Particle Number Emissions of Gasoline, Compressed Natural Gas (CNG) and Liquefied Petroleum Gas (LPG) Fueled Vehicles at Different Ambient Temperatures
Abstract
:1. Introduction
2. Materials and Methods
2.1. Vehicles
2.2. Equipment and Method
2.3. SPN Limits
3. Results
3.1. Gaseous Fuel Operation
3.2. Liquid Fuel Operation
3.3. Comparison of Emissions in Gaseous and Liquid Fuel Operations
3.4. Fuel Switch Over
4. Discussion
4.1. Operation with Gasoline Fuel
4.2. Sub-Zero Temperature
4.3. Sub-23 nm Particle Emissions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- European Parliament and Council. Directive 2003/30/EC of the European Parliament and of the Council of 8 May 2003 on the Promotion of the Use of Biofuels or Other Renewable Fuels for Transport. Off. J. Eur. Union 2003, 123, 1–42. [Google Scholar]
- EAFO European Alternative Fuels Observatory. Available online: https://www.eafo.eu/ (accessed on 27 October 2020).
- Bae, C.; Kim, J. Alternative Fuels for Internal Combustion Engines. Proc. Combust. Inst. 2017, 36, 3389–3413. [Google Scholar] [CrossRef]
- Chala, G.T.; Abd Aziz, A.R.; Hagos, F.Y. Natural Gas Engine Technologies: Challenges and Energy Sustainability Issue. Energies 2018, 11, 2934. [Google Scholar] [CrossRef] [Green Version]
- Kakaee, A.-H.; Paykani, A.; Ghajar, M. The Influence of Fuel Composition on the Combustion and Emission Characteristics of Natural Gas Fueled Engines. Renew. Sustain. Energy Rev. 2014, 38, 64–78. [Google Scholar] [CrossRef]
- Morganti, K.J.; Foong, T.M.; Brear, M.J.; da Silva, G.; Yang, Y.; Dryer, F.L. The Research and Motor Octane Numbers of Liquefied Petroleum Gas (LPG). Fuel 2013, 108, 797–811. [Google Scholar] [CrossRef]
- Winkel, R.; Hamelinck, C.; Bardout, M.; Bucquet, C.; Ping, S.; Cuijpers, M.; Artuso, D.; Bonafede, S. Alternative Fuels and Infrastructure in Seven Non-EU Markets; Publications Office of the European Union: Luxembourg, 2016. [Google Scholar]
- Demirbas, A. Fuel Alternatives to Gasoline. Energy Sources Part B Econ. Plan. Policy 2007, 2, 311–320. [Google Scholar] [CrossRef]
- Giechaskiel, B.; Woodburn, J.; Szczotka, A.; Bielaczyc, P. Particulate Matter (PM) Emissions of Euro 5 and Euro 6 Vehicles Using Systems with Evaporation Tube or Catalytic Stripper and 23 nm or 10 nm Counters; SAE Tech. Pap. 2020-01-2203; SAE International: Warrendale, PA, USA, 2020. [Google Scholar] [CrossRef]
- Myung, C.L.; Lee, H.; Choi, K.; Lee, Y.J.; Park, S. Effects of Gasoline, Diesel, LPG, and Low-Carbon Fuels and Various Certification Modes on Nanoparticle Emission Characteristics in Light-Duty Vehicles. Int. J. Automot. Technol. 2009, 10, 537–544. [Google Scholar] [CrossRef]
- Schreiber, D.; Forss, A.-M.; Mohr, M.; Dimopoulos, P. Particle Characterisation of Modern CNG, Gasoline and Diesel Passenger Cars; SAE Tech. Pap. 2007-24-0123; SAE International: Warrendale, PA, USA, 2007. [Google Scholar] [CrossRef] [Green Version]
- Giechaskiel, B.; Lähde, T.; Drossinos, Y. Regulating Particle Number Measurements from the Tailpipe of Light-Duty Vehicles: The next Step? Environ. Res. 2019, 172, 1–9. [Google Scholar] [CrossRef]
- Toumasatos, Z.; Kontses, A.; Doulgeris, S.; Samaras, Z.; Ntziachristos, L. Particle Emissions Measurements on CNG Vehicles Focusing on Sub-23nm. Aerosol Sci. Technol. 2020, 55, 182–193. [Google Scholar] [CrossRef]
- Giechaskiel, B.; Lahde, T.; Suarez-Bertoa, R.; Clairotte, M.; Grigoratos, T.; Zardini, A.; Perujo, A.; Martini, G. Particle Number Measurements in the European Legislation and Future JRC Activities. Combust. Engines 2018, 174, 3–16. [Google Scholar] [CrossRef]
- Dimopoulos Eggenschwiler, P.; Schreiber, D.; Schröter, K. Characterization of the Emission of Particles Larger than 10 Nm in the Exhaust of Modern Gasoline and CNG Light Duty Vehicles. Fuel 2021, 291, 120074. [Google Scholar] [CrossRef]
- NGVA Europe VEHICLE CATALOGUE. 2019. Available online: https://www.ngva.eu/wp-content/uploads/2019/09/NGVAEurope_VehicleCatalogue_Sep2019.pdf (accessed on 9 July 2021).
