Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (44)

Search Parameters:
Keywords = sonochemical degradation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 6521 KiB  
Article
Rational Fabrication of Ag2S/g-C3N4 Heterojunction for Photocatalytic Degradation of Rhodamine B Dye Under Natural Solar Radiation
by Ali Alsalme, Ahmed Najm, Nagy N. Mohammed, M. F. Abdel Messih, Ayman Sultan and Mohamed Abdelhay Ahmed
Catalysts 2024, 14(12), 914; https://doi.org/10.3390/catal14120914 - 11 Dec 2024
Cited by 1 | Viewed by 1425
Abstract
Near-infrared light-triggered photocatalytic water treatment has attracted significant attention in recent years. In this novel research, rational sonochemical fabrication of Ag2S/g-C3N4 nanocomposites with various compositions of Ag2S (0–25) wt% was carried out to eliminate hazardous rhodamine [...] Read more.
Near-infrared light-triggered photocatalytic water treatment has attracted significant attention in recent years. In this novel research, rational sonochemical fabrication of Ag2S/g-C3N4 nanocomposites with various compositions of Ag2S (0–25) wt% was carried out to eliminate hazardous rhodamine B dye in a cationic organic pollutant model. g-C3N4 sheets were synthesized via controlled thermal annealing of microcrystalline urea. However, black Ag2S nanoparticles were synthesized through a precipitation-assisted sonochemical route. The chemical interactions between various compositions of Ag2S and g-C3N4 were carried out in an ultrasonic bath with a power of 300 W. XRD, PL, DRS, SEM, HRTEM, mapping, BET, and SAED analysis were used to estimate the crystalline, optical, nanostructure, and textural properties of the solid specimens. The coexistence of the diffraction peaks of g-C3N4 and Ag2S implied the successful production of Ag2S/g-C3N4 heterojunctions. The band gap energy of g-C3N4 was exceptionally reduced from 2.81 to 1.5 eV with the introduction of 25 wt% of Ag2S nanoparticles, implying the strong absorbability of the nanocomposites to natural solar radiation. The PL signal intensity of Ag2S/g-C3N4 was reduced by 40% compared with pristine g-C3N4, implying that Ag2S enhanced the electron–hole transportation and separation. The rate of the photocatalytic degradation of rhodamine B molecules was gradually increased with the introduction of Ag2S on the g-C3N4 surface and reached a maximum for nanocomposites containing 25 wt% Ag2S. The radical trapping experiments demonstrated the principal importance of reactive oxygen species and hot holes in destroying rhodamine B under natural solar radiation. The charge transportation between Ag2S and g-C3N4 semiconductors proceeded through the type I straddling scheme. The enriched photocatalytic activity of Ag2S/g-C3N4 nanocomposites resulted from an exceptional reduction in band gap energy and controlling the electron–hole separation rate with the introduction of Ag2S as an efficient photothermal photocatalyst. The novel as-synthesized nanocomposites are considered a promising photocatalyst for destroying various types of organic pollutants under low-cost sunlight radiation. Full article
(This article belongs to the Section Photocatalysis)
Show Figures

