Show Figures

Figure 1

18 pages, 5057 KiB  
Article
Exploring the Interactions of Soybean 7S Globulin with Gallic Acid, Chlorogenic Acid and (−)-Epigallocatechin Gallate
by Siduo Zhou, Ling Meng, Yanfei Lin, Xueqian Dong and Mingsheng Dong
Foods 2023, 12(21), 4013; https://doi.org/10.3390/foods12214013 - 2 Nov 2023
Cited by 8 | Viewed by 1961
Abstract
In this study, the noncovalent interaction mechanisms between soybean 7S globulin and three polyphenols (gallic acid (GA), chlorogenic acid (CA) and (−)-epigallocatechin gallate (EGCG)) were explored and compared using various techniques. Fluorescence experiments showed that GA and EGCG had strong static quenching effects [...] Read more.
In this study, the noncovalent interaction mechanisms between soybean 7S globulin and three polyphenols (gallic acid (GA), chlorogenic acid (CA) and (−)-epigallocatechin gallate (EGCG)) were explored and compared using various techniques. Fluorescence experiments showed that GA and EGCG had strong static quenching effects on 7S fluorescence, and that of CA was the result of multiple mechanisms. The interactions caused changes to the secondary and tertiary structure of 7S, and the surface hydrophobicity was decreased. Thermodynamic experiments showed that the combinations of polyphenols with 7S were exothermic processes. Hydrogen bonds and van der Waals forces were the primary driving forces promoting the binding of EGCG and CA to 7S. The combination of GA was mainly affected by electrostatic interaction. The results showed that the structure and molecular weight of polyphenols play an important role in their interactions. This work is helpful for developing products containing polyphenols and soybean protein. Full article
(This article belongs to the Section Grain)
Show Figures

Graphical abstract

21 pages, 3417 KiB  
Article
Effect of Freezing on Soybean Protein Solution
by Wenhui Li, Qiongling Chen, Xiaowen Wang and Zhenjia Chen
Foods 2023, 12(14), 2650; https://doi.org/10.3390/foods12142650 - 9 Jul 2023
Cited by 21 | Viewed by 3906
Abstract
To investigate the impact of frozen storage conditions on the physicochemical properties of soybean protein and explore the underlying mechanisms, this study focused on soybean isolate (SPI), ß-soybean companion globulin (7S), and soybean globulin (11S). The protein solutions were prepared at a concentration [...] Read more.
To investigate the impact of frozen storage conditions on the physicochemical properties of soybean protein and explore the underlying mechanisms, this study focused on soybean isolate (SPI), ß-soybean companion globulin (7S), and soybean globulin (11S). The protein solutions were prepared at a concentration of 2% and subjected to freezing for 1 and 5 days. Subsequently, the protein content, physicochemical properties, secondary structure, sulfhydryl content, and chemical interaction forces were assessed and analyzed using UV spectrophotometry, Zeta potential measurements, SDS-PAGE, Fourier infrared spectroscopy, and endogenous fluorescence photoemission spectroscopy. The obtained results revealed that the solubility and total sulfhydryl content of SPI, 7S, and 11S exhibited a decreasing trend with prolonged freezing time. Among them, 11S demonstrated the largest decrease in solubility and total sulfhydryl content, followed by SPI, and 7S the least. During freezing, the aromatic amino acids of SPI, 7S, and 11S molecules were exposed, leading to increased hydrophobicity, protein aggregation, and particle size enlargement, and the structure of the protein changed from disordered structure to ordered structure. After freezing, the polarity of the microenvironment of SPI, 7S, and 11S increased, and their maximum fluorescence emission wavelengths were red-shifted. Notably, the largest red shift of SPI was from 332 nm to 335 nm. As freezing time increased, the contribution of hydrogen bonding increased, while the contribution of hydrophobic interactions decreased. This indicates that freezing affects the hydrophobic interactions, hydrogen bonding, and other chemical forces of the protein. The growth of ice crystals leads to the unfolding of protein molecular chains, exposure of internal hydrophobic groups, enhancement of hydrophobicity, and alters the secondary structure of the protein. Full article
(This article belongs to the Special Issue Effects of Processing and Treatment on Protein Structure and Function)
Show Figures