- European Parliament and Council. EC-2017/1151 Commission Regulation (EU) 2017/1151 of 1 June 2017 Supplementing Regulation (EC) No 715/2007 of the European Parliament and of the Council on Type-Approval of Motor Vehicles with Respect to Emissions from Light Passenger and Commercial Vehicles (Euro 5 and Euro 6) and on Access to Vehicle Repair and Maintenance Information. Off. J. Eur. Union 2017, 60, 1–732. [Google Scholar]
- Giechaskiel, B.; Joshi, A.; Ntziachristos, L.; Dilara, P. European Regulatory Framework and Particulate Matter Emissions of Gasoline Light-Duty Vehicles: A Review. Catalysts 2019, 9, 586. [Google Scholar] [CrossRef] [Green Version]
- Mamakos, A.; Dardiotis, C.; Martini, G. Assessment of Particle Number Limits for Petrol Vehicles. In JRC Scientific and Policy Reports; Publications Office of the European Union: Luxembourg, 2012. [Google Scholar]
- Giechaskiel, B.; Mamakos, A.; Andersson, J.; Dilara, P.; Martini, G.; Schindler, W.; Bergmann, A. Measurement of Automotive Nonvolatile Particle Number Emissions within the European Legislative Framework: A Review. Aerosol Sci. Technol. 2012, 46, 719–749. [Google Scholar] [CrossRef]
- Giechaskiel, B.; Vanhanen, J.; Väkevä, M.; Martini, G. Investigation of Vehicle Exhaust Sub-23 Nm Particle Emissions. Aerosol Sci. Technol. 2017, 51, 626–641. [Google Scholar] [CrossRef] [Green Version]
- Alanen, J.; Saukko, E.; Lehtoranta, K.; Murtonen, T.; Timonen, H.; Hillamo, R.; Karjalainen, P.; Kuuluvainen, H.; Harra, J.; Keskinen, J.; et al. The Formation and Physical Properties of the Particle Emissions from a Natural Gas Engine. Fuel 2015, 162, 155–161. [Google Scholar] [CrossRef]
- Alanen, J.; Isotalo, M.; Kuittinen, N.; Simonen, P.; Martikainen, S.; Kuuluvainen, H.; Honkanen, M.; Lehtoranta, K.; Nyyssönen, S.; Vesala, H.; et al. Physical Characteristics of Particle Emissions from a Medium Speed Ship Engine Fueled with Natural Gas and Low-Sulfur Liquid Fuels. Environ. Sci. Technol. 2020, 54, 5376–5384. [Google Scholar] [CrossRef]
- Giechaskiel, B. Differences between Tailpipe and Dilution Tunnel Sub-23 Nm Nonvolatile (Solid) Particle Number Measurements. Aerosol Sci. Technol. 2019, 53, 1012–1022. [Google Scholar] [CrossRef] [Green Version]
- Giechaskiel, B.; Lähde, T.; Schwelberger, M.; Kleinbach, T.; Roske, H.; Teti, E.; van den Bos, T.; Neils, P.; Delacroix, C.; Jakobsson, T.; et al. Particle Number Measurements Directly from the Tailpipe for Type Approval of Heavy-Duty Engines. Appl. Sci. 2019, 9, 4418. [Google Scholar] [CrossRef] [Green Version]
- Tabata, K.; Takahashi, M.; Takeda, K.; Tsurumi, K.; Kiya, Y.; Tobe, S.; Ogura, A. Studies on Characteristics of Nanoparticles Generated in a Gasoline Direct-Injection Engine; SAE Tech. Pap. 2019-01-2328; SAE International: Warrendale, PA, USA, 2019. [Google Scholar] [CrossRef]
