Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (20)

Search Parameters:
Keywords = solid particle number (SPN)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 4637 KiB  
Article
Solid Particle Number (SPN) Portable Emission Measurement Systems (PEMS) for Heavy-Duty Applications
by Barouch Giechaskiel, Anastasios Melas, Stijn Broekaert, Roberto Gioria and Ricardo Suarez-Bertoa
Appl. Sci. 2024, 14(2), 654; https://doi.org/10.3390/app14020654 - 12 Jan 2024
Cited by 2 | Viewed by 1864
Abstract
A heavy-duty engine is homologated in a test cell. However, starting with Euro VI regulation, the in-service conformity is controlled with the engine installed in the vehicle using portable emission measurement systems (PEMS). In Europe, the application of solid particle number (SPN) PEMS [...] Read more.
A heavy-duty engine is homologated in a test cell. However, starting with Euro VI regulation, the in-service conformity is controlled with the engine installed in the vehicle using portable emission measurement systems (PEMS). In Europe, the application of solid particle number (SPN) PEMS started in 2021 for compression ignition (diesel) vehicles and in 2023 for positive ignition vehicles, thus including those operating with compressed natural gas (CNG). Even though today only particles with sizes > 23 nm are regulated, the Euro 7 proposal includes particles > 10 nm. There are not many studies on the accuracy of the SPN PEMS, especially for heavy-duty applications. In this study, PEMS measuring > 23 and >10 nm from two instrument manufacturers were compared with laboratory-grade instruments. The particle detector of one PEMS was a condensation particle counter (CPC), and of the other a the diffusion charger (DC). The results showed the robustness and good accuracy (40% or 1 × 1011 #/kWh) of the PEMS for ambient temperatures from −7 °C to 35 °C, active regeneration events, different fuels (Diesel B7, HVO, and CNG), different test cycles, cold start or hot engine operations, and high exhaust gas humidity content. Nevertheless, for the DC-based PEMS, sensitivity to pre-charged urea particles was identified, and for the CPC-based PEMS, sensitivity to pressure changes with one vehicle was nnoticed. Nevertheless, the results of this study confirm that the PEMS are accurate enough to measure even the stricter Euro 7 limits. Full article
(This article belongs to the Special Issue Atmospheric Pollutants: Dispersion and Environmental Behavior)
Show Figures

Figure 1

22 pages, 3924 KiB  
Article
Diesel Particle Filter Requirements for Euro 7 Technology Continuously Regenerating Heavy-Duty Applications
by Athanasios Mamakos, Dominik Rose, Anastasios Melas, Roberto Gioria, Ricardo Suarez-Bertoa and Barouch Giechaskiel
Vehicles 2023, 5(4), 1634-1655; https://doi.org/10.3390/vehicles5040089 - 7 Nov 2023
Cited by 4 | Viewed by 2612
Abstract
The upcoming Euro 7 regulation for Heavy-Duty (HD) vehicles is calling for a further tightening of the Solid Particle Number (SPN) emissions by means of both lowering the applicable limits and shifting the lowest detectable size from 23 nm (SPN23) to [...] Read more.
The upcoming Euro 7 regulation for Heavy-Duty (HD) vehicles is calling for a further tightening of the Solid Particle Number (SPN) emissions by means of both lowering the applicable limits and shifting the lowest detectable size from 23 nm (SPN23) to 10 nm (SPN10). A late-technology diesel HD truck was tested on a chassis dynamometer in order to assess the necessary particle filtration requirements for a continuously regenerating system. The study showed that passive regeneration under real-world operating conditions can lead to a significant release of SPN10 particles from the current technology Diesel Particulate Filter (DPF) when soot-loaded, even exceeding the currently applicable emission limits. The actual emissions during passive regeneration and following the clean-up of the DPF exceeded the proposed Euro 7 limits by more than an order of magnitude. A prototype DPF, exhibiting a 99% filtration efficiency when clean, was shown to effectively control SPN10 emissions under both operating conditions. The shift to SPN10 also necessitates control of nanoparticles forming inside the Selective Catalytic Reduction (SCR) system, which for the tested truck exceeded the proposed (hot) limit by up to 56%. A dedicated particle filter specifically designed to capture these particles was also evaluated, showing a better than 60% efficiency. The key message of this study is that SPN emissions can be kept at low levels under all conditions. Full article
Show Figures