Figure 1

18 pages, 7445 KiB  
Article
Unveiling the Potential of CuO and Cu2O Nanoparticles against Novel Copper-Resistant Pseudomonas Strains: An In-Depth Comparison
by Olesia Havryliuk, Garima Rathee, Jeniffer Blair, Vira Hovorukha, Oleksandr Tashyrev, Jordi Morató, Leonardo M. Pérez and Tzanko Tzanov
Nanomaterials 2024, 14(20), 1644; https://doi.org/10.3390/nano14201644 - 13 Oct 2024
Cited by 2 | Viewed by 2997
Abstract
Four novel Pseudomonas strains with record resistance to copper (Cu2+) previously isolated from ecologically diverse samples (P. lactis UKR1, P. panacis UKR2, P. veronii UKR3, and P. veronii UKR4) were tested against sonochemically synthesised copper-oxide (I) (Cu2O) and [...] Read more.
Four novel Pseudomonas strains with record resistance to copper (Cu2+) previously isolated from ecologically diverse samples (P. lactis UKR1, P. panacis UKR2, P. veronii UKR3, and P. veronii UKR4) were tested against sonochemically synthesised copper-oxide (I) (Cu2O) and copper-oxide (II) (CuO) nanoparticles (NPs). Nanomaterials characterisation by X-ray diffractometry (XRD), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR), and High-Resolution Transmission Electron Microscopy (HRTEM) confirmed the synthesis of CuO and Cu2O NPs. CuO NPs exhibited better performance in inhibiting bacterial growth due to their heightened capacity to induce oxidative stress. The greater stability and geometrical shape of CuO NPs were disclosed as important features associated with bacterial cell toxicity. SEM and TEM images confirmed that both NPs caused membrane disruption, altered cell morphology, and pronounced membrane vesiculation, a distinctive feature of bacteria dealing with stressor factors. Finally, Cu2O and CuO NPs effectively decreased the biofilm-forming ability of the Cu2+-resistant UKR strains as well as degraded pre-established biofilm, matching NPs’ antimicrobial performance. Despite the similarities in the mechanisms of action revealed by both NPs, distinctive behaviours were also detected for the different species of wild-type Pseudomonas analysed. In summary, these findings underscore the efficacy of nanotechnology-driven strategies for combating metal tolerance in bacteria. Full article
(This article belongs to the Special Issue Antimicrobial and Antioxidant Activity of Nanoparticles)
Show Figures

Figure 1

14 pages, 5368 KiB  
Article
Functionalization of Polypropylene by TiO2 Photocatalytic Nanoparticles: On the Importance of the Surface Oxygen Plasma Treatment
by Karolina Zajac, Joanna Macyk, Konrad Szajna, Franciszek Krok, Wojciech Macyk and Andrzej Kotarba
Nanomaterials 2024, 14(16), 1372; https://doi.org/10.3390/nano14161372 - 22 Aug 2024
Cited by 1 | Viewed by 1754
Abstract
A new two-step method for developing a nanocomposite of polypropylene (PP) decorated with photocatalytically active TiO2 nanoparticles (nTiO2) is proposed. This method involves the low-temperature plasma functionalization of polypropylene followed by the ultrasound-assisted anchoring of nTiO2. The nanoparticles, [...] Read more.
A new two-step method for developing a nanocomposite of polypropylene (PP) decorated with photocatalytically active TiO2 nanoparticles (nTiO2) is proposed. This method involves the low-temperature plasma functionalization of polypropylene followed by the ultrasound-assisted anchoring of nTiO2. The nanoparticles, polymeric substrate, and resultant nanocomposite were thoroughly characterized using nanoparticle tracking analysis (NTA), microscopic observations (SEM, TEM, and EDX), spectroscopic investigations (XPS and FTIR), thermogravimetric analysis (TG/DTA), and water contact angle (WCA) measurements. The photocatalytic activity of the nanocomposites was evaluated through the degradation of methyl orange. The individual TiO2 nanoparticles ranged from 2 to 6 nm in size. The oxygen plasma treatment of PP generated surface functional groups (mainly -OH and -C=O), transforming the surface from hydrophobic to hydrophilic, which facilitated the efficient deposition of nTiO2. Optimized plasma treatment and sonochemical deposition parameters resulted in an active photocatalytic nTiO2/PP system, degrading 80% of the methyl orange under UVA irradiation in 200 min. The proposed approach is considered versatile for the functionalization of polymeric materials with photoactive nanoparticles and, in a broader perspective, can be utilized for the fabrication of self-cleaning surfaces. Full article
(This article belongs to the Topic Preparation and Application of Polymer Nanocomposites)
Show Figures

Figure 1

14 pages, 4204 KiB  
Article
Sonochemical Synthesis of Indium Nitride Nanoparticles and Photocatalytic Composites with Titania
by Aikaterina Paraskevopoulou, Pavlos Pandis, Christos Argirusis and Georgia Sourkouni
Ceramics 2024, 7(2), 478-490; https://doi.org/10.3390/ceramics7020031 - 27 Mar 2024
Cited by 2 | Viewed by 2246
Abstract
Indium nitride is an excellent semiconductor that belongs to the group of III nitride materials. Due to its unique properties, it is applied to various optoelectronic applications. However, its low thermal stability makes it difficult to synthesize. The present study introduces the synthesis [...] Read more.
Indium nitride is an excellent semiconductor that belongs to the group of III nitride materials. Due to its unique properties, it is applied to various optoelectronic applications. However, its low thermal stability makes it difficult to synthesize. The present study introduces the synthesis of indium nitride nanoparticles, using ultrasound power (sonochemistry). The sonochemical method provides a low-cost and rapid technique for nanomaterial synthesis. InN nanoparticles were produced in only 3 h through the sonochemical reaction of InCl3 and LiN3. Xylene was used as a reaction solvent. X-ray powder diffraction (XRD) as well as high-resolution transmission electron microscopy (HRTEM) were adopted for the characterization of the obtained powder. According to our results, ultrasound contributed to the synthesis of InN nanocrystals in a cubic and a hexagonal phase. The obtained InN nanoparticles were further used to decorate titanium dioxide (TiO2) by means of ultrasound. The contribution of InN nanoparticles on the processes of photocatalysis was investigated through the degradation of methylene blue (MB), a typical organic substance acting in place of an environment pollutant. According to the obtained results, InN nanoparticles improved the photocatalytic activity of TiO2 by 41.8% compared with commercial micrometric titania. Full article
(This article belongs to the Special Issue Advances in Ceramics, 2nd Edition)
Show Figures

Figure 1

7 pages, 1407 KiB  
Proceeding Paper
Acoustic Cavitation and Ionic Liquid Combined: A Modeling Investigation of the Possible Promises in Terms of Physico-Chemical Effects
by Kaouther Kerboua
Eng. Proc. 2023, 56(1), 237; https://doi.org/10.3390/ASEC2023-16313 - 21 Nov 2023
Viewed by 545
Abstract
The present work is based on a mathematical model describing a single acoustic cavitation bubble oscillating under an ultrasonic field of 200 and 300 kHz and an acoustic amplitude of 1.8 atm within 1-butyl-3-methylimidazolium acetate. The model integrates the dynamics of bubble oscillation, [...] Read more.
The present work is based on a mathematical model describing a single acoustic cavitation bubble oscillating under an ultrasonic field of 200 and 300 kHz and an acoustic amplitude of 1.8 atm within 1-butyl-3-methylimidazolium acetate. The model integrates the dynamics of bubble oscillation, the thermodynamics applied to the interior of the bubble and at its interface, and the sonophysical and sonochemical events occurring in the presence of dissolved cellulose in the ionic liquid. The performed simulations shed light on the major physical effects of acoustic cavitation, namely the shockwave and microjet, as well as the sonochemical effects in terms of the degradation rate of the dissolved cellulose in the secondary reactional site, i.e., the interface. The predominance of the effects and its dependency of the acoustic frequency is tackled from an energetic point of view. It is demonstrated that 300 kHz offers the lowest heat flow across the bubble interface, lowering the chances for the sonochemical degradation of cellulose, while 200 kHz offers a significant degradation rate, attaining 71.4 mol·dm−3·s−1, as well as harsher microjets and shockwaves with powers of 3300 and 900 mW at collapse, respectively. Full article
(This article belongs to the Proceedings of The 4th International Electronic Conference on Applied Sciences)
Show Figures