- Kuuluvainen, H.; Karjalainen, P.; Saukko, E.; Ovaska, T.; Sirviö, K.; Honkanen, M.; Olin, M.; Niemi, S.; Keskinen, J.; Rönkkö, T. Nonvolatile Ultrafine Particles Observed to Form Trimodal Size Distributions in Non-Road Diesel Engine Exhaust. Aerosol Sci. Technol. 2020, 54, 1345–1358. [Google Scholar] [CrossRef]
- Sgro, L.A.; Sementa, P.; Vaglieco, B.M.; Rusciano, G.; D’Anna, A.; Minutolo, P. Investigating the Origin of Nuclei Particles in GDI Engine Exhausts. Combust. Flame 2012, 159, 1687–1692. [Google Scholar] [CrossRef]
- Abdul-Khalek, I.S.; Kittelson, D.B.; Graskow, B.R.; Wei, Q.; Bear, F. Diesel Exhaust Particle Size: Measurement Issues and Trends; SAE Tech. Pap. 980525; SAE International: Warrendale, PA, USA, 1998. [Google Scholar] [CrossRef]
- Lee, D.; Miller, A.; Kittelson, D.; Zachariah, M.R. Characterization of Metal-Bearing Diesel Nanoparticles Using Single-Particle Mass Spectrometry. J. Aerosol Sci. 2006, 37, 88–110. [Google Scholar] [CrossRef]
- Dobbins, R.A. Hydrocarbon Nanoparticles Formed in Flames and Diesel Engines. Aerosol Sci. Technol. 2007, 41, 485–496. [Google Scholar] [CrossRef] [Green Version]
- Filippo, A.D.; Maricq, M.M. Diesel Nucleation Mode Particles: Semivolatile or Solid? Environ. Sci. Technol. 2008, 42, 7957–7962. [Google Scholar] [CrossRef]
- Neoh, K.G.; Howard, J.B.; Sarofim, A.F. Effect of Oxidation on the Physical Structure of Soot. Symp. Combust. 1985, 20, 951–957. [Google Scholar] [CrossRef]
- Donaldson, K.; Tran, L.; Jimenez, L.; Duffin, R.; Newby, D.; Mills, N.; MacNee, W.; Stone, V. Combustion-Derived Nanoparticles: A Review of Their Toxicology Following Inhalation Exposure. Part. Fibre Toxicol. 2005, 2, 10. [Google Scholar] [CrossRef] [Green Version]
- Lin, C.-C.; Chen, S.-J.; Huang, K.-L.; Lee, W.-J.; Lin, W.-Y.; Tsai, J.-H.; Chaung, H.-C. PAHs, PAH-Induced Carcinogenic Potency, and Particle-Extract-Induced Cytotoxicity of Traffic-Related Nano/Ultrafine Particles. Environ. Sci. Technol. 2008, 42, 4229–4235. [Google Scholar] [CrossRef]
- Lindner, K.; Ströbele, M.; Schlick, S.; Webering, S.; Jenckel, A.; Kopf, J.; Danov, O.; Sewald, K.; Buj, C.; Creutzenberg, O.; et al. Biological Effects of Carbon Black Nanoparticles Are Changed by Surface Coating with Polycyclic Aromatic Hydrocarbons. Part. Fibre Toxicol. 2017, 14, 8. [Google Scholar] [CrossRef]
- Duffin, R.; Tran, C.L.; Clouter, A.; Brown, D.M.; MacNee, W.; Stone, V.; Donaldson, K. The Importance of Surface Area and Specific Reactivity in the Acute Pulmonary Inflammatory Response to Particles. Ann. Occup. Hyg. 2002, 46, 242–245. [Google Scholar] [CrossRef]
- Li, N.; Sioutas, C.; Cho, A.; Schmitz, D.; Misra, C.; Sempf, J.; Wang, M.; Oberley, T.; Froines, J.; Nel, A. Ultrafine Particulate Pollutants Induce Oxidative Stress and Mitochondrial Damage. Environ. Health Perspect. 2003, 111, 455–460. [Google Scholar] [CrossRef]