Figure 1

13 pages, 3825 KiB  
Article
Off-Cycle Emissions of Particle Number from Gasoline and DPF Diesel Passenger Cars in High-Load Conditions
by Hiroyuki Yamada, Taichi Kimura, Hidenori Konno and Yoshinori Kondo
Atmosphere 2023, 14(4), 732; https://doi.org/10.3390/atmos14040732 - 18 Apr 2023
Viewed by 2007
Abstract
To evaluate regulated gases and solid particle number (SPN) emissions in high-load off-cycle conditions, two diesel vehicles with a diesel particulate filter (DPF) and a urea selective catalytic reduction (SCR) system, respectively, and four gasoline port fuel injection (PFI) vehicles were tested with [...] Read more.
To evaluate regulated gases and solid particle number (SPN) emissions in high-load off-cycle conditions, two diesel vehicles with a diesel particulate filter (DPF) and a urea selective catalytic reduction (SCR) system, respectively, and four gasoline port fuel injection (PFI) vehicles were tested with the worldwide light-duty test cycle, including an extra-high (Ex-hi) phase. All the tested vehicles were developed for the Japanese market and did not comply with the Ex-hi phase. All vehicles exhibited higher CO2 emissions in the Ex-hi phase than in low, the mid and high phases. Increased NOx and SPN10-23 emissions were observed with the DPF vehicle. These increased emissions were due to the occurrence of passive regeneration of the DPF, and the urea SCR system was stopped as a result. The small gasoline PFI cars showed increased CO and SPN emissions in the Ex-hi phase. These emissions were due to enrichment control, which occurred in a quite high load operation condition. The feature of higher emissions with enrichment control differed from that observed in a warming-up process in the cold-start mode. SPN23 increased mainly in the warming-up process, whereas SPN10-23 increased in the Ex-hi phase with enrichment control. Hybrid vehicles seem to have fewer opportunities to show the enrichment control due to motor assist. Full article
(This article belongs to the Special Issue Vehicle Emissions: New Challenges and Potential Solutions)
Show Figures

Figure 1

18 pages, 3963 KiB  
Article
Interlaboratory Study on Brake Particle Emissions Part II: Particle Number Emissions
by Marcel Mathissen, Theodoros Grigoratos, Sebastian Gramstat, Athanasios Mamakos, RaviTeja Vedula, Carlos Agudelo, Jaroslaw Grochowicz and Barouch Giechaskiel
Atmosphere 2023, 14(3), 424; https://doi.org/10.3390/atmos14030424 - 21 Feb 2023
Cited by 14 | Viewed by 4438
Abstract
The Particle Measurement Programme (PMP) informal working group co-ordinated a global interlaboratory study (ILS) on brake wear particle emissions with the participation of 16 laboratories in 2021. Two articles present the results of the ILS: (I) particulate matter mass (PM) and (II) particle [...] Read more.
The Particle Measurement Programme (PMP) informal working group co-ordinated a global interlaboratory study (ILS) on brake wear particle emissions with the participation of 16 laboratories in 2021. Two articles present the results of the ILS: (I) particulate matter mass (PM) and (II) particle number (PN) emissions. The test matrix covered different brake systems, including ECE and NAO pad materials with grey cast iron discs and a drum brake. Regarding PN, the study measured the total particle number from approximately 10 nm to 2.5 µm (TPN). Some testing facilities measured solid particle number emissions (SPN) in parallel. The mean TPN concentrations ranged from 9.1 × 108 #/km/brake to 1.1 × 1010 #/km/brake. TPN and SPN emission levels were comparable, except for one lab that measured very high volatile particle emissions for one brake system. The minimum and maximum SPN emissions for a given brake differed by a factor of 2.5 ± 0.5, comparable to data from exhaust SPN ILS measurements. This article provides an overview of lessons learned and subsequent measures incorporated in an upcoming global technical regulation to reduce measurement variability when sampling and measuring brake particle emissions for light-duty vehicles up to 3.5 t. Full article
(This article belongs to the Special Issue Brake Wear Particulate Matter and Mitigation Strategies)
Show Figures