Figure 1

12 pages, 2549 KiB  
Article
Confocal Fluorescence Microscopy Investigation for the Existence of Subdomains within Protein Storage Vacuoles in Soybean Cotyledons
by Hari B. Krishnan and Alexander Jurkevich
Int. J. Mol. Sci. 2022, 23(7), 3664; https://doi.org/10.3390/ijms23073664 - 27 Mar 2022
Cited by 4 | Viewed by 3853
Abstract
In legumes, the seed storage proteins accumulate within specialized organelles called protein storage vacuoles (PSVs). In several plant species, PSVs are differentiated into subdomains that accumulate different kinds of proteins. Even though the existence of subdomains is common in cereals and legumes, it [...] Read more.
In legumes, the seed storage proteins accumulate within specialized organelles called protein storage vacuoles (PSVs). In several plant species, PSVs are differentiated into subdomains that accumulate different kinds of proteins. Even though the existence of subdomains is common in cereals and legumes, it has not been reported in soybean PSVs. The two most abundant seed proteins of soybean, 7S and 11S globulins, have different temporal accumulation patterns and exhibit considerable solubility differences that could result in differential accretion of these proteins within the PSVs. Here, we employed confocal fluorescent microscopy to examine the presence or absence of subdomains within the soybean PSVs. Eosin-stained sections of FAA-fixed paraffin embedded soybean seeds, when viewed by confocal fluorescence microscopy, revealed the presence of intricate subdomains within the PSVs. However, fluorescence immunolabeling studies demonstrated that the 7S and 11S globulins were evenly distributed within the PSVs and failed to corroborate the existence of subdomains within the PSVs. Similarly, confocal scanning microscopy examination of free-hand, vibratome and cryostat sections also failed to demonstrate the existence of subdomains within PSVs. The subdomains, which were prominently seen in PSVs of FAA-fixed soybean seeds, were not observed when the seeds were fixed either in glutaraldehyde/paraformaldehyde or glutaraldehyde. Our studies demonstrate that the apparent subdomains observed in FAA-fixed seeds may be a fixation artifact. Full article
Show Figures

Figure 1

14 pages, 934 KiB  
Article
Lipoxygenase Enzymes, Oligosaccharides (Raffinose and Stachyose) and 11sA4 and A5 Globulins of Glycinin Present in Soybean Meal Are Not Drivers of Enteritis in Juvenile Atlantic Salmon (Salmo salar)
by Artur N. Rombenso, David Blyth, Andrew T. James, Teisha Nikolaou and Cedric J. Simon
Appl. Sci. 2021, 11(19), 9327; https://doi.org/10.3390/app11199327 - 8 Oct 2021
Cited by 5 | Viewed by 2199
Abstract
Soybean meal has been largely investigated and commercially used in fish nutrition. However, its inclusion levels have been carefully considered due to the presence of antinutritional factors, which depending on a series of factors might induce gut inflammation damaging the mucosal integrity and [...] Read more.
Soybean meal has been largely investigated and commercially used in fish nutrition. However, its inclusion levels have been carefully considered due to the presence of antinutritional factors, which depending on a series of factors might induce gut inflammation damaging the mucosal integrity and causing enteritis. Several strategies including genetic engineering have been applied attempting to reduce or eliminate some of the antinutritional factors. Accordingly, we assessed the intestinal health of juvenile Atlantic salmon fed high levels of speciality soybean genotypes with reduced-to-no content amounts of lipoxygenases, altered glycinin profile and reduced levels of oligosaccharides. No major signs of enteritis, only indication of enteritis progression, was noticed in the soybean meal-based diets illustrated by mild changes in distal intestine morphology. Whereas fish, fed fishmeal control feeds, displayed normal distal intestine integrity. Speciality soybean types did not improve intestinal health of juvenile Atlantic salmon suggesting these antinutrients are not drivers of the intestinal inflammatory process in this species. No additional benefits in terms of production performance or blood biochemistry were noticed in the speciality soybean types compared to the traditional soybean. Full article
(This article belongs to the Special Issue Histopathology of Aquatic Animals)
Show Figures

Figure 1

10 pages, 2465 KiB  
Article
Preparation and Properties of Fractionated Soybean Protein Isolate Films
by Yunxiao Wei, Ze’en Huang, Zuolong Yu, Chao Han and Cairong Yang
Materials 2021, 14(18), 5436; https://doi.org/10.3390/ma14185436 - 20 Sep 2021
Cited by 16 | Viewed by 3389
Abstract
Soybean protein isolate (SPI) and its four fractionated products (7S globulin, 11S globulin, upper soybean residue, and lower soybean residue) were compared by fabricating films and film liquids. The separation and grading effects, rheological properties of the film liquids, and difficulty in uncovering [...] Read more.
Soybean protein isolate (SPI) and its four fractionated products (7S globulin, 11S globulin, upper soybean residue, and lower soybean residue) were compared by fabricating films and film liquids. The separation and grading effects, rheological properties of the film liquids, and difficulty in uncovering the films, in addition to the mechanical properties, water vapor permeability, oil permeability, and surface morphology of the films, were investigated. Results showed that the centrifugal precipitation method could be used to produce fractionated products. The 7S and 11S globulin films exhibited better hydrogels at lower shear rates than the other SPIs; however, they were more difficult to uncover. The tensile strength of the graded films decreased by varying degrees. However, the elongation at the break of the upper soybean residue film considerably increased, reaching 70.47%. Moreover, the permeability and surface morphology of the film were enhanced or weakened. The fractionated products, 7S and 11S globulin films, exhibited better performance. Overall, this study provides a basis for the improved development and use of fractioned SPI products. Full article
(This article belongs to the Special Issue Functional Composite Biomaterials)
Show Figures

Figure 1

9 pages, 865 KiB  
Review
The Role of Green Fluorescent Protein (GFP) in Transgenic Plants to Reduce Gene Silencing Phenomena
by Hany A. El-Shemy, Mutasim M. Khalafalla and Masao Ishimoto
Curr. Issues Mol. Biol. 2009, 11(s1), 21-28; https://doi.org/10.21775/cimb.011.i21 - 2 Feb 2009
Cited by 3 | Viewed by 770
Abstract
The green fluorescent protein (GFP) of jellyfish (Aequorea victoria) has significant advantages over other reporter genes, because expression can be detected in living cells without any substrates. Recently, epigenetic phenomena are important to consider in plant biotechnology experiments for elucidate unknown [...] Read more.
The green fluorescent protein (GFP) of jellyfish (Aequorea victoria) has significant advantages over other reporter genes, because expression can be detected in living cells without any substrates. Recently, epigenetic phenomena are important to consider in plant biotechnology experiments for elucidate unknown mechanism. Therefore, soybean immature cotyledons were generated embryogenesis cells and engineered with two different gene constructs (pHV and pHVS) using gene gun method. Both constructs contain a gene conferring resistance to hygromycin (hpt) as a selective marker and a modified glycinin (11S globulin) gene (V3-1) as a target. However, sGFP(S65T) as a reporter gene was used only in pHVS as a reporter gene for study the relation between using sGFP(S65T) and gene silencing phenomena. Fluorescence microscopic was used for screening after the selection of hygromycin, identified clearly the expression of sGFP(S65T) in the transformed soybean embryos bombarded with the pHVS construct. Protein analysis was used to detect gene expression overall seeds using SDS-PAGE. Percentage of gene down regulation was highly in pHV construct compared with pHVS. Thus, sGFP(S65T) as a reporter gene in vector system may be play useful role for transgenic evaluation and avoid gene silencing in plants for the benefit of plant transformation system. Full article
Back to TopTop