- Manke, A.; Wang, L.; Rojanasakul, Y. Mechanisms of Nanoparticle-Induced Oxidative Stress and Toxicity. BioMed Res. Int. 2013, 2013, 942916. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Limbach, L.; Wick, P.; Manser, P.; Grass, R.; Bruinink, A.; Stark, W. Exposure of Engineered Nanoparticles to Human Lung Epithelial Cells: Influence of Chemical Composition and Catalytic Activity on Oxidative Stress. Environ. Sci. Technol. 2007, 41, 4158–4163. [Google Scholar] [CrossRef]
- Oberdörster, G. Pulmonary Effects of Inhaled Ultrafine Particles. Int. Arch. Occup. Environ. Health 2000, 74, 1–8. [Google Scholar] [CrossRef]
- UNECE. Global Technical Regulation No. 15; Worldwide Harmonized Light Vehicles Test Procedure; UNECE: Geneva, Switzerland, 2020. [Google Scholar]
- Lahde, T.; Giechaskiel, B.; Martini, G. Development of Measurement Methodology for Sub 23 nm Particle Number (PN) Measurements; SAE Paper 2020-01-2211; SAE International: Warrendale, PA, USA, 2020. [Google Scholar] [CrossRef]
- Aakko-Saksa, P.; Koponen, P.; Roslund, P.; Laurikko, J.; Nylund, N.-O.; Karjalainen, P.; Rönkkö, T.; Timonen, H. Comprehensive Emission Characterisation of Exhaust from Alternative Fuelled Cars. Atmos. Environ. 2020, 236, 117643. [Google Scholar] [CrossRef]
- Bielaczyc, P.; Szczotka, A.; Woodburn, J. Regulated and Unregulated Exhaust Emissions from CNG Fueled Vehicles in Light of Euro 6 Regulations and the New WLTP/GTR 15 Test Procedure. SAE Int. J. Engines 2015, 8, 1300–1312. [Google Scholar] [CrossRef]
- Saraf, R.R.; Thipse, S.S.; Saxena, P.K. Comparative Assessment on Performance and Emissions of LPG/Gasoline Bi-Fuel Passenger Car PFI Engines; SAE Tech. Pap. 2009-01-1665; SAE International: Warrendale, PA, USA, 2009. [Google Scholar] [CrossRef]
- ECE/TRANS. Addendum 15: United Nations Global Technical Regulation No. 15—Amendment 6—Appendix 1; United Nations: Geneva, Switzerland, 2021. [Google Scholar]
- Giechaskiel, B.; Melas, A.D.; Lähde, T.; Martini, G. Non-Volatile Particle Number Emission Measurements with Catalytic Strippers: A Review. Vehicles 2020, 2, 342–364. [Google Scholar] [CrossRef]
- Giechaskiel, B.; Lähde, T.; Melas, A.D.; Valverde, V.; Clairotte, M. Uncertainty of Laboratory and Portable Solid Particle Number Systems for Regulatory Measurements of Vehicle Emissions. Environ. Res. 2021, 197, 111068. [Google Scholar] [CrossRef]
- European Parliament and Council. EC-692/2008 Commission Regulation (EC) No 692/2008 Implementing and Amending Regulation (EC) No 715/2007 of the European Parliament and of the Council on Type-Approval of Motor Vehicles with Respect to Emissions from Light Passenger and Commercial Vehicles (Euro 5 and Euro 6) and on Access to Vehicle Repair and Maintenance Information). Off. J. Eur. Union 2008, 199, 1–136. [Google Scholar]
- Dimaratos, A.; Toumasatos, Z.; Doulgeris, S.; Triantafyllopoulos, G.; Kontses, A.; Samaras, Z. Assessment of CO2 and NOx Emissions of One Diesel and One Bi-Fuel Gasoline/CNG Euro 6 Vehicles During Real-World Driving and Laboratory Testing. Front. Mech. Eng. 2019, 5, 62. [Google Scholar] [CrossRef] [Green Version]