Figure 1

14 pages, 4493 KiB  
Article
Euro VI-d Compliant Diesel Engine’s Sub-23 nm Particle Emission
by Norbert Biró and Péter Kiss
Sensors 2023, 23(2), 590; https://doi.org/10.3390/s23020590 - 4 Jan 2023
Cited by 8 | Viewed by 3290
Abstract
Passenger and commercial transportation significantly contribute to hazardous air pollution. Exhaust gas after-treatment technology advances closely to the emission regulations throughout the world. The upcoming legislation will be EURO VII in European Union, which requirements are not set yet, but the Solid Particle [...] Read more.
Passenger and commercial transportation significantly contribute to hazardous air pollution. Exhaust gas after-treatment technology advances closely to the emission regulations throughout the world. The upcoming legislation will be EURO VII in European Union, which requirements are not set yet, but the Solid Particle Number (SPN) diameter range is expected to be more severe compared to EURO VI. This paper will revisit the measurement principle differences between over 10 nm and over 23 nm diameter particles in theory and practical engine bench measurement. Two different types of particle counters have performed the soot particle counting measurement; therefore, the applied sensors are different in terms of applied counting principles. The measurement principles of both devices will be introduced, and the experiment’s result will reflect on the sensor differences. From this, a conclusion can be derived in order to determine the severity of the upcoming EURO VII legislation in terms of SPN, and the experiment will also reflect on the measurement sensor differences. The overall results suggested that extending the lower range of the measurement increases the tailpipe particle emission by 20%, although the DPF filtration efficiency is still over 99%. Full article
(This article belongs to the Section Vehicular Sensing)
Show Figures

Figure 1

22 pages, 4205 KiB  
Article
Evaluation of Advanced Diesel Particulate Filter Concepts for Post Euro VI Heavy-Duty Diesel Applications
by Athanasios Mamakos, Dominik Rose, Marc C. Besch, Suhao He, Roberto Gioria, Anastasios Melas, Ricardo Suarez-Bertoa and Barouch Giechaskiel
Atmosphere 2022, 13(10), 1682; https://doi.org/10.3390/atmos13101682 - 14 Oct 2022
Cited by 11 | Viewed by 3386
Abstract
The European Commission (EC) is in the process of finalizing the proposal for the upcoming legislative stage for light- and heavy-duty vehicles. The emission performance over extended operating conditions is under consideration. Furthermore, a tightening of the Solid Particle Number (SPN) limits with [...] Read more.
The European Commission (EC) is in the process of finalizing the proposal for the upcoming legislative stage for light- and heavy-duty vehicles. The emission performance over extended operating conditions is under consideration. Furthermore, a tightening of the Solid Particle Number (SPN) limits with a parallel shift of the lowest detectable size from 23 to 10 nm has been suggested. This paper investigates the SPN emission performance of a Euro VI step E HDV and the potential offered by an advanced Diesel Particulate Filter (DPF) to meet the upcoming regulations. Cold start emissions at clean DPF state were found to be as high as 1.3 × 1012 #/kWh, while passive regeneration events could lead to hot start emissions of 3 × 1011 #/kWh. Improvements in the filtration efficiencies at clean state, similar to those offered by the advanced DPF (>99%), will be needed to tackle these operating conditions. The measurements also revealed the formation of 10 nm SPN in the Selective Catalytic Reduction (SCR) system, at a rate of ~1.2 × 1011 #/kWh. These levels lie above the proposed limit of 1011 #/kWh, highlighting the need to also control these non-volatile nanosized particles. Full article
(This article belongs to the Special Issue Vehicle Emissions: New Challenges and Potential Solutions)
Show Figures

Figure 1

13 pages, 2237 KiB  
Article
Sub-23 nm Particle Emissions from China-6 GDI Vehicle: Impacts of Drive Cycle and Ambient Temperature
by Dongdong Guo, Yunshan Ge, Xin Wang, Haixu Liu, Sheng Su, Chunbo Li and Tinghong Tao
Atmosphere 2022, 13(8), 1216; https://doi.org/10.3390/atmos13081216 - 1 Aug 2022
Cited by 5 | Viewed by 2240
Abstract
Both the EU and China are evaluating the feasibility of lowering the detection limit of particle number (PN) measurement to 10 nm in future legislations, making it necessary to better understand the sub-23 nm particle emission characteristics from state-of-the-art vehicles. In this study, [...] Read more.
Both the EU and China are evaluating the feasibility of lowering the detection limit of particle number (PN) measurement to 10 nm in future legislations, making it necessary to better understand the sub-23 nm particle emission characteristics from state-of-the-art vehicles. In this study, solid PN emissions with a diameter larger than 10 nm and 23 nm (known as SPN10 and SPN23) were compared over the WLTC, RTS95, and a so-called “worst-case” real driving emission (RDE) cycle (highly dynamic/0 °C) using two certification-level particle number counters (PNCs) employing evaporation tube (ET) and catalytic stripper (CS) as volatile particle remover (VPR). The results show that SPN10 emissions were 31.7%, 27.8%, and 15.2% higher than SPN23 over the WLTC, RTS95, and laboratory RDE cycles. Sub-23 nm particles were almost not identified within the engine cold-start phase and tended to be a hot-running pollutant favored by aggressive driving styles (frequent accelerations and high engine loads), fuel-cut during decelerations, and long idles. Lower testing temperature delayed the light-off of catalyst and, therefore, significantly reduced the formation of sub-23 nm particles within the engine warm-up stage. Lowering the detection limit to 10 nm is deemed to provide more public health protection since it will guide manufacturers to pay more attention to vehicle hot-running emissions. Full article
(This article belongs to the Special Issue Traffic Related Emission)
Show Figures

Figure 1

21 pages, 3161 KiB  
Article
Emissions from a Modern Euro 6d Diesel Plug-In Hybrid
by Tommaso Selleri, Anastasios Melas, Christian Ferrarese, Jacopo Franzetti, Barouch Giechaskiel and Ricardo Suarez-Bertoa
Atmosphere 2022, 13(8), 1175; https://doi.org/10.3390/atmos13081175 - 25 Jul 2022
Cited by 11 | Viewed by 3073
Abstract
Plug-in hybrid electric vehicles (PHEVs) are promoted as an alternative to conventional vehicles to meet European decarbonisation and air quality targets. However, several studies have shown that gasoline PHEVs present similar criteria and particulate emissions as their conventional gasoline counterparts. In the present [...] Read more.
Plug-in hybrid electric vehicles (PHEVs) are promoted as an alternative to conventional vehicles to meet European decarbonisation and air quality targets. However, several studies have shown that gasoline PHEVs present similar criteria and particulate emissions as their conventional gasoline counterparts. In the present work, we investigate the environmental performance of a modern plug-in hybrid Diesel-fuelled vehicle meeting the Euro 6d standard under a large variety of driving patterns, ambient temperatures, and battery states of charge (SOC). Emissions of regulated pollutants, currently unregulated pollutants, and CO2 were measured in the laboratory and following various on-road routes. The vehicle, whose electric range was 82 km, presented emissions below the Euro 6 regulatory limits in all the different driving cycles performed at 23 °C and all the on-road tests at the different battery SOC. The emissions were lower than the average of the conventional Diesel vehicles tested at JRC in 2020–2021 for all the SOC tested, the exception being solid particle number emissions >23 nm (SPN23) emissions that were comparable at all SOC. Moreover, the emissions obtained with the high voltage battery fully charged during on-road tests were comparable to those obtained with the battery at the minimum SOC for the entire test (ca. 91 km) as well as for the urban section (ca. 36 km). Overall, NOx and SPN23 emissions increased at lower temperatures, showing that at very low temperatures, there is no benefit in terms of particulate emissions from the electric range. Finally, it is shown that the emissions of N2O, the only unregulated pollutant presenting relevant emissions for this vehicle, and which are of catalytic nature, were proportional to the utilisation of the internal combustion engine. The scope of the manuscript is thus to deepen the knowledge on the emission performances of Diesel PHEVs through the systematic testing of a modern representative of this class of vehicles in a wide range of driving and environmental conditions. Full article
(This article belongs to the Special Issue Vehicle Emissions: New Challenges and Potential Solutions)
Show Figures

Figure 1

15 pages, 2031 KiB  
Article
On-Road and Laboratory Emissions from Three Gasoline Plug-In Hybrid Vehicles-Part 2: Solid Particle Number Emissions
by Anastasios Melas, Tommaso Selleri, Jacopo Franzetti, Christian Ferrarese, Ricardo Suarez-Bertoa and Barouch Giechaskiel
Energies 2022, 15(14), 5266; https://doi.org/10.3390/en15145266 - 20 Jul 2022
Cited by 9 | Viewed by 2375
Abstract
Plug-in hybrid electric vehicles (PHEVs) are a promising technology for reducing the tailpipe emissions of CO2 as well as air pollutants, especially in urban environments. However, several studies raise questions over their after-treatment exhaust efficiency when their internal combustion engine (ICE) ignites. [...] Read more.
Plug-in hybrid electric vehicles (PHEVs) are a promising technology for reducing the tailpipe emissions of CO2 as well as air pollutants, especially in urban environments. However, several studies raise questions over their after-treatment exhaust efficiency when their internal combustion engine (ICE) ignites. The rationale is the high ICE load during the cold start in combination with the cold conditions of the after-treatment devices. In this study, we measured the solid particle number (SPN) emissions of two Euro 6d and one Euro 6d-TEMP gasoline direct injection (GDI) PHEVs (electric range 52–61 km) all equipped with a gasoline particulate filter, in the laboratory and on-road with different states of charge of the rechargeable electric energy storage system (REESS) and ambient temperatures. All vehicles met the regulation limits but it was observed that, even for fully charged REESS, when the ICE ignited SPN emissions were similar or even higher in some cases compared to the operation of these vehicles solely with their ICE (discharged REESS) and also when compared to conventional GDI vehicles. On-road SPN emission rate spikes during the first 30 s after a cold start were, on average, 2 to 15 times higher with charged compared to discharged REESS due to higher SPN concentrations and exhaust flow rates. For one vehicle in the laboratory under identical driving conditions, the ICE ignition at high load resulted in 10-times-higher SPN emission rate spikes at cold-start compared to hot-start. At −10 °C, for all tested vehicles, the ICE ignited at the beginning of the cycle even when the REESS was fully charged, and SPN emissions increased from 30% to 80% compared to the cycle at 23 °C in which the ICE ignited. The concentration of particles below 23 nm, which is the currently regulated lower particle size, was low (≤18%), showing that particles larger than 23 nm were mainly emitted irrespective of cold or hot engine operation and ambient temperature. Full article
(This article belongs to the Special Issue Environmental Impact of New Energy Technologies)
Show Figures

Figure 1

17 pages, 2440 KiB  
Article
Evaluation of Measurement Procedures for Solid Particle Number (SPN) Measurements during the Periodic Technical Inspection (PTI) of Vehicles
by Anastasios Melas, Tommaso Selleri, Ricardo Suarez-Bertoa and Barouch Giechaskiel
Int. J. Environ. Res. Public Health 2022, 19(13), 7602; https://doi.org/10.3390/ijerph19137602 - 21 Jun 2022
Cited by 15 | Viewed by 2561
Abstract
Periodic technical inspection (PTI) of vehicles guarantees safety and environmental compliance during their lifetime. Particulate matter emissions of diesel vehicles are controlled with opacity measurements. After the introduction of diesel particulate filters (DPFs), particulate matter emissions have drastically decreased and the sensitivity of [...] Read more.
Periodic technical inspection (PTI) of vehicles guarantees safety and environmental compliance during their lifetime. Particulate matter emissions of diesel vehicles are controlled with opacity measurements. After the introduction of diesel particulate filters (DPFs), particulate matter emissions have drastically decreased and the sensitivity of the opacity method is questioned. Several countries have already or are planning to introduce a solid particle number (SPN) method at their PTI that will either substitute or complement opacity measurements. However, there are differences in the measurement procedures and the limit values. In this study, we compared the different approaches and investigated topics which are still not well defined, such as the uncertainty of the SPN-PTI instruments, repeatability of the procedures, impact of the DPF fill state, and the correlation between type-approval SPN emissions and SPN concentrations during PTI tests. Finally, we compared the SPN-PTI instruments with the opacity meters. Our results showed that SPN-PTI measurements can detect tampered and defective DPFs. We also made suggestions on the measurement procedures and the concentration limit. Full article
(This article belongs to the Special Issue Mobile Sources Emissions and Public Health)
Show Figures

Figure 1

27 pages, 17429 KiB  
Article
Measuring Emissions from a Demonstrator Heavy-Duty Diesel Vehicle under Real-World Conditions—Moving Forward to Euro VII
by Tommaso Selleri, Roberto Gioria, Anastasios D. Melas, Barouch Giechaskiel, Fabrizio Forloni, Pablo Mendoza Villafuerte, Joachim Demuynck, Dirk Bosteels, Thomas Wilkes, Oliver Simons, Patrick Recker, Velizara Lilova, Yusuke Onishi, Matthias Steffen, Benedikt Grob, Adolfo Perujo and Ricardo Suarez-Bertoa
Catalysts 2022, 12(2), 184; https://doi.org/10.3390/catal12020184 - 1 Feb 2022
Cited by 36 | Viewed by 4619
Abstract
The European Union (EU) has introduced since the early 1990s a series of progressively more stringent emission regulations to control air pollution from the transport sector, commonly known as Euro standards. Following this path, more recently, with the European Green Deal, the European [...] Read more.
The European Union (EU) has introduced since the early 1990s a series of progressively more stringent emission regulations to control air pollution from the transport sector, commonly known as Euro standards. Following this path, more recently, with the European Green Deal, the European Commission has indicated the intention to review the current air pollutant emissions standards. This study investigates the emission performance of an advanced demonstrator vehicle developed to meet the increasingly more stringent air pollution limits required. Emissions of currently regulated and unregulated components including NH3, N2O, and SPN10 (solid particle number), were studied in a very wide range of real-world operative conditions. The performance of two new generation portable instruments for the onboard measurement of N2O and NH3 were also evaluated in comparison with reference laboratory equipment. Similarly, the measurement accuracy of onboard NOx sensors was also compared to laboratory reference. The vehicle presented low emissions of NOx and NH3 and relatively low emissions of N2O, also compared to data currently available in the literature, in a broad range of operative conditions, which however resulted in a large variability in emissions. Full article
Show Figures

Figure 1

36 pages, 950 KiB  
Review
Revisiting Total Particle Number Measurements for Vehicle Exhaust Regulations
by Barouch Giechaskiel, Anastasios Melas, Giorgio Martini, Panagiota Dilara and Leonidas Ntziachristos
Atmosphere 2022, 13(2), 155; https://doi.org/10.3390/atmos13020155 - 18 Jan 2022
Cited by 32 | Viewed by 7267
Abstract
Road transport significantly contributes to air pollution in cities. Emission regulations have led to significantly reduced emissions in modern vehicles. Particle emissions are controlled by a particulate matter (PM) mass and a solid particle number (SPN) limit. There are concerns that the SPN [...] Read more.
Road transport significantly contributes to air pollution in cities. Emission regulations have led to significantly reduced emissions in modern vehicles. Particle emissions are controlled by a particulate matter (PM) mass and a solid particle number (SPN) limit. There are concerns that the SPN limit does not effectively control all relevant particulate species and there are instances of semi-volatile particle emissions that are order of magnitudes higher than the SPN emission levels. This overview discusses whether a new metric (total particles, i.e., solids and volatiles) should be introduced for the effective regulation of vehicle emissions. Initially, it summarizes recent findings on the contribution of road transport to particle number concentration levels in cities. Then, both solid and total particle emission levels from modern vehicles are presented and the adverse health effects of solid and volatile particles are briefly discussed. Finally, the open issues regarding an appropriate methodology (sampling and instrumentation) in order to achieve representative and reproducible results are summarized. The main finding of this overview is that, even though total particle sampling and quantification is feasible, details for its realization in a regulatory context are lacking. It is important to define the methodology details (sampling and dilution, measurement instrumentation, relevant sizes, etc.) and conduct inter-laboratory exercises to determine the reproducibility of a proposed method. It is also necessary to monitor the vehicle emissions according to the new method to understand current and possible future levels. With better understanding of the instances of formation of nucleation mode particles it will be possible to identify its culprits (e.g., fuel, lubricant, combustion, or aftertreatment operation). Then the appropriate solutions can be enforced and the right decisions can be taken on the need for new regulatory initiatives, for example the addition of total particles in the tailpipe, decrease of specific organic precursors, better control of inorganic precursors (e.g., NH3, SOx), or revision of fuel and lubricant specifications. Full article
(This article belongs to the Special Issue Engine Emissions and Air Quality)
Show Figures

Figure 1

18 pages, 3154 KiB  
Article
Evaluation of Solid Particle Number Sensors for Periodic Technical Inspection of Passenger Cars
by Anastasios Melas, Tommaso Selleri, Ricardo Suarez-Bertoa and Barouch Giechaskiel
Sensors 2021, 21(24), 8325; https://doi.org/10.3390/s21248325 - 13 Dec 2021
Cited by 19 | Viewed by 3361
Abstract
Following the increase in stringency of the European regulation limits for laboratory and real world automotive emissions, one of the main transport related aspects to improve the air quality is the mass scale in-use vehicle testing. Solid particle number (SPN) emissions have been [...] Read more.
Following the increase in stringency of the European regulation limits for laboratory and real world automotive emissions, one of the main transport related aspects to improve the air quality is the mass scale in-use vehicle testing. Solid particle number (SPN) emissions have been drastically reduced with the use of diesel and gasoline particulate filters which, however, may get damaged or even been tampered. The feasibility of on-board monitoring and remote sensing as well as of the current periodical technical inspection (PTI) for detecting malfunctioning or tampered particulate filters is under discussion. A promising methodology for detecting high emitters is SPN testing at low idling during PTI. Several European countries plan to introduce this method for diesel vehicles and the European Commission (EC) will provide some guidelines. For this scope an experimental campaign was organized by the Joint Research Centre (JRC) of the EC with the participation of different instrument manufacturers. Idle SPN concentrations of vehicles without or with a malfunctioning particulate filter were measured. The presence of particles under the current cut-off size of 23 nm as well as of volatile particles during idling are presented. Moreover, the extreme case of a well performing vehicle tested after a filter regeneration is studied. In most of the cases the different sensors used were in good agreement, the high sub-23 nm particles existence being the most challenging case due to the differences in the sensors’ efficiency below the cut-off size. Full article
(This article belongs to the Collection Sensors for Air Quality Monitoring)
Show Figures

Figure 1

16 pages, 3294 KiB  
Article
Inter-Comparison of Particle and Gaseous Pollutant Emissions of a Euro 4 Motorcycle at Two Laboratories
by Piotr Bielaczyc, Wojciech Honkisz, Joseph Woodburn, Andrzej Szczotka, Fabrizio Forloni, Dominique Lesueur and Barouch Giechaskiel
Energies 2021, 14(23), 8101; https://doi.org/10.3390/en14238101 - 3 Dec 2021
Cited by 2 | Viewed by 2245
Abstract
The Euro 4 regulation, applicable since 2016 for L-category vehicles (i.e., two and three-wheelers, and mini cars) reduced the emission limits, but also introduced a new cycle, the WMTC (World Harmonized Motorcycle Test Cycle). The emission studies of Euro 4 motorcycles are limited, [...] Read more.
The Euro 4 regulation, applicable since 2016 for L-category vehicles (i.e., two and three-wheelers, and mini cars) reduced the emission limits, but also introduced a new cycle, the WMTC (World Harmonized Motorcycle Test Cycle). The emission studies of Euro 4 motorcycles are limited, and most importantly there are no published studies comparing the results of different laboratories applying the new cycle. In this study we compared the particle and gaseous pollutants of one Euro 4 motorcycle measured in two laboratories in 2017 and 2020. The gaseous pollutant results had a variance (one standard deviation of the means) of 0.5% for CO2, 4–19% for CO, NOx, HC (hydrocarbons) and SPN (Solid Particle Number). The particulate matter mass results had higher variance of 50–60%. Additional tests with open configuration to mimic dilution at the tailpipe gave equivalent results to the closed configuration for the gaseous pollutants and SPN. The total particles (including volatiles) had significant differences between the two configurations, with the closed configuration giving higher results. The main conclusion of this study is that the new procedures have very good reproducibility, even for the SPN that is not regulated for L-category vehicles. However, the measurement of total particles needs attention due to the high sensitivity of volatile particles to the sampling conditions. Full article
(This article belongs to the Special Issue Development of Electric Vehicles and Engine Emissions)
Show Figures

Figure 1

16 pages, 3990 KiB  
Article
Particle Number Emissions of Gasoline, Compressed Natural Gas (CNG) and Liquefied Petroleum Gas (LPG) Fueled Vehicles at Different Ambient Temperatures
by Tero Lähde and Barouch Giechaskiel
Atmosphere 2021, 12(7), 893; https://doi.org/10.3390/atmos12070893 - 9 Jul 2021
Cited by 22 | Viewed by 5360
Abstract
Compressed natural gas (CNG) and liquefied petroleum gas (LPG) are included in the group of promoted transport fuel alternatives for traditional fossil fuels in Europe. Both CNG and LPG fueled vehicles are believed to have low particle number and mass emissions. Here, we [...] Read more.
Compressed natural gas (CNG) and liquefied petroleum gas (LPG) are included in the group of promoted transport fuel alternatives for traditional fossil fuels in Europe. Both CNG and LPG fueled vehicles are believed to have low particle number and mass emissions. Here, we studied the solid particle number (SPN) emissions >4 nm, >10 nm and >23 nm of bi-fuel vehicles applying CNG, LPG and gasoline fuels in laboratory at 23 °C and sub-zero (−7 °C) ambient temperature conditions. The SPN23 emissions in CNG or LPG operation modality at 23 °C were below the regulated SPN23 limit of diesel and gasoline direct injection vehicles 6×1011 1/km. Nevertheless, the limit was exceeded at sub-zero temperatures, when sub-23 nm particles were included, or when gasoline was used as a fuel. The key message of this study is that gas-fueled vehicles produced particles mainly <23 nm and the current methodology might not be appropriate. However, only in a few cases absolute SPN >10 nm emission levels exceeded 6×1011 1/km when >23 nm levels were below 6×1011 1/km. Setting a limit of 1×1011 1/km for >10 nm particles would also limit most of the >4 nm SPN levels below 6×1011 1/km. Full article
(This article belongs to the Special Issue Air Quality Impacts of Vehicle Emissions)
Show Figures

Figure 1

Back to TopTop