Chalk Yeasts Cause Gluten-Free Bread Spoilage
Abstract
1. Introduction
2. Material and Methods
2.1. Microbial Analysis
2.2. Identification of Isolated Yeasts
2.3. Inoculum Preparation
2.4. Growth of Chalk Yeasts (Colony Diameter Measured) on MEA
2.5. Antimicrobial Activity Versus Chalk Yeasts
2.6. Vapor-Phase Antimicrobial Activity of Different Compounds ([35], Modified)
2.7. Antimicrobial Activity of Hop Extract and Ethanol in Gluten-Free Bread
2.8. Physicochemical Determination
2.9. Volatile Compound Analysis
2.10. Sensory Analysis
2.11. Statistical Analysis
3. Results and Discussion
3.1. Physicochemical and Nutritional Aspects of GFB
3.2. Species Isolated in GFB
3.3. Influence of Temperature and Aw on Chalk Yeast Growth on MEA
3.4. Influence of Preservatives on Chalk Yeast Growth in MEA
3.5. Vapor-Phase Antimicrobial Activity of Ethanol and Hop Extract
3.6. Antimicrobial Activity of Hop Extract and Ethanol in Gluten-Free Bread
3.7. Sensorial Analysis
3.8. Volatile Compound Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- William, D.A.; Armel, A.A.J.; Fabien, D.D.F.; Inocent, G. Effect of Bleaching and Fermentation on the Physico-Chemical, Pasting Properties and Bread Baking Performance of Various Gluten Free Flour. Meas. Food 2023, 9, 100073. [Google Scholar] [CrossRef]
- do Nascimento, A.B.; Fiates, G.M.R.; Dos Anjos, A.; Teixeira, E. Gluten-free is not enough-perception and suggestions of celiac consumers. Int. J. Food Sci. Nutr. 2014, 65, 394–398. [Google Scholar] [CrossRef]
- Espinosa-Ramírez, J.; Garzon, R.; Serna-Saldivar, S.O.; Rosell, C. Mimicking gluten functionality with β-conglycinin concentrate: Evaluation in gluten free yeast-leavened breads. Food Res. Int. 2018, 106, 64–70. [Google Scholar] [CrossRef]
- Xhakollari, V.; Canavari, M.; Osman, M. Factors Affecting Consumers’ Adherence to Gluten-Free Diet, a Systematic Review. Trends Food Sci. Technol. 2019, 85, 23–33. [Google Scholar] [CrossRef]
- Available online: https://www.industryarc.com/Research/Gluten-Free-Flour-Market-Research-507330-1 (accessed on 21 January 2025).
- Šmídová, Z.; Rysová, J. Gluten-Free Bread and Bakery Products Technology. Foods 2022, 11, 480. [Google Scholar] [CrossRef] [PubMed]
- Kieffer, R.; Schurer, F.; Köhler, P.; Wieser, H. Effect of hydrostatic pressure and temperature on the chemical and functional properties of wheat gluten: Studies on gluten, gliadin and glutenin. J. Cereal Sci. 2007, 45, 285–292. [Google Scholar] [CrossRef]
- Jan, K.N.; Panesar, P.S.; Singh, S. Optimization of antioxidant activity, textural and sensory characteristics of gluten-free cookies made from whole Indian quinoa flour. Leb. Wiss. Techn. 2018, 93, 573–582. [Google Scholar] [CrossRef]
- Jeong, D.; Chung, H.J. Physical, textural and sensory characteristics of legume-based gluten-free muffin enriched with waxy rice flour. Food Sci. Biotechn. 2019, 28, 87–97. [Google Scholar] [CrossRef]
- Krupa-Kozak, U.; Drabìnska, N.; Rosell, C.M.; Fadda, C.; Anders, A.; Jelìnski, T.; Ostaszyk, A. Broccoli leaf powder as an attractive by-product ingredient: Effect on batter behaviour, technological properties and sensory quality of gluten-free mini sponge cake. Int. J. Food Sci. Technol. 2019, 54, 1121–1129. [Google Scholar] [CrossRef]
- Debonne, E.; Meuninck, V.; Vroman, A.; Eeckhout, M. Influence of Environmental Growth Conditions on Chalk Yeasts Causing Bread Spoilage. LWT 2021, 148, 111756. [Google Scholar] [CrossRef]
- Garofalo, C.; Zannini, E.; Aquilanti, L.; Silvestri, G.; Fierro, O.; Picariello, G.; Clementi, F. Selection of sourdough lactobacilli with antifungal activity for use as biopreservatives in bakery products. J. Agric. Food Chem. 2012, 60, 7719–7728. [Google Scholar] [CrossRef] [PubMed]
- Fleet, G.H. Yeasts in foods and beverages: Impact on product quality and safety. Curr. Opin. Biotechnol. 2007, 18, 170–175. [Google Scholar] [CrossRef]
- Hernàndez, A.; Pérez-Nevado, F.; Ruiz-Moyano, S.; Serradilla, M.J.; Villalobos, M.C.; Martín, A.; Còrdoba, M.G. Spoilage yeasts: What are the sources of contamination of foods and beverages? Int. J. Food Microbiol. 2018, 286, 98–110. [Google Scholar] [CrossRef]
- Milanovìc, V.; Sabbatini, R.; Garofalo, C.; Cardinali, F.; Pasquini, M.; Aquilanti, L.; Osimani, A. Evaluation of the inhibitory activity of essential oils against spoilage yeasts and their potential application in yogurt. Int. J. Food Microbiol. 2021, 341, 109048. [Google Scholar] [CrossRef]
- Legan, J.D. Mould spoilage of bread: The problem and some solutions. Int. Biodeter. Biodegrad. 1993, 32, 33–53. [Google Scholar] [CrossRef]
- Deschuyffeleer, N.; Audenaert, K.; Samapundo, S.; Ameye, S.; Eeckhout, M.; Devlieghere, F. Identification and Characterization of Yeasts Causing Chalk Mould Defects on Par-Baked Bread. Food Microbiol. 2011, 28, 1019–1027. [Google Scholar] [CrossRef] [PubMed]
- Burgain, A.; Bensoussan, M.; Dantigny, P. Validation of a Predictive Model for the Growth of Chalk Yeasts on Bread. Int. J. Food Microbiol. 2015, 204, 47–54. [Google Scholar] [CrossRef] [PubMed]
- Giannone, V.; Pitino, I.; Pecorino, B.; Todaro, A.; Spina, A.; Lauro, M.R.; Tomaselli, F.; Restuccia, C. Effects of Innovative and Conventional Sanitizing Treatments on the Reduction of Saccharomycopsis fibuligera Defects on Industrial Durum Wheat Bread. Int. J. Food Microbiol. 2016, 235, 71–76. [Google Scholar] [CrossRef]
- Suhr, K.I.; Nielsen, P.V. Effect of weak acid preservatives on growth of bakery product spoilage fungi at different water activities and pH values. Int. J. Food Microbiol. 2004, 95, 67–78. [Google Scholar] [CrossRef]
- Suhr, K.I.; Nielsen, P.V. Food microbiology and safety inhibition of fungal growth on wheat and rye bread by modified atmosphere packaging and active packaging using. J. Food Sci. 2005, 70, M37–M44. [Google Scholar] [CrossRef]
- Saranraj, P.; Geetha, M. Microbial Spoilage of Bakery Products and Its Control by Preservatives. Int. J. Pharm. Biol. Arch. 2012, 3, 38–48. [Google Scholar]
- Dantigny, P.; Burgain, A.; Deniel, F.; Bensoussan, M. A model for the effect of pH on the growth of chalk yeasts. Int. J. Food Microbiol. 2014, 186, 49–54. [Google Scholar] [CrossRef] [PubMed]
- Colautti, A.; Orecchia, O.; Coppola, F.; Iacumin, L.; Comi, G. Cyberlindnera fabianii, an Uncommon Yeast Responsible for Gluten Bread Spoilage. Foods 2024, 13, 2381. [Google Scholar] [CrossRef]
- Decreto Ministeriale 27 Febbraio 1996, n. 209—Regolamento Concernente la Disciplina Degli Additivi Alimentari Consentiti Nella Preparazione e per la Conservazione Delle Sostanze Alimentari in Attuazione Delle Direttive n. 94/34/CE, n. 94/35/CE, n. 94/36/CE, n. 95/2/CE e n. 95/31/CE. (Gazzetta Ufficiale, Serie Generale n.96 del 24-04-1996—Suppl. Ordinario n. 69). Available online: https://www.gazzettaufficiale.it/eli/id/1996/04/24/096G0218/sg (accessed on 20 November 2024).