Figure 1

19 pages, 1440 KiB  
Review
Comparison between Chemical and Biological Degradation Processes for Perfluorooctanoic Acid
by Xuhan Shu, Rama Pulicharla, Pratik Kumar and Satinder Kaur Brar
Soil Syst. 2023, 7(4), 91; https://doi.org/10.3390/soilsystems7040091 - 20 Oct 2023
Cited by 5 | Viewed by 4171
Abstract
Perfluorooctanoic acid (PFOA) is a perfluoro compound that contains an eight-carbon perfluoroalkyl chain followed by a carboxylic acid function group. The C-F bound possesses a strong bond energy of approximately 485 kJ/mol, rendering PFOA thermally and chemically stable. It has found applications in [...] Read more.
Perfluorooctanoic acid (PFOA) is a perfluoro compound that contains an eight-carbon perfluoroalkyl chain followed by a carboxylic acid function group. The C-F bound possesses a strong bond energy of approximately 485 kJ/mol, rendering PFOA thermally and chemically stable. It has found applications in water-resistant coating and is produced either by degrading other long-chain perfluorinated carboxylic acids or fluorotelomer alcohol. PFOA is challenging to further degrade during water treatment processes, leading to its accumulation in natural systems and causing contamination. Research has been conducted to develop several methods for its removal from the water system, but only a few of these methods effectively degrade PFOA. This review compares the most common chemical degradation methods such as photochemical, electrochemical, and sonochemical methods, to the cutting-edge biodegradation method. The chemical degradation and biodegradation methods both involve the stepwise degradation of PFOA, with the latter capable of occurring both aerobically and anaerobically. However, the degradation efficiency of the biological process is lower when compared to the chemical process, and further research is needed to explore the biological degradation aspect. Full article
Show Figures

Graphical abstract

16 pages, 4904 KiB  
Communication
Dye-Modified, Sonochemically Obtained Nano-SnS2 as an Efficient Photocatalyst for Metanil Yellow Removal
by Grzegorz Matyszczak, Paweł Jóźwik, Magdalena Zybert, Albert Yedzikhanau and Krzysztof Krawczyk
Materials 2023, 16(17), 5774; https://doi.org/10.3390/ma16175774 - 23 Aug 2023
Cited by 2 | Viewed by 1347
Abstract
We investigate the possibility of modification of SnS2 powder through sonochemical synthesis with the addition of an organic ligand. For that purpose, two organic dyes are used, Phenol Red and Anthraquinone Violet. All obtained powders are characterized using XRD, SEM, EDX, FT-IR, [...] Read more.
We investigate the possibility of modification of SnS2 powder through sonochemical synthesis with the addition of an organic ligand. For that purpose, two organic dyes are used, Phenol Red and Anthraquinone Violet. All obtained powders are characterized using XRD, SEM, EDX, FT-IR, and UV-Vis investigations. Synthesized samples showed composition and structural properties typical for sonochemically synthesized SnS2. However, investigation with the Tauc method revealed that SnS2 powder modified with Phenol Red exhibits a significant shift in value of optical bandgap to 2.56 eV, while unmodified SnS2 shows an optical bandgap value of 2.42 eV. The modification of SnS2 powder with Anthraquinone Violet was unsuccessful. The obtained nanopowders were utilized as photocatalysts in the process of Metanil Yellow degradation, revealing that SnS2 modified with Phenol Red shows about 23% better performance than the unmodified one. The mean sonochemical efficiency of the performed synthesis is also estimated as 9.35 µg/W. Full article
(This article belongs to the Special Issue Catalytic Technology and Nanomaterials for Water Treatment)
Show Figures

Graphical abstract

13 pages, 6254 KiB  
Article
Structural and Optical Characterizations of Polymethyl Methacrylate Films with the Incorporation of Ultrafine SiO2/TiO2 Composites Utilized as Self-Cleaning Surfaces
by Maneerat Songpanit, Kanokthip Boonyarattanakalin, Saksorn Limwichean, Tossaporn Lertvanithphol, Mati Horprathum, Wisanu Pecharapa and Wanichaya Mekprasart
Polymers 2023, 15(15), 3162; https://doi.org/10.3390/polym15153162 - 25 Jul 2023
Cited by 7 | Viewed by 2251
Abstract
The structural and optical characterizations of nanocomposite films of polymethyl methacrylate (PMMA) and SiO2/TiO2 composites prepared via the spin-coating technique were investigated using different SiO2:TiO2 ratios. The SiO2/TiO2 nanocomposites were synthesized using the sonochemical [...] Read more.
The structural and optical characterizations of nanocomposite films of polymethyl methacrylate (PMMA) and SiO2/TiO2 composites prepared via the spin-coating technique were investigated using different SiO2:TiO2 ratios. The SiO2/TiO2 nanocomposites were synthesized using the sonochemical process with Si:Ti precursor ratios of 1:0.1, 1:0.5, 1:1, 1:2, 1:4, and 0:1. All characterizations of ultrafine SiO2/TiO2 particles were loaded at 1 wt.% in a PMMA matrix for the fabrication of transparent SiO2/TiO2/PMMA composite films. The phase structure and morphology of SiO2/TiO2/PMMA composite films were monitored using X-ray diffraction, optical microscopy, and field-emission scanning electron microscopy. A surface roughness analysis of SiO2/TiO2/PMMA nanocomposite films was conducted using atomic force microscopy. For optical characterization, transmission properties with different incident angles of SiO2/TiO2/PMMA composite films were analyzed with UV-vis spectrophotometry. The water contact angles of SiO2/TiO2/PMMA composite films were analyzed to identify hydrophilic properties on film surfaces. Photocatalytic reactions in SiO2TiO2 composite films under UV irradiation were evaluated using rhodamine B dye degradation. The optimal condition of SiO2/TiO2/PMMA nanocomposite films was obtained at a 1:1 SiO2:TiO2 ratio in self-cleaning applications, resulting from good particle dispersion and the presence of the TiO2 phase in the composite. Full article
(This article belongs to the Special Issue Feature Papers in Polymer Membranes and Films II)
Show Figures

Figure 1

14 pages, 5786 KiB  
Article
The Sonocatalytic Activation of Persulfates on Iron Nanoparticle Decorated Zeolite for the Degradation of 1,4-Dioxane in Aquatic Environments
by Surya Teja Malkapuram, Shirish Hari Sonawane, Manoj P. Rayaroth, Murali Mohan Seepana, Sivakumar Manickam, Jakub Karczewski and Grzegorz Boczkaj
Catalysts 2023, 13(7), 1065; https://doi.org/10.3390/catal13071065 - 1 Jul 2023
Cited by 8 | Viewed by 2160
Abstract
In the chemical industry, 1,4-diethylene dioxide, commonly called dioxane, is widely used as a solvent as well as a stabilizing agent for chlorinated solvents. Due to its high miscibility, dioxane is a ubiquitous water contaminant. This study investigates the effectiveness of catalyst- and [...] Read more.
In the chemical industry, 1,4-diethylene dioxide, commonly called dioxane, is widely used as a solvent as well as a stabilizing agent for chlorinated solvents. Due to its high miscibility, dioxane is a ubiquitous water contaminant. This study investigates the effectiveness of catalyst- and ultrasound (US)-assisted persulfate (PS) activation with regard to degrading dioxane. As a first step, a composite catalyst was prepared using zeolite. A sonochemical dispersion and reduction method was used to dope zeolite with iron nanoparticles (FeNP/Z). In the subsequent study, the reaction kinetics of dioxane degradation following the single-stage and two-stage addition of PS was examined in the presence of a catalyst. Using GC-MS analysis, intermediate compounds formed from dioxane degradation were identified, and plausible reaction pathways were described. Upon 120 min of sonication in the presence of a catalyst with a two-stage injection of PS, 95% 100 mg/L dioxane was degraded. Finally, the estimated cost of treatment is also reported in this study. Sonolytically activated PS combined with a FeNP/Z catalyst synergizes the remediation of biorefractory micropollutants such as dioxane. Full article
Show Figures

Graphical abstract

21 pages, 50959 KiB  
Article
Impact of a Sonochemical Approach to the Structural and Antioxidant Activity of Brown Algae (Fucoidan) Using the Box–Behnken Design Method
by Uday Bagale, Ammar Kadi, Artem Malinin, Varisha Anjum, Irina Potoroko and Shirish H. Sonawane
Processes 2023, 11(7), 1884; https://doi.org/10.3390/pr11071884 - 23 Jun 2023
Cited by 9 | Viewed by 2023
Abstract
A fucoidan discovered in the plant Fucus vesiculosus, which lowered the molecular weight of fucoidan, was ideal for its application in the pharmaceutical and food sectors. The aim was to study the impact of ultrasound process parameters on the molecular weight, structure, [...] Read more.
A fucoidan discovered in the plant Fucus vesiculosus, which lowered the molecular weight of fucoidan, was ideal for its application in the pharmaceutical and food sectors. The aim was to study the impact of ultrasound process parameters on the molecular weight, structure, and antioxidant activity of fucoidan. For optimization of sonochemical process parameters such as temperature, sonication time, and power (intensity), Box–Behnken design (BBD) through the response surface method (RSM) at fixed fucoidan concentrations was compared with a normal process. The outcomes demonstrated that sonochemical treatment significantly decreased molecular weight (Mw) to 318 kDa compared to the control process (815 kDa). Antioxidant activity tests revealed that the sonication treatment significantly increased antioxidant activity (88.9% compared to 65.3% with the control process). Through use of the BBD model, we found that the ideal conditions for degradation of fucoidan were a temperature of 33 °C, sonication time of 40 min, and sonication power of 102.5 W/cm2. Under these conditions, the quadratic model was fitted and the experimental values for Mw and antioxidant activity (318 kDa and 87.4%) were close to the predicated values (316 kDa and 87.9%). According to the findings, sonication treatment is a useful method for lowering fucoidan levels with no observable changes in the monosaccharide units of fucoidan through scanning electron microscope, X-Ray diffraction, and Fourier-transform infrared (FTIR) analysis. Full article
Show Figures

Figure 1

18 pages, 12150 KiB  
Article
Photocatalytic Activity and Biocide Properties of Ag–TiO2 Composites on Cotton Fabrics
by Uriel Chacon-Argaez, Luis Cedeño-Caero, Ruben D. Cadena-Nava, Kendra Ramirez-Acosta, Sergio Fuentes Moyado, Perla Sánchez-López and Gabriel Alonso Núñez
Materials 2023, 16(13), 4513; https://doi.org/10.3390/ma16134513 - 21 Jun 2023
Cited by 8 | Viewed by 1910
Abstract
Composites of Ag and TiO2 nanoparticles were synthesized in situ on cotton fabrics using sonochemical and solvothermal methods achieving the successive formation of Ag-NPs and Ti-NPs directly on the fabric. The impregnated fabrics were characterized using ATR-FTIR spectroscopy; high-resolution microscopy (HREM); scanning [...] Read more.
Composites of Ag and TiO2 nanoparticles were synthesized in situ on cotton fabrics using sonochemical and solvothermal methods achieving the successive formation of Ag-NPs and Ti-NPs directly on the fabric. The impregnated fabrics were characterized using ATR-FTIR spectroscopy; high-resolution microscopy (HREM); scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy (SEM-EDS); Raman, photoluminescence, UV-Vis, and DRS spectroscopies; and by tensile tension tests. Results showed the successful formation and impregnation of NPs on the cotton fabric, with negligible leaching of NPs after several washing cycles. The photocatalytic activity of supported NPs was assessed by the degradation of methyl blue dye (MB) under solar and UV irradiation revealing improved photocatalytic activity of the Ag–TiO2/cotton composites due to a synergy of both Ag and TiO2 nanoparticles. This behavior is attributed to a diminished electron–hole recombination effect in the Ag–TiO2/cotton samples. The biocide activity of these composites on the growth inhibition of Staphylococcus aureus (Gram+) and Escherichia coli (Gram−) was confirmed, revealing interesting possibilities for the utilization of the functionalized cotton fabric as protective cloth for medical applications. Full article
Show Figures

Figure 1

12 pages, 2371 KiB  
Article
Composite of α-FeOOH and Mesoporous Carbon Derived from Indian Blackberry Seeds as Low-Cost and Recyclable Photocatalyst for Degradation of Ciprofloxacin
by Dimple P. Dutta and Sebin Abraham
Catalysts 2023, 13(1), 191; https://doi.org/10.3390/catal13010191 - 13 Jan 2023
Cited by 3 | Viewed by 2198
Abstract
This study aims to analyse the use of biowaste-derived carbon in enhancing the photocatalytic effect of Earth-abundant visible light active goethite (α−FeOOH). The biowaste material used in this case is seeds of the Indian blackberry fruit. The FeOOH/C composite has been synthesized using [...] Read more.
This study aims to analyse the use of biowaste-derived carbon in enhancing the photocatalytic effect of Earth-abundant visible light active goethite (α−FeOOH). The biowaste material used in this case is seeds of the Indian blackberry fruit. The FeOOH/C composite has been synthesized using an assisted sonochemical technique. The photocatalysts have been characterized using powder x-ray diffraction, nitrogen adsorption isotherms and scanning electron microscopy technique. FTIR and Raman studies have been carried out to understand the structure bonding correlation. The band gap has been ascertained using Tauc plots. The adsorption and consequent photodegradation of CIP have been studied via UV-visible spectroscopy and the mechanism has been ascertained by using radical quenching techniques. The charge separation efficiency has been ascertained through photoluminescence (PL) studies and electrochemical impedance studies (EIS). The pivotal role played by photogenerated holes (h+) in the photocatalytic degradation of CIP has been highlighted. The low cost biowaste-derived carbon as a constituent of the FeOOH/C composite shows great promise as a supporting material for enhancing the photocatalytic properties of such semiconductor materials. Full article
(This article belongs to the Section Environmental Catalysis)
Show Figures

Figure 1

17 pages, 2639 KiB  
Article
Ultrasound/Chlorine: A Novel Synergistic Sono-Hybrid Process for Allura Red AC Degradation
by Oualid Hamdaoui, Slimane Merouani, Hadjer C. Benmahmoud, Meriem Ait Idir, Hamza Ferkous and Abdulaziz Alghyamah
Catalysts 2022, 12(10), 1171; https://doi.org/10.3390/catal12101171 - 4 Oct 2022
Cited by 8 | Viewed by 2201
Abstract
Herein, we present an original report on chlorine activation by ultrasound (US: 600 kHz, 120 W) for intensifying the sonochemical treatment of hazardous organic materials. The coupling of US/chlorine produced synergy via the involvement of reactive chlorine species (RCSs: Cl, ClO [...] Read more.
Herein, we present an original report on chlorine activation by ultrasound (US: 600 kHz, 120 W) for intensifying the sonochemical treatment of hazardous organic materials. The coupling of US/chlorine produced synergy via the involvement of reactive chlorine species (RCSs: Cl, ClO and Cl2•−), resulting from the sono-activation of chlorine. The degradation of Allura Red AC (ARAC) textile dye, as a contaminant model, was drastically improved by the US/chlorine process as compared to the separated techniques. A synergy index of 1.74 was obtained by the US/chlorine process for the degradation of ARAC (C0 = 5 mg·L−1) at pH 5.5 and [chlorine]0 = 250 mM. The synergistic index increased by up to 2.2 when chlorine concentration was 300 µM. Additionally, the synergetic effect was only obtained at pH 4–6, where HOCl is the sole chlorine species. Additionally, the effect of combining US and chlorine for ARAC degradation was additive for the argon atmosphere, synergistic for air and negative for N2. An air atmosphere could provide the best synergy as it generates a relatively moderate concentration of reactive species as compared to argon, which marginalizes radical–radical reactions compared to radical–organic ones. Finally, the US/chlorine process was more synergistic for low pollutant concentrations (C0 ≤ 10 mg·L−1); the coupling effect was additive for moderate concentrations (C0~20–30 mg·L−1) and negative for higher C0 (>30 mg·L−1). Consequently, the US/chlorine process was efficiently operable under typical water treatment conditions, although complete by-product analysis and toxicity assessment may still be necessary to establish process viability. Full article
Show Figures