- Melaika, M.; Etikyala, S.; Dahlander, P. Particulates from a CNG DI SI Engine during Warm-Up; SAE Tech. Pap. 2021-01-0630; SAE International: Warrendale, PA, USA, 2021. [Google Scholar] [CrossRef]
- Zhu, R.; Hu, J.; Bao, X.; He, L.; Lai, Y.; Zu, L.; Li, Y.; Su, S. Tailpipe Emissions from Gasoline Direct Injection (GDI) and Port Fuel Injection (PFI) Vehicles at Both Low and High Ambient Temperatures. Environ. Pollut. 2016, 216, 223–234. [Google Scholar] [CrossRef]
- Suarez-Bertoa, R.; Astorga, C. Impact of Cold Temperature on Euro 6 Passenger Car Emissions. Environ. Pollut. 2018, 234, 318–329. [Google Scholar] [CrossRef]
- Favre, C.; Bosteels, D.; May, J. Exhaust Emissions from European Market-Available Passenger Cars Evaluated on Various Drive Cycles; SAE Tech. Pap. 2013-24-0154; SAE International: Warrendale, PA, USA, 2013. [Google Scholar] [CrossRef] [Green Version]
- Mamakos, A.; Martini, G.; Marotta, A.; Manfredi, U. Assessment of Different Technical Options in Reducing Particle Emissions from Gasoline Direct Injection Vehicles. J. Aerosol Sci. 2013, 63, 115–125. [Google Scholar] [CrossRef]
- Chan, T.W.; Meloche, E.; Kubsh, J.; Brezny, R. Black Carbon Emissions in Gasoline Exhaust and a Reduction Alternative with a Gasoline Particulate Filter. Environ. Sci. Technol. 2014, 48, 6027–6034. [Google Scholar] [CrossRef] [PubMed]
- Chan, T.W.; Meloche, E.; Kubsh, J.; Brezny, R.; Rosenblatt, D.; Rideout, G. Impact of Ambient Temperature on Gaseous and Particle Emissions from a Direct Injection Gasoline Vehicle and Its Implications on Particle Filtration. SAE Int. J. Fuels Lubr. 2013, 6, 350–371. [Google Scholar] [CrossRef]
- Roberts, A.; Brooks, R.; Shipway, P. Internal Combustion Engine Cold-Start Efficiency: A Review of the Problem, Causes and Potential Solutions. Energy Convers. Manag. 2014, 82, 327–350. [Google Scholar] [CrossRef] [Green Version]
- Kayes, D.; Hochgreb, S. Mechanisms of Particulate Matter Formation in Spark-Ignition Engines. 2. Effect of Fuel, Oil, and Catalyst Parameters. Environ. Sci. Technol. 1999, 33, 3968–3977. [Google Scholar] [CrossRef]
- Khan, M.I.; Yasmin, T.; Shakoor, A. Technical Overview of Compressed Natural Gas (CNG) as a Transportation Fuel. Renew. Sustain. Energy Rev. 2015, 51, 785–797. [Google Scholar] [CrossRef]
- Semin, R.; Bakar, A. A Technical Review of Compressed Natural Gas as an Alternative Fuel for Internal Combustion Engines. Am. J. Eng. Appl. Sci. 2008, 1, 302–311. [Google Scholar]
- Cho, H.M.; He, B.-Q. Spark Ignition Natural Gas Engines—A Review. Energy Convers. Manag. 2007, 48, 608–618. [Google Scholar] [CrossRef]
- Bielaczyc, P.; Szczotka, A.; Woodburn, J. A Comparison of Exhaust Emissions from Vehicles Fuelled with Petrol, LPG and CNG. IOP Conf. Ser. Mater. Sci. Eng. 2016, 148, 12060. [Google Scholar] [CrossRef] [Green Version]
- Ristovski, Z.D.; Jayaratne, E.R.; Morawska, L.; Ayoko, G.A.; Lim, M. Particle and Carbon Dioxide Emissions from Passenