Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (50)

Search Parameters:
Keywords = sorbic acid

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 325 KB  
Article
Chalk Yeasts Cause Gluten-Free Bread Spoilage
by Michela Pellegrini, Lucilla Iacumin, Francesca Coppola, Federica Barbieri, Chiara Montanari, Fausto Gardini and Giuseppe Comi
Microorganisms 2025, 13(6), 1385; https://doi.org/10.3390/microorganisms13061385 - 14 Jun 2025
Viewed by 1459
Abstract
Four different yeast strains were isolated from industrial gluten-free bread (GFB) purchased from a local supermarket. These strains, including Hyphopichia burtonii, Wickerhamomyces anomalus, Saccharomycopsis fibuligera, and Cyberlindnera fabianii, are responsible for spoilage, which consists of white powdery and filamentous [...] Read more.
Four different yeast strains were isolated from industrial gluten-free bread (GFB) purchased from a local supermarket. These strains, including Hyphopichia burtonii, Wickerhamomyces anomalus, Saccharomycopsis fibuligera, and Cyberlindnera fabianii, are responsible for spoilage, which consists of white powdery and filamentous colonies due to the fragmentation of hyphae into short-length fragments (dust-type spots) that is typical of the spoilage produced by chalk yeasts. The isolated strains were identified using genomic analysis. Among them, C. fabianii was also isolated, which is a rare ascomycetous opportunistic yeast species with low virulence attributes, uncommonly implicated in bread spoilage. The yeast growth was studied in vitro on Malt Extract Agar (MEA) at two temperatures (20 and 25 °C) and at different Aws (from 0.99 to 0.90). It was inferred that the temperature did not influence the growth. On the contrary, different Aws reduced the growth, but all the yeast strains could grow until a minimum Aw of about 0.90. Different preservatives (ethanol, hop extract, and sorbic and propionic acids) were used to prevent the growth. In MEA, the growth was reduced but not inhibited. In addition, the vapor-phase antimicrobial activity of different preservatives such as ethanol and hop extract was studied in MEA. Both preservatives completely inhibited the yeast growth either at 20 or at 25 °C. Both preservatives were found in GFB slices. Contrary to hop extract, 2% (v/w) ethanol completely inhibited all the strains. The spoilage was also confirmed by the presence of various compounds typically present in yeasts, derived from sugar fermentation and amino acid degradation. These compounds included alcohols, ketones, organic acids, and esters, and they were identified at higher concentrations in the spoiled samples than in the unspoiled samples. The concentration of acetic acid was low only in the spoiled samples, as this compound was consumed by yeasts, which are predominately present in the spoiled samples, to produce acetate esters. Full article
14 pages, 1691 KB  
Article
Determination of the Optimal Biotechnological Parameters for Industrial Production of Protein Hydrolysates for Animal Feed
by Marina Belyshkina, Tamara Kobozeva, Mikhail Zagoruiko, Oksana Serebryakova, Maisoon Shaaban, Tatiana Ananeva and Igor Bashmakov
Fermentation 2025, 11(4), 209; https://doi.org/10.3390/fermentation11040209 - 10 Apr 2025
Viewed by 823
Abstract
The main disadvantages of using soybean oil extraction waste as a raw feed material are its high contents of fiber, fat, and anti-nutritional factors. Therefore, several processing methods such as extrusion and hydrolysis are used to overcome these disadvantages and increase the availability [...] Read more.
The main disadvantages of using soybean oil extraction waste as a raw feed material are its high contents of fiber, fat, and anti-nutritional factors. Therefore, several processing methods such as extrusion and hydrolysis are used to overcome these disadvantages and increase the availability of high-quality proteins to animals from this by-product. This study is concerned with the hydrolysis of extruded soybean meal in the presence of bacterial alkaline proteases. The effects of various process parameters were investigated to determine the optimal process parameters for hydrolysis in terms of the total free amino acid and amine nitrogen contents. The experiment included two sets of parameters that were selected for comparison: the temperature and pH in ranges of t 45–50 °C, pH 8–11, compared to the temperature and pH ranges of t = 40–45 °C and pH 7–9, using three enzyme/substrate ratios (1:10, 1:20, and 1:30). The protein hydrolysate was stored for three months after it was treated with two different preservatives (sorbic acid and thymol). Based on the results, it was found that the total free amino acid content was higher when the temperature range was 45–50 °C, the pH range was 8–11, and sorbic acid was used as a preservative. Full article
(This article belongs to the Section Industrial Fermentation)
Show Figures

Figure 1

18 pages, 933 KB  
Article
Formulation, Quality Control and Stability Study of Pediatric Oral Dextrose Gel
by Edouard Lamy, Caroline Orneto, Oumil Her Abdou Ali, Lyna Kireche, Fanny Mathias, Cyrielle Bouguergour, Florence Peyron, Nicolas Primas, Christophe Sauzet, Philippe Piccerelle, Anne-Marie Maillotte, Veronique Brevaut-Malaty, Pascal Rathelot, Patrice Vanelle and Christophe Curti
Pharmaceuticals 2025, 18(2), 204; https://doi.org/10.3390/ph18020204 - 3 Feb 2025
Cited by 1 | Viewed by 2209
Abstract
Background/Objective: Little information is available on the stability and quality controls of compounded 40% dextrose gel required to ensure its safe use in the treatment and prevention of neonatal hypoglycemia. Whether its efficacy relies on buccal absorption also remains uncertain. This study investigates [...] Read more.
Background/Objective: Little information is available on the stability and quality controls of compounded 40% dextrose gel required to ensure its safe use in the treatment and prevention of neonatal hypoglycemia. Whether its efficacy relies on buccal absorption also remains uncertain. This study investigates the stability, microbiological safety, rheological properties and dextrose diffusion of a compounded 40% oral dextrose gel, ensuring it can be widely compounded and stored for clinical use. Methods: A 40% dextrose gel compounded with anhydrous dextrose, carboxymethylcellulose, citric acid, sorbic acid and sterile water was subjected to quality control measures including a dextrose content assay, degradation product analysis, microbiological testing and preservative efficacy. Stability studies were conducted at refrigerated (4–8 °C) and ambient temperatures for 7 days and 3 months, respectively. Rheological properties were assessed, and dextrose permeation was measured through an artificial membrane model that mimics a biological membrane. Results: The compounded gel demonstrated stability for up to 7 days at ambient temperature and 90 days when refrigerated. The dextrose content remained within the acceptable range (90–110%) and microbiological tests confirmed compliance with safety standards. The gel exhibited the consistent rheological properties and shear-thinning behavior appropriate for oral mucosal administration. In vitro permeation studies showed no evidence of dextrose diffusion with a long lag time followed by a low steady-state permeation flux. Conclusions: This study validates the compounding process of a stable 40% oral dextrose gel formulation for neonatal hypoglycemia management, which meets quality control criteria and can be safely administered in clinical practice, offering a cost-effective and safe alternative for neonatal care. Full article
(This article belongs to the Special Issue Pharmaceutical Formulation Characterization Design)
Show Figures

Figure 1

14 pages, 700 KB  
Article
Assessing Dietary Exposure Risk to Food Preservatives Among the Eating-Out Population in Taiwan Using the Total Diet Study Method
by Hao-Hsiang Ku, Shih-Cheng Yang, Huai-An Hsiao, Jui-Sheng Chen and Min-Pei Ling
Foods 2025, 14(3), 365; https://doi.org/10.3390/foods14030365 - 23 Jan 2025
Cited by 2 | Viewed by 2699
Abstract
In recent years, due to the rapid pace of urbanization and increasingly hectic modern lifestyles that leave little time for home cooking, more and more people prefer to dine at food stands, restaurants, or supermarkets due to convenience. This type of people are [...] Read more.
In recent years, due to the rapid pace of urbanization and increasingly hectic modern lifestyles that leave little time for home cooking, more and more people prefer to dine at food stands, restaurants, or supermarkets due to convenience. This type of people are often called the eating-out population. The general public may have a concept that most of the food items consumed by people eating out are first prepared for storage by vendors and are likely to contain more food preservatives. Excessive exposure to benzoic acid (BA), sorbic acid (SA), and dehydroacetic acid (DHA), which account for the highest number of violations of the amount of preservatives permitted in food, may cause potential human health risk. The purpose of this study was to investigate the human health risks of consuming preservatives used in food among for Taiwanese people who eat out. We applied the total diet study (TDS) method to analyze the concentrations of BA, SA, and DHA in the food items frequently consumed when people dine outside. The hazard index in percent acceptable daily intake (%ADI) of BA and SA for four exposure groups classified by age were calculated. In high-intake consumers, the highest hazard index of BA was 2.5%ADI for the 6–9 years old age group of the eating-out population, which still fell within the acceptable risk range. In addition, the risk appeared to be decreasing year-on-year, which may be related to year-on-year improvements of the way food products are processed in the food industry. Full article
(This article belongs to the Special Issue Risk Assessment in Food Safety)
Show Figures

Figure 1

17 pages, 10109 KB  
Article
Development of Thin Film Microextraction with Natural Deep Eutectic Solvents as ‘Eutectosorbents’ for Preconcentration of Popular Sweeteners and Preservatives from Functional Beverages and Flavoured Waters
by Justyna Werner and Daria Mysiak
Molecules 2024, 29(19), 4573; https://doi.org/10.3390/molecules29194573 - 26 Sep 2024
Cited by 7 | Viewed by 1818
Abstract
An eco-friendly method for the determination of sweeteners (aspartame, acesulfame-K) and preservatives (benzoic acid, sorbic acid, methylparaben, ethylparaben) in functional beverages and flavoured waters using thin film microextraction (TFME) and high-performance liquid chromatography with UV detection (HPLC-UV) was proposed. A series of fourteen [...] Read more.
An eco-friendly method for the determination of sweeteners (aspartame, acesulfame-K) and preservatives (benzoic acid, sorbic acid, methylparaben, ethylparaben) in functional beverages and flavoured waters using thin film microextraction (TFME) and high-performance liquid chromatography with UV detection (HPLC-UV) was proposed. A series of fourteen green and renewable solidified natural deep eutectic solvents (NADESs) were prepared and tested as ‘eutectosorbents’ in TFME for the first time. In the proposed method, the NADES containing acetylcholine chloride and 1-docosanol at a 1:3 molar ratio was finally chosen to coat a support. Four factors, i.e., the mass of the NADES, pH of the samples, extraction time, and desorption time, were tested in the central composite design to select the optimal TFME conditions. Limits of detection were equal to 0.022 µg mL−1 for aspartame, 0.020 µg mL−1 for acesulfame-K, 0.018 µg mL−1 for benzoic acid, 0.026 µg mL−1 for sorbic acid, 0.013 µg mL−1 for methylparaben, and 0.011 µg mL−1 for ethylparaben. Satisfactory extraction recoveries between 82% and 96% were achieved with RSDs lower than 6.1% (intra-day) and 7.4% (inter-day). The proposed ‘eutectosorbent’ presented good stability that enabled effective extractions for 16 cycles with recovery of at least 77%. The proposed NADES-TFME/HPLC-UV method is highly sensitive and selective. However, the use of a solid NADES as a sorbent, synthesized without by-products, without the need for purification, and with good stability on a support with the possibility of reusability increases the ecological benefit of this method. The greenness aspect of the method was evaluated using the Complex modified Green Analytical Procedure Index protocol and is equal to 84/100. Full article
(This article belongs to the Special Issue New Advances in Deep Eutectic Solvents)
Show Figures

Graphical abstract

21 pages, 1993 KB  
Review
Preventing Fungal Spoilage from Raw Materials to Final Product: Innovative Preservation Techniques for Fruit Fillings
by Teresa Bento de Carvalho, Beatriz Nunes Silva, Elisabetta Tomé and Paula Teixeira
Foods 2024, 13(17), 2669; https://doi.org/10.3390/foods13172669 - 24 Aug 2024
Cited by 19 | Viewed by 9982
Abstract
Spoilage fungi are a significant cause of financial loss in the food and beverage industry each year. These fungi thrive in challenging environments characterized by low acidity, low water activity and high sugar content, all of which are common in fruit fillings used [...] Read more.
Spoilage fungi are a significant cause of financial loss in the food and beverage industry each year. These fungi thrive in challenging environments characterized by low acidity, low water activity and high sugar content, all of which are common in fruit fillings used in pastry products. Fruit fillings are therefore highly susceptible to fungal spoilage. Fungal growth can cause sensory defects in foods, such as changes in appearance, odor, flavor or texture, and can pose health risks due to the production of mycotoxins by certain mold species. To reduce food loss and waste and extend product shelf-life, it is critical that we prevent fungal spoilage. Synthetic chemicals such as sorbic acid and potassium sorbate are commonly used as preservatives to prevent fungal spoilage. However, with consumer demand for ‘natural’ and ‘chemical-free’ foods, research into clean-label preservative alternatives to replace chemical preservatives has increased. The objectives of this review are (i) to provide an overview of the sources of fungal contamination in fruit filling production systems, from pre-harvest of raw materials to storage of the final product, and to identify key control factors; and (ii) to discuss preservation techniques (both conventional and novel) that can prevent fungal growth and extend the shelf-life of fruit fillings. Full article
(This article belongs to the Section Food Packaging and Preservation)
Show Figures

Figure 1

17 pages, 4662 KB  
Article
Fast Determination of Eleven Food Additives in River Water Using C18 Functionalized Magnetic Organic Polymer Nanocomposite Followed by High-Performance Liquid Chromatography
by Chao Lei, Shun Zhang, Wen-Xin Liu, Ming-Li Ye and Yong-Gang Zhao
Molecules 2024, 29(15), 3675; https://doi.org/10.3390/molecules29153675 - 2 Aug 2024
Cited by 4 | Viewed by 1863
Abstract
A novel magnetic nanomaterial with Fe3O4 as the core, PS-DVB as the shell layer, and the surface modified with C18 (C18−PS−DVB−Fe3O4) had been synthesized by seeded emulsion polymerization. C18−PS−DVB−Fe3O4 retains the advantages of [...] Read more.
A novel magnetic nanomaterial with Fe3O4 as the core, PS-DVB as the shell layer, and the surface modified with C18 (C18−PS−DVB−Fe3O4) had been synthesized by seeded emulsion polymerization. C18−PS−DVB−Fe3O4 retains the advantages of the chemical stability, large porosity, and uniform morphology of organic polymers and has the magnetic properties of Fe3O4. A simple, flexible, and efficient magnetic dispersive solid phase extraction (Mag-dSPE) method for the extraction of preservatives, sweeteners, and colorants in river water was established. C18−PS−DVB−Fe3O4 was used as an adsorbent for Mag-dSPE and was coupled with high-performance liquid chromatography (HPLC) to detect 11 food additives: acesulfame, amaranth, benzoic acid, tartrazine, saccharin sodium, sorbic acid, dehydroacetic acid, sunset yellow, allura red, brilliant blue, and erythrosine. Under the optimum extraction conditions, combined with ChromCoreTMAQC18 (5 μm, 4.6 × 250 mm), 20 mmol/L ammonium acetate aqueous solution and methanol were used as mobile phases, and the detection wavelengths were 240 nm and 410 nm. The limits of detection (LODs) of 11 food additives were 0.6–3.1 μg/L with satisfactory recoveries ranging from 86.53% to 106.32%. And the material could be reused for five cycles without much sacrifice of extraction efficiency. The proposed method has been used to determine food additives in river water samples, and results demonstrate the applicability of the proposed C18−PS−DVB−Fe3O4 Mag-dSPE coupled with the HPLC method to environment monitoring analysis. Full article
(This article belongs to the Topic Application of Nanomaterials in Environmental Analysis)
Show Figures

Figure 1

13 pages, 1120 KB  
Article
Bread Improvement with Nutraceutical Ingredients Obtained from Food By-Products: Effect on Quality and Technological Aspects
by Giulio Scappaticci, Nicola Mercanti, Ylenia Pieracci, Corrado Ferrari, Roberto Mangia, Andrea Marianelli, Monica Macaluso and Angela Zinnai
Foods 2024, 13(6), 825; https://doi.org/10.3390/foods13060825 - 7 Mar 2024
Cited by 3 | Viewed by 2498
Abstract
The use of by-products as functional ingredients for bread recipes may open up new horizons in terms of product innovation to increase nutraceutical characteristics and/or shelf-life. In this research, the ability of residual products from important food chains (Citrus and wine) to [...] Read more.
The use of by-products as functional ingredients for bread recipes may open up new horizons in terms of product innovation to increase nutraceutical characteristics and/or shelf-life. In this research, the ability of residual products from important food chains (Citrus and wine) to influence the water binding capacity of dough and bread was investigated in order to create industrial breads of high quality with prolonged shelf-life in the absence of any chemical additives (e.g., ethanol, sorbic acid, and propionic acid). The product under study is the ‘Pan Bauletto bianco con olio EVO’ (white bakery bread with EVO oil), an ‘industrial bread’ type usually treated with ethanol before being marketed, aiming to prolong its short shelf-life. The effect of the addition of different amounts of pectin (Citrus supply chain) and grape pomace (wine supply chain), in combination or not, has shown promising results from both a technological point of view and the increasing shelf-life, allowing to obtain products with high nutraceutical value and interesting properties. Full article
(This article belongs to the Section Food Packaging and Preservation)
Show Figures

Figure 1

28 pages, 2233 KB  
Article
Evaluation of the Effect of an Olive Phenolic Extract on the Secondary Shelf Life of a Fresh Pesto
by Beatrice Sordini, Stefania Urbani, Sonia Esposto, Roberto Selvaggini, Luigi Daidone, Gianluca Veneziani, Maurizio Servili and Agnese Taticchi
Antioxidants 2024, 13(1), 128; https://doi.org/10.3390/antiox13010128 - 20 Jan 2024
Cited by 4 | Viewed by 2608
Abstract
Recent advances in the olive oil sector aim to develop sustainable strategies for the valorisation of mechanical extraction co-products as a rich source of bioactive compounds with antioxidant and antimicrobial activities. In this work, we studied the effectiveness of a phenolic extract (PE) [...] Read more.
Recent advances in the olive oil sector aim to develop sustainable strategies for the valorisation of mechanical extraction co-products as a rich source of bioactive compounds with antioxidant and antimicrobial activities. In this work, we studied the effectiveness of a phenolic extract (PE) from olive vegetation water (OVW) as a new antioxidant of natural origin for improving the quality and extending the secondary shelf life (SSL) of a fresh basil pesto sold as a served loose product at the deli counter, simulating the storage conditions after packaging, opening, and serving. For that, the PE was mixed with the oily phase of fresh pesto in two different concentrations and compared to a control pesto (CTRL) made with the addition of common additives (ascorbic acid (E300) and sorbic acid (E200)). The physicochemical parameters, phenolic and volatile composition, sensory profiles, and antioxidant capacity of the experimental pesto samples were evaluated after opening. The results proved that the enrichment with the PE improved the stability of the pesto and, hence, its overall quality. The PE provided higher protection than the CTRL against primary and secondary oxidation at both concentrations tested and delayed the accumulation of the volatile compounds responsible for the ‘rancid’ off-flavour up to 7 days after first opening, while also preserving higher levels of the pesto phytonutrients (such as the rosmarinic, caffeic, and chicoric acids and α-tocopherol). These results show that the generation of food waste in households, catering chains, retail, and/or restaurants can be reduced, improving the sustainability of the food industry and the competitiveness of the olive oil sector. Full article
(This article belongs to the Special Issue Impact of Processing on Antioxidant Rich Foods - 2nd Edition)
Show Figures

Figure 1

16 pages, 966 KB  
Article
Simultaneous Analysis of Organic Acids, Glycerol and Phenolic Acids in Wines Using Gas Chromatography-Mass Spectrometry
by Violeta Garcia-Viñola, Candela Ruiz-de-Villa, Jordi Gombau, Montse Poblet, Albert Bordons, Cristina Reguant and Nicolas Rozès
Foods 2024, 13(2), 186; https://doi.org/10.3390/foods13020186 - 5 Jan 2024
Cited by 17 | Viewed by 4723
Abstract
Fermented beverages, particularly wines, exhibit variable concentrations of organic and phenolic acids, posing challenges in their accurate determination. Traditionally, enzymatic methods or chromatographic analyses, mainly high-performance liquid chromatography (HPLC), have been employed to quantify these compounds individually in the grape must or wine. [...] Read more.
Fermented beverages, particularly wines, exhibit variable concentrations of organic and phenolic acids, posing challenges in their accurate determination. Traditionally, enzymatic methods or chromatographic analyses, mainly high-performance liquid chromatography (HPLC), have been employed to quantify these compounds individually in the grape must or wine. However, chromatographic analyses face limitations due to the high sugar content in the grape must. Meanwhile, phenolic acids, found in higher quantities in red wines than in white wines, are typically analyzed using HPLC. This study presents a novel method for the quantification of organic acids (OAs), glycerol, and phenolic acids in grape musts and wines. The approach involves liquid-liquid extraction with ethyl acetate, followed by sample derivatization and analysis using gas chromatography-mass spectrometry (GC-MS) in selected ion monitoring (SIM) detection mode. The results indicated successful detection and quantification of all analyzed compounds without the need for sample dilution. However, our results showed that the method of adding external standards was more suitable for quantifying wine compounds, owing to the matrix effect. Furthermore, this method is promising for quantifying other metabolites present in wines, depending on their extractability with ethyl acetate. Fermented beverages, particularly wines, exhibit variable concentrations of organic and phenolic acids, posing challenges in their accurate determination. Traditionally, enzymatic methods or chromatographic analyses, mainly high-performance liquid chromatography (HPLC), have been employed to quantify these compounds individually in the grape must or wine. The approach of this proposed method involves (i) methoximation of wine compounds in a basic medium, (ii) acidification with HCl, (iii) liquid-liquid extraction with ethyl acetate, and (iv) silyl derivatization to analyze samples with gas chromatography-mass spectrometry (GC-MS) in ion monitoring detection mode (SIM). The results indicated successful detection and quantification of all analyzed compounds without the need for sample dilution. However, our results showed that the method of adding external standards was more suitable for quantifying wine compounds, owing to the matrix effect. Furthermore, this method is promising for quantifying other metabolites present in wines, depending on their extractability with ethyl acetate. In other words, the proposed method may be suitable for profiling (targeted) or fingerprinting (untargeted) strategies to quantify wine metabolites or to classify wines according to the type of winemaking process, grape, or fermentation. Full article
Show Figures

Graphical abstract

11 pages, 565 KB  
Article
Simultaneous Determination of 12 Preservatives in Pastries Using Gas Chromatography–Mass Spectrometry
by Liyuan Wang, Zhengyan Hu, Jing Chen, Tianjiao Wang, Pinggu Wu and Ying Ying
Foods 2023, 12(20), 3819; https://doi.org/10.3390/foods12203819 - 18 Oct 2023
Cited by 5 | Viewed by 3045
Abstract
(1) Background: Preservatives may pose a potential threat to human health. To ensure food safety, this study has devised a method that concurrently detects a dozen preservatives (acetic acid, propionic acid, dehydroacetic acid, benzoic acid, sorbic acid, dimethyl fumarate, methyl parahydroxybenzoate, ethyl parahydroxybenzoate, [...] Read more.
(1) Background: Preservatives may pose a potential threat to human health. To ensure food safety, this study has devised a method that concurrently detects a dozen preservatives (acetic acid, propionic acid, dehydroacetic acid, benzoic acid, sorbic acid, dimethyl fumarate, methyl parahydroxybenzoate, ethyl parahydroxybenzoate, propyl parahydroxybenzoate, isopropyl parahydroxybenzoate, butyl parahydroxybenzoate, and isobutyl parahydroxybenzoate) in pastry, utilizing gas chromatography–mass spectrometry. (2) Methods: The pastry samples were acidified with hydrochloric acid, extracted with acetonitrile via vortexing, purified by hexane and saturated with sodium chloride solution to remove lipids and impurities, and then concentrated via nitrogen blowing. The method was then quantitatively analyzed using GC-MS with the internal standard method after methanol re-dissolution. (3) Results: The results showed that the content of the 12 preservatives had good linearity within the range of 1.0–50 μg/mL, with correlation coefficients all greater than 0.99. The method detection limit was 0.04–2.00 mg/kg and the quantification limit was 0.12–6.67 mg/kg. The average recovery rates of the samples at three different spiked concentrations of low, medium, and high were 70.18–109.22%, and the relative standard deviations were 1.82–9.79% (n = 6). (4) Conclusions: This method requires a small amount of sample, has high sensitivity, and is simple and fast to operate, making it suitable for the simultaneous determination of 12 preservatives in pastry. This approach contributes to the effective surveillance and regulation of preservative usage in pastries, thereby safeguarding public well-being. Full article
Show Figures