Figure 1

12 pages, 3215 KiB  
Article
Tug-of-War Driven by the Structure of Carboxylic Acids: Tuning the Size, Morphology, and Photocatalytic Activity of α-Ag2WO4
by Lara Kelly Ribeiro, Amanda Fernandes Gouveia, Francisco das Chagas M. Silva, Luís F. G. Noleto, Marcelo Assis, André M. Batista, Laécio S. Cavalcante, Eva Guillamón, Ieda L. V. Rosa, Elson Longo, Juan Andrés and Geraldo E. Luz Júnior
Nanomaterials 2022, 12(19), 3316; https://doi.org/10.3390/nano12193316 - 23 Sep 2022
Cited by 16 | Viewed by 2504
Abstract
Size and morphology control during the synthesis of materials requires a molecular-level understanding of how the addition of surface ligands regulates nucleation and growth. In this work, this control is achieved by using three carboxylic acids (tartaric, benzoic, and citric) during sonochemical syntheses. [...] Read more.
Size and morphology control during the synthesis of materials requires a molecular-level understanding of how the addition of surface ligands regulates nucleation and growth. In this work, this control is achieved by using three carboxylic acids (tartaric, benzoic, and citric) during sonochemical syntheses. The presence of carboxylic acids affects the kinetics of the nucleation process, alters the growth rate, and governs the size and morphology. Samples synthesized with citric acid revealed excellent photocatalytic activity for the degradation process of Rhodamine B, and recyclability experiments demonstrate that it retains 91% of its photocatalytic activity after four recycles. Scavenger experiments indicate that both the hydroxyl radical and the hole are key species for the success of the transformation. A reaction pathway is proposed that involves a series of dissolution−hydration–dehydration and precipitation processes, mediated by the complexation of Ag+. We believe these studies contribute to a fundamental understanding of the crystallization process and provide guidance as to how carboxylic acids can influence the synthesis of materials with controlled size and morphology, which is promising for multiple other scientific fields, such as sensor and catalysis fields. Full article
(This article belongs to the Special Issue Nanostructures Design for Catalyst: Latest Advances and Prospects)
Show Figures

Figure 1

12 pages, 2235 KiB  
Article
Sonoluminescence Spectra in the First Tens of Seconds of Sonolysis of [BEPip][NTf2], at 20 kHz under Ar
by Rachel Pflieger, Manuel Lejeune and Micheline Draye
Molecules 2022, 27(18), 6050; https://doi.org/10.3390/molecules27186050 - 16 Sep 2022
Cited by 5 | Viewed by 2195
Abstract
Following recent works on the sonochemical degradation of butyl ethyl piperidinium bis-(trifluoromethylsulfonyl)imide ([BEPip][NTf2]), monitoring of sonoluminescence (SL) spectra in the first tens of seconds of sonolysis was needed to better characterize the formed plasma and to question the correlation of the [...] Read more.
Following recent works on the sonochemical degradation of butyl ethyl piperidinium bis-(trifluoromethylsulfonyl)imide ([BEPip][NTf2]), monitoring of sonoluminescence (SL) spectra in the first tens of seconds of sonolysis was needed to better characterize the formed plasma and to question the correlation of the SL spectra with the viscosity. A very dry [BEPip][NTf2] ionic liquid (IL) and a water-saturated liquid are studied in this paper. In both cases, IL degradation is observed as soon as SL emission appears. It is confirmed that the initial evolution of the SL intensity is closely linked to the liquid viscosity that impacts the number of bubbles; however, other parameters can also play a role, such as the presence of water. The water-saturated IL shows more intense SL and faster degradation. In addition to the expected bands, new emission bands are detected and attributed to the S2 B-X emission, which is favored in the water-saturated ionic liquid. Full article
(This article belongs to the Special Issue Sonoluminescence and Related Plasma Luminescence)
Show Figures

Graphical abstract

Back to TopTop