- Coda, R.; Cassone, A.; Rizzello, C.G.; Nionelli, L.; Cardinali, G.; Gobbetti, M. Antifungal activity of Wickerhamomyces anomalus and Lactobacillus plantarum during sourdough fermentation: Identification of novel compounds and long-term effect during storage of wheat bread. Appl. Environ. Microbiol. 2011, 77, 3484–3492. [Google Scholar] [CrossRef]
- Aloui, H.; Licciardello, F.; Khwaldia, K.; Hamdi, M.; Restuccia, C. Physical properties and antifungal activity of bioactive films containing Wickerhamomyces anomalus killer yeast and their application for preservation of oranges and control of postharvest green mold caused by Penicillium digitatum. Int. J. Food Microbiol. 2015, 200, 22–30. [Google Scholar] [CrossRef] [PubMed]
- Iacumin, L.; Cecchini, F.; Manzano, M.; Osualdini, M.; Boscolo, D.; Orlic, S.; Comi, G. Description of the Microflora of Sourdoughs by Culture-Dependent and Culture-Independent Methods. Food Microbiol. 2009, 26, 128–135. [Google Scholar] [CrossRef]
- Kurtzman, C.P.; Robnett, C.J. Identification and phylogeny of Ascomycetous yeast from analysis of nuclear large subunit (26S) ribosomal DNA partial sequences. Antonie Leeuwenhoek 1998, 73, 331–371. [Google Scholar] [CrossRef] [PubMed]
- Sheffield, V.C.; Cox, D.R.; Lerman, L.S.; Myers, R.M. Attachment of a 40-base-pair G+C-rich sequence (GC-clamp) to genomic DNA fragments by the polymerase chain reaction results in improved detection of single-base changes. Proc. Natl. Acad. Sci. USA 1989, 86, 232–236. [Google Scholar] [CrossRef]
- Altschul, S. Gapped BLAST and PSI-BLAST: A New Generation of Protein Database Search Programs. Nucleic Acids Res. 1997, 25, 3389–3402. [Google Scholar] [CrossRef]
- Virgili, R.; Simoncini, N.; Toscani, T.; Leggieri, M.C.; Formenti, S.; Battilani, P. Biocontrol of Penicillium nordicum growth and ochratoxin a production by native yeasts of dry cured ham. Toxins 2012, 4, 68–82. [Google Scholar] [CrossRef]
- Bleve, G.; Grieco, F.; Cozzi, G.; Logrieco, A.; Visconti, A. Isolation of epiphytic yeasts with potential for biocontrol of Aspergillus carbonarius and A. Niger on grape. Int. J. Food Microbiol. 2006, 108, 204–209. [Google Scholar] [CrossRef] [PubMed]
- Comi, G.; Colautti, A.; Bernardi, C.E.M.; Stella, S.; Orecchia, E.; Coppola, F.; Iacumin, L. Leuconostoc gelidum Is the Major Species Responsible for the Spoilage of Cooked Sausage Packaged in a Modified Atmosphere, and Hop Extract Is the Best Inhibitor Tested. Microorganisms 2024, 12, 1175. [Google Scholar] [CrossRef] [PubMed]
- Petchwattana, N.; Naknaen, P.; Cha-aim, K.; Suksri, C.; Sanetuntikul, J. Controlled release antimicrobial sachet prepared from poly (butylene succinate)/geraniol and ethylene vinyl alcohol coated paper for bread shelf-life extension application. Int. J. Biol. Macromol. 2021, 189, 251–261. [Google Scholar] [CrossRef]
- A.O.A.C. Official Methods of Analysis of the A.O.A.C, 16th ed.; Association of Official Analytical Chemists: Washington, DC, USA, 1990. [Google Scholar]
- FAO. Food Energy-Methods of Analysis and Conversion Factors; Food and Agriculture Organization of the United Nations: Rome, Italy, 2003. [Google Scholar]
- Bancalari, E.; Montanari, C.; Levante, A.; Alinovi, M.; Neviani, E.; Gardini, F.; Gatti, M. Lactobacillus paracasei 4341 as adjunct culture to enhance flavor in short ripened Caciotta-type cheese. Food Res. Int. 2020, 135, 109284. [Google Scholar] [CrossRef] [PubMed]
- NIST. NIST/NIH/EPA mass spectral library. In Standard Reference Database 1, NIST 11. Standard Reference Data Program; National Institute of Standards and Technology: Gaithersburg, MD, USA, 2011. [Google Scholar]
- ISO 4120:2004; Triangle Test Methodology. Standard Test Method for Sensory Analysis—General Guidance for the Design of Test Rooms. ISO: Geneva, Switzerland, 2024.
- Stone, H.; Sidel, J.L. Sensory Evaluation Practices, 3rd ed.; Elsevier Academic Press: San Diego, CA, USA, 2004. [Google Scholar]
- Aguiar, E.V.; Santos, F.G.; Krupa-Kozak, U.; Capriles, V.D. Nutritional facts regarding commercially availablegluten-free bread worldwide: Recent advances and future Challenges. Crit. Rev. Food Sci. Nutr. 2021, 63, 693–705. [Google Scholar] [CrossRef]
- Roman, L.; Belorio, M.; Gomez, M. Gluten-free breads: The gap between research and commercial reality. Compr. Rev. Food Sci. Food Saf. 2019, 18, 690–702. [Google Scholar] [CrossRef]
- Capriles, V.D.; Santos, F.G.; Aguiar, E.V. Innovative gluten- free breadmaking. In Trends in Wheat and Bread Making; Galanakis, C., Ed.; Academic Press: Cambridge, MA, USA, 2021; pp. 371–404. [Google Scholar] [CrossRef]
- USDA. Bread, White, Commercially Prepared (Includes Soft Bread Crumbs). U.S. Department of Agriculture. FoodData Central Search Results. 2020. Available online: https://fdc.nal.usda.gov/fdc-app.html#/fooddetails/174924/nutrients (accessed on 15 February 2023).
- USDA. Bread, Whole-Wheat, Commercially Prepared. U.S. Department of Agriculture. FoodData Central Search Results. 2020. Available online: https://fdc.nal.usda.gov/fdc-app.html#/food-details/335240/nutrients (accessed on 15 February 2023).
- Kulai, T.; Rashid, M. Assessment of nutritional adequacy of packaged gluten-free food products. Can. J. Diet. Pract. Res. 2014, 75, 186–190. [Google Scholar] [CrossRef]
- Wu, Q.; Zhu, W.; Wang, W.; Xu, Y. Effect of yeast species on the terpenoids profile of Chinese light-style liquor. Food Chem. 2015, 168, 390–395. [Google Scholar] [CrossRef]
- Morreale, F.; Angelino, D.; Pellegrini, N. Designing a scorebased method for the evaluation of the nutritional quality of the gluten-free bakery products and their gluten-containing counterparts. Plant Foods Hum. Nutr. 2018, 73, 154–159. [Google Scholar] [CrossRef]
- Fry, L.; Madden, A.M.; Fallaize, R. An investigation into the nutritional composition and cost of gluten-free versus regular food products in the UK. J. Hum. Nutr. Diet. 2018, 31, 108–120. [Google Scholar] [CrossRef]
- Allen, B.; Orfila, C. The availability and nutritional adequacy of gluten-free bread and pasta. Nutrients 2018, 10, 1370. [Google Scholar] [CrossRef] [PubMed]
- Legan, J.D.; Voysey, P.A. Yeast spoilage of bakery products and ingredients. J. Appl. Bacteriol. 1991, 70, 361–371. [Google Scholar] [CrossRef]
- Fleet, G. Spoilage yeasts. Crit. Rev. Biotechnol. 1992, 12, 1–44. [Google Scholar] [CrossRef]
- Deák, T.; Beuchat, L.R. Handbook of Food Spoilage Yeasts; CRC Press Inc.: Boca Raton, FL, USA, 1996. [Google Scholar]
- Praphailong, W.; Fleet, G.H. The effect of pH, sodium chloride, sucrose, sorbate and benzoate on the growth of food spoilage yeasts. Food Microbiol. 1997, 14, 459–468. [Google Scholar] [CrossRef]
- Arroyo, F.N.; Durán Quintana, M.C.; Garrido Fernández, A. Evaluation of primary models to describe the growth of Pichia anomala and study the temperature, NaCl and pH effects on its biological parameters by response surface methodology. J. Food Prot. 2005, 68, 562–570. [Google Scholar] [CrossRef] [PubMed]
- Gonzàlez, C.F.; Farìna, J.I.; de Figueroa, L.I.C. Optimized amylolytic enzymes production in Saccharomycopsis fibuligera DSM-70554. An approach to efficient cassava starch utilization. Enz. Microb. Technol. 2008, 42, 272–277. [Google Scholar] [CrossRef]
- Ramakrishna, N.; Lacey, J.; Smith, J.E. Effects of water activity and temperature on the growth of fungi interacting on barley grain. Mycol. Res. 1993, 97, 1393–1402. [Google Scholar] [CrossRef]
- Fredlund, E.; Druvefors, U.; Boysen, M.E.; Lingsten, K.J.; Schnurer, J. Physiological characteristics of the biocontrol yeast Pichia anomala J121. Fems Yeast Res. 2002, 2, 395–402. [Google Scholar] [CrossRef]
- Lahlali, R.; Bajji, M.; Serrhini, M.N.; Jijakli, M.H. Modelling the effect of temperature, water activity and solute on the in vitro growth of the biocontrol yeast Pichia anomala strain K. Biotechn. Agron. Soc. Environ. 2008, 12, 353–359. [Google Scholar]
- Simoncini, N.; Rotelli, D.; Virgili, R.; Quintavalla, S. Dynamics and characterization of yeasts during ripening of typical Italian dry-cured ham. Food Microbiol. 2007, 24, 577–584. [Google Scholar] [CrossRef]
- Gibson, A.M.; Baranyi, J.; Pitt, J.I.; Eyles, M.J.; Roberts, T.A. Predicting fungal growth: The effect of water activity on Aspergillus flavus and related species. Int. J. Food Microbiol. 1994, 23, 419–431. [Google Scholar] [CrossRef] [PubMed]
- Cuppers, H.G.; Oomes, S.; Brul, S. A model for the combined effect of temperature and salt concentration on growth rate of food spoilage moulds. Appl. Environ. Microbiol. 1997, 63, 3764–3769. [Google Scholar] [CrossRef] [PubMed]
- Nazzaro, F.; Ombra, M.N.; Coppola, F.; De Giulio, B.; d’Acierno, A.; Coppola, R.; Fratianni, F. Antibacterial Activity and Prebiotic Properties of Six Types of Lamiaceae Honey. Antibiotics 2024, 13, 868. [Google Scholar] [CrossRef] [PubMed]
- Lombardi, S.J.; Pannella, G.; Coppola, F.; Vergalito, F.; Maiuro, L.; Succi, M.; Sorrentino, E.; Tremonte, P.; Coppola, R. Plant-Based Ingredients Utilized as Fat Replacers and Natural Antimicrobial Agents in Beef Burgers. Foods 2024, 13, 3229. [Google Scholar] [CrossRef]
- Heydaryinia, A.; Veissi, M.; Sadadi, A. A comparative study of the effects of the two preservatives, sodium benzoate andpotassium sorbate on Aspergillus niger and Penicillium notatum. Jundishapur J. Microbiol. 2011, 4, 301–307. [Google Scholar]
- Theron, M.M.; Lues, J.F.R. Organic acids and meat preservation: A review. Food Rev. Int. 2007, 23, 141–158. [Google Scholar] [CrossRef]
- Rojo, M.C.; López, F.A.; Lerena, M.C.; Mercado, L.; Torres, A.; Combina, M. Evaluation of different chemical preservatives to control Zygosaccharomyces rouxii growth in high sugar culture media. Food Control 2015, 50, 349–355. [Google Scholar] [CrossRef]