Figure 1

10 pages, 1754 KB  
Article
Effects of Microencapsulated Blend of Organic Acids and Pure Botanicals on the Ruminal Microbiota in an In Vitro Dual-Flow Continuous Culture System
by Richard R. Lobo, Luiz Fernando Wurdig Roesch, Ester Grilli and Antonio P. Faciola
Fermentation 2023, 9(8), 730; https://doi.org/10.3390/fermentation9080730 - 4 Aug 2023
Cited by 1 | Viewed by 2349
Abstract
The objective of the study was to evaluate the effects of dietary supplementation of a microencapsulated blend of organic acids and pure botanicals (mOAPBs) on the solid- and liquid-associated microenvironment (SAM and LAM, respectively) of the ruminal microbiome using an in vitro dual-flow [...] Read more.
The objective of the study was to evaluate the effects of dietary supplementation of a microencapsulated blend of organic acids and pure botanicals (mOAPBs) on the solid- and liquid-associated microenvironment (SAM and LAM, respectively) of the ruminal microbiome using an in vitro dual-flow continuous culture system. Ruminal content was incubated in eight fermenters and the basal diet was supplemented with increasing levels of mOAPBs (0; 0.12; 0.24; or 0.36% DM) which contained 55.6% hydrogenated and refined palm oil, 25% citric acid, 16.7% sorbic acid, 1.7% thymol, and 1% vanillin. All diets had a similar nutritional composition (16.1 CP, 30.9 NDF, and 32.0 starch, % DM basis). After 7 days of adaptation, a pooled sample across the days was collected in each period for identification of the microbiome of SAM and LAM. There was no effect of mOAPB on alpha-, beta-diversity, and microbial abundance. The SAM had a greater bacterial diversity and the principal component analysis demonstrated that it had a divergent bacterial profile from LAM. Additionally, SAM had an increased abundance of carbohydrate-degrading microorganisms. In summary, mOAPBs did not modulate the ruminal microbiome. The microenvironment microbiome of solid- and liquid-associated microenvironments were different, with SAM having a greater carbohydrate-degrading microorganism population. Full article
(This article belongs to the Special Issue In Vitro Digestibility and Ruminal Fermentation Profile)
Show Figures

Figure 1

10 pages, 671 KB  
Article
Development of Optimized Feed for Lipid Gain in Zophobas morio (Coleoptera: Tenebrionidae) Larvae
by Tae-Won Goo, Dooseon Hwang, Kyu-Shik Lee, Seung Hun Lee and Eun-Young Yun
Animals 2023, 13(12), 1958; https://doi.org/10.3390/ani13121958 - 12 Jun 2023
Cited by 4 | Viewed by 2763
Abstract
Super mealworm Zophobas morio (Coleoptera: Tenbrionidea) larvae (ZML) are being investigated as potential candidates for biodiesel production. Several studies have revealed that the crude fat content of ZML can be enhanced by increasing the feed consumed. We aimed to develop an optimized ZML [...] Read more.
Super mealworm Zophobas morio (Coleoptera: Tenbrionidea) larvae (ZML) are being investigated as potential candidates for biodiesel production. Several studies have revealed that the crude fat content of ZML can be enhanced by increasing the feed consumed. We aimed to develop an optimized ZML feed that enhances the lipid gain using 10 different ingredients. The results revealed that the highest lipid content was observed in ZML fed food waste (FW). Furthermore, we found that the weight gain of ZML improved when fed fermented FW using three selected microorganisms (3M), Lactobacillus fermentum, Lactobacillus acidophilus, and Pediococcus acidilactici. We also analyzed the effects of preservatives on the weight gain of ZML, and the results revealed that ZML fed 5-day 3M-fermented FW (FFW) containing 0.05% sorbic acid exhibited the highest weight gain. Based on these findings, we produced solid FFW containing 0.05% sorbic acid using 5% agar and established a manufacturing process. Body composition analysis revealed that the lipid content of the ZML fed manufactured feed was higher than that of the ZML fed wheat bran. Therefore, this study suggests that solid FFW containing 0.05% sorbic acid should be used as a commercial feed for ZML breeding to enhance lipid gain, making it an economical substrate for raw biodiesel production. Full article
(This article belongs to the Section Animal Nutrition)
Show Figures

Figure 1

14 pages, 2415 KB  
Article
Alternative Enzyme Inhibition Assay for Safety Evaluation of Food Preservatives
by Elena N. Esimbekova, Anastasia A. Asanova and Valentina A. Kratasyuk
Life 2023, 13(6), 1243; https://doi.org/10.3390/life13061243 - 24 May 2023
Cited by 7 | Viewed by 3980
Abstract
While food additives are widely used in the modern food industry and generally are important in maintaining the ability to provide food for the increasing world population, the progress occurring in this field is much ahead of the evaluation of their possible consequences [...] Read more.
While food additives are widely used in the modern food industry and generally are important in maintaining the ability to provide food for the increasing world population, the progress occurring in this field is much ahead of the evaluation of their possible consequences for human health. The present study suggests a set of single- and multi-enzyme assay systems for revealing toxic effects of the most widely spread food preservatives, such as sorbic acid (E200), potassium sorbate (E202), and sodium benzoate (E211) at the primary molecular level of their interaction with enzymes. The assay is based on the inhibition of enzyme activity by toxic substances proportional to the amount of the toxicants in the sample. The single-enzyme assay system based on NAD(P)H:FMN oxidoreductase (Red) proved to be most sensitive to the impact of food additives, with the IC50 values being 29, 14, and 0.02 mg/L for sodium benzoate, potassium sorbate, and sorbic acid, respectively, which is considerably lower than their acceptable daily intake (ADI). No reliable change in the degree of inhibition of the enzyme assay systems by food preservatives was observed upon elongating the series of coupled redox reactions. However, the inhibition of activity of the multi-enzyme systems by 50% was found at a preservative concentration below the maximum permissible level for food. The inhibition effect of food preservatives on the activity of butyrylcholinesterase (BChE), lactate dehydrogenase (LDH), and alcohol dehydrogenase (ADH) was either absent or found in the presence of food preservatives at concentrations significantly exceeding their ADI. Among the preservatives under study, sodium benzoate is considered to be the safest in terms of the inhibiting effect on the enzyme activity. The results show that the negative effect of the food preservatives at the molecular level of organization of living things is highly pronounced, while at the organismal level it may not be obvious. Full article
(This article belongs to the Special Issue Food and Environmental Toxicology)
Show Figures

Figure 1

14 pages, 1819 KB  
Article
Chemical Characterization of Trichoderma spp. Extracts with Antifungal Activity against Cocoa Pathogens
by Ivan Chóez-Guaranda, Fernando Espinoza-Lozano, Dennys Reyes-Araujo, Christian Romero, Patricia Manzano, Luis Galarza and Daynet Sosa
Molecules 2023, 28(7), 3208; https://doi.org/10.3390/molecules28073208 - 4 Apr 2023
Cited by 14 | Viewed by 5663
Abstract
Ecuador is one of the major cocoa producers worldwide, but its productivity has lately been affected by diseases. Endophytic biocontrol agents have been used to minimize pathogenic effects; however, compounds produced by endophytes are minimally understood. This work presents the chemical characterization of [...] Read more.
Ecuador is one of the major cocoa producers worldwide, but its productivity has lately been affected by diseases. Endophytic biocontrol agents have been used to minimize pathogenic effects; however, compounds produced by endophytes are minimally understood. This work presents the chemical characterization of the Trichoderma species extracts that proved inhibition against cocoa pathogens. Solid–liquid extraction was performed as a partitioning method using medium with the fungal mycelia of Trichoderma reesei (C2A), Trichoderma sp. (C3A), Trichoderma harzianum (C4A), and Trichoderma spirale (C10) in ethyl acetate individually. The extract of T. spirale (C10) exhibited the growth inhibition (32.97–47.02%) of Moniliophthora perniciosa at 10 µg/mL, while a slight stimulation of Moniliophthora roreri was shown by the extracts of T. reesei (C2A) and T. harzianum (C4A) at higher concentrations. The inhibitory activity could be related to alkaloids, lactones, quinones, flavonoids, triterpenes, and sterols, as indicated by chemical screening and antifungal compounds, such as widdrol, β-caryophyllene, tyrosol, butyl isobutyrate, sorbic acid, palmitic acid, palmitelaidic acid, linoleic acid, and oleic acid, which were identified by gas chromatography–mass spectrometry (GC-MS). The results showed that the extracts, particularly T. spirale (C10), have the potential as biocontrol agents against witches’ broom disease; however, further studies are needed to confirm their effectiveness. Full article
Show Figures

Graphical abstract

Back to TopTop