- Vermeulen, A.; Daelman, J.; Van Steenkiste, J.; Devlieghere, F. Screening of different stress factors and development of growth/no growth models for Zygosaccharomyces rouxii in modified Sabouraud medium, mimicking intermediate moisture foods (IMF). Food Microbiol. 2012, 32, 389–396. [Google Scholar] [CrossRef]
- Comi, G.; Cantoni, C. Alterations in syrups with sour black cherries. Ind. delle Bevande 1984, 8, 79–83. [Google Scholar]
- Wang, H.; Hu, Z.; Long, F.; Guo, C.; Niu, C.; Yuan, Y.; Yue, T. Combined effect of sugar content and pH on the growth of a wild strain of Zygosaccharomyces rouxii and time for spoilage in concentrated apple juice. Food Control 2016, 59, 298–305. [Google Scholar] [CrossRef]
- Mattes, R.D.; Di Meglio, D. Ethanol perception and ingestion. Physiol. Behav. 2001, 72, 217–229. [Google Scholar] [CrossRef] [PubMed]
- Mojet, J.; Christ-Hazelhof, E.; Heidema, J. Taste perception with age: Generic or specific losses in threshold sensitivity to the five basic tastes? Chem. Senses 2001, 26, 845–860. [Google Scholar] [CrossRef] [PubMed]
- European Union (EU). Commission regulation (EU) No 1129/2011 of 11 November 2011 amending annex II to regulation (EC) No 1333/2005 of the European parliament and of the council by establishing a union list of food additives. Off. J. Eur. Union 2011, L295, 92. [Google Scholar]
- Iacumin, L.; Colautti, A.; Comi, G. Zygosaccharomyces rouxii is the predominant species responsible for the spoilage of the mix base for ice cream and ethanol is the best inhibitor tested. Food Microbiol. 2022, 102, 103929. [Google Scholar] [CrossRef]
- Valle Garcia, M.; Bernardi, O.; Venturini Copetti, M. The fungal problem in bread production: Insights of causes, consequences, and control methods. Curr. Opin. Food Sci. 2019, 29, 1–6. [Google Scholar] [CrossRef]
- Larson, A.E.; Yu, R.R.Y.; Lee, O.A.; Price, S.; Haas, G.J.; Johnson, E.A. Antimicrobial Activity of Hop Extracts against Listeria monocytogenes in Media and in Food. Int. J. Food Microbiol. 1996, 33, 195–207. [Google Scholar] [CrossRef]
- Hough, J.S.; Howard, G.A.; Slater, C.A. Bacteriostatic Activities of Hop Resin Materials. J. Inst. Brew. 1957, 63, 331–333. [Google Scholar] [CrossRef]
- Schmalreck, A.F.; Teuber, M.; Reininger, W.; Hartl, A. Structural Features Determining the Antibiotic Potencies of Natural and Synthetic Hop Bitter Resins, Their Precursors and Derivatives. Can. J. Microbiol. 1975, 21, 205–212. [Google Scholar] [CrossRef]
- Mizobuchi, S.; Sato, Y. Antifungal Activities of Hop Bitter Resins and Related Compounds. Agric. Biol. Chem. 1985, 49, 399–403. [Google Scholar] [CrossRef]
- Dzialo, M.C.; Park, R.; Steensels, J.; Lievens, B.; Verstrepen, K.J. Physiology, Ecology and Industrial Applications of Aroma Formation in Yeast. FEMS Microbiol. Rev. 2017, 41, S95–S128. [Google Scholar] [CrossRef]
- Tofalo, R.; Fusco, V.; Böhnlein, C.; Kabisch, J.; Logrieco, A.F.; Habermann, D.; Cho, G.S.; Benomar, N.; Abriouel, H.; Schmidt-Heydt, M.; et al. The Life and Times of Yeasts in Traditional Food Fermentations. Crit. Rev. Food Sci. Nutr. 2020, 60, 3103–3132. [Google Scholar] [CrossRef] [PubMed]
- Saerens, S.M.G.; Delvaux, F.R.; Verstrepen, K.J.; Thevelein, J.M. Production and Biological Function of Volatile Esters in Saccharomyces cerevisiae. Microb. Biotechnol. 2010, 3, 165–177. [Google Scholar] [CrossRef] [PubMed]
- El-Dalatony, M.M.; Saha, S.; Govindwar, S.P.; Abou-Shanab, R.A.I.; Jeon, B.H. Biological Conversion of Amino Acids to Higher Alcohols. Trends Biotechnol. 2019, 37, 855–869. [Google Scholar] [CrossRef]
- Liu, P.T.; Lu, L.; Duan, C.Q.; Yan, G.L. The Contribution of Indigenous Non-Saccharomyces Wine Yeast to Improved Aromatic Quality of Cabernet Sauvignon Wines by Spontaneous Fermentation. LWT 2016, 71, 356–363. [Google Scholar] [CrossRef]
- Nordström, K. Formation of ethyl acetate in fermentation with brewer’s yeasts. III partecipation of coenzyme A. J. Inst. Brew. 1962, 68, 398–407. [Google Scholar] [CrossRef]
- Mason, A.B.; Dufour, J.P. Alcohol Acetyltransferases and the Significance of Ester Synthesis in Yeast. Yeast 2000, 16, 1287–1298. [Google Scholar] [CrossRef]
Yeast Cocktails | Gluten-Free Bread | Hop Extract | Ethanol | Control |
---|---|---|---|---|
Saccharomycopsis fibuligera | 9 | 3 | 3 | 3 |
Hyphopichia burtonii | 9 | 3 | 3 | 3 |
Wickerhamomyces anomalus | 9 | 3 | 3 | 3 |
Cyberlindnera fabianii | 9 | 3 | 3 | 3 |
Parameters | Value % |
---|---|
Moisture | 45.0 ± 0.3 |
Fat | 3.0 ± 0.5 |
of which saturated fats | 0.5 ± 0.2 |
Carbohydrates | 40.0 ± 1.7 |
of which sugar | 1.6 ± 0.3 |
Protein | 4.6 ± 0.3 |
Salt | 1.1± 0.1 |
Ash | 1.2 ± 0.1 |
Fiber | 6.2 ± 1.2 |
pH | 5.34 ± 0.04 |
Aw | 0.978 ± 0.01 |
Kcal | 205 ± 10/100 g product |
Species | Accession Number | Number Isolates | % |
---|---|---|---|
Saccharomycopsis fibuligera | MK394133.1 | 60 | 40 |
Hyphopichia burtonii | MH532416.1 | 15 | 10 |
Wickerhamomyces anomalus | MN054504.1 | 24 | 16 |
Cyberlindnera fabianii | MN371966.1 | 51 | 34 |
Total isolates | 150 | 100 |
Aw | Wickerhamomyces anomalus | Cyberlindnera fabianii | Hyphopichia burtonii | Saccharomycopsis fibuligera | ||||
---|---|---|---|---|---|---|---|---|
20 °C | 25 °C | 20 °C | 25 °C | 20 °C | 25 °C | 20 °C | 25 °C | |
0.99 | 3.1 ± 0.3 a | 3.5 ± 0.1 a | 2.1 ± 0.3 a | 2.5 ± 0.1 a | 3.5 ± 0.2 *a | 3.9 ± 0.1 *a | 4.7 ± 0.3 a | 5.0 ± 0.3 a |
0.98 | 2.3 ± 0.3 b | 2.5 ± 0.1 b | 1.3 ± 0.3 b | 1.5 ± 0.1 b | 2.3 ± 0.1 *b | 2.8 ± 0.2 *b | 4.2± 0.4 b | 4.1 ± 0.2 b |
0.96 | 1.8 ± 0.1 c | 1.9 ± 0.1 c | 0.8 ± 0.1 c | 0.9 ± 0.1 c | 1.8 ± 0.2 *c | 2.3 ± 0.1 *c | 2.3 ± 0.3 c | 2.5 ± 0.2 c |
0.94 | 1.3 ± 0.2 d | 1.5 ± 0.1 d | 0.5 ± 0.2 d | 0.7 ± 0.1 d | 1.4 ± 0.2 d | 1.7 ± 0.3 d | 1.9 ± 0.2 d | 2.2 ± 0.1 d |
0.92 | 1.1 ± 0.1 e | 1.2 ± 0.3 e | 0.3 ± 0.1 e | 0.6 ± 0.3 d | 1.2 ± 0.1 e | 1.3 ± 0.2 e | 1.5 ± 0.1 e | 1.6 ± 0.2 e |
0.90 | 0.5 ± 0.1 f | 0.7 ± 0.1 f | 0.2 ± 0.1 e | 0.5 ± 0.1 d | 0.5 ± 0.1 f | 0.4 ± 0.1 f | 0.5 ± 0.1 f | 0.6 ± 0.1 f |
Strains | Preservatives | ||||
---|---|---|---|---|---|
Hop Extract | Sorbic Acid | Propionic Acid | Ethanol | Control | |
Saccharomycopsis fibuligera | 28 ± 2 a | 25 ± 1 b | 25 ± 1 b | 29 ± 2 a | 18 ± 1 c |
Hyphopichia burtonii | 26 ± 1 a | 26 ± 2 a | 27 ± 1 a | 28 ± 3 a | 15 ± 2 b |
Wickerhamomyces anomalus | 28 ± 3 a | 21 ± 2 b | 22 ± 2 b | 28 ± 3 a | 15 ± 2 c |
Cyberlindnera fabianii | 24 ± 2 a | 19 ± 3 b | 21 ± 1 b | 25 ± 2 a | 10 ± 2 c |
Strains | Preservatives | Control | |
---|---|---|---|
Hop Extract | Ethanol | ||
Saccharomycopsis fibuligera | 120 ± 5 a | No growth | 40 ± 3 a |
Hyphopichia burtonii | 140 ± 7 b | No growth | 20 ± 2 b |
Cyberlindnera fabianii | 170 ± 9 c | No growth | 10 ± 1 c |
Wickerhamomyces anomalus | 170 ± 4 c | No growth | 20 ± 1 b |
Volatile Compounds | Spoiled | Unspoiled |
---|---|---|
Mean ± Std Dev | Mean ± Std Dev | |
Hexanal | 0 | 1.83 ± 1.87 |
2-Heptenal | 0 | 0.32 ± 0.36 |
Furfural | 0 | 0.12 ± 0.12 |
Benzaldehyde | 0.38 ± 0.12 | 1.09 ± 0.32 |
ALDEHYDES * | 0.38 ± 0.11 | 3.36 ± 2.67 |
Acetoin | 0.14 ± 0.12 | 0.63 ± 0.71 |
KETONES * | 0.14 ± 0.12 | 0.63 ± 0.71 |
Ethanol | 21.01± 2.16 | 6.51 ± 5.25 |
2-methyl propanol | 1.13 ± 0.84 | 0.13 ± 0.22 |
3-methyl butanol | 7.34 ± 1.99 | 2.77 ± 1.66 |
Phenyl ethyl alcohol | 3.36 ± 1.21 | 2.39 ± 0.05 |
ALCOHOLS * | 32.84 ± 6.2 | 11.80 ± 7.18 |
Ethyl acetate | 5.62 ± 8.86 | 0.34 ± 0.58 |
Propanoic acid. 2-methyl. ethyl ester | 0.22 ± 0.23 | 0 |
n-propyl acetate | 0.15 ± 0.26 | 0 |
3-methyl butanol acetate | 1.35 ± 1.53 | 0.5 ± 0.30 |
ESTERS * | 7.34 ± 10.88 | 0.84 ± 0.88 |
Acetic acid | 1.66 ± 1.64 | 1.44 ± 0.11 |
ACIDS * | 1.66 ± 1.64 | 1.44 ± 0.11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pellegrini, M.; Iacumin, L.; Coppola, F.; Barbieri, F.; Montanari, C.; Gardini, F.; Comi, G. Chalk Yeasts Cause Gluten-Free Bread Spoilage. Microorganisms 2025, 13, 1385. https://doi.org/10.3390/microorganisms13061385
Pellegrini M, Iacumin L, Coppola F, Barbieri F, Montanari C, Gardini F, Comi G. Chalk Yeasts Cause Gluten-Free Bread Spoilage. Microorganisms. 2025; 13(6):1385. https://doi.org/10.3390/microorganisms13061385
Chicago/Turabian StylePellegrini, Michela, Lucilla Iacumin, Francesca Coppola, Federica Barbieri, Chiara Montanari, Fausto Gardini, and Giuseppe Comi. 2025. "Chalk Yeasts Cause Gluten-Free Bread Spoilage" Microorganisms 13, no. 6: 1385. https://doi.org/10.3390/microorganisms13061385
APA StylePellegrini, M., Iacumin, L., Coppola, F., Barbieri, F., Montanari, C., Gardini, F., & Comi, G. (2025). Chalk Yeasts Cause Gluten-Free Bread Spoilage. Microorganisms, 13(6), 1385. https://doi.org/10.3390/microorganisms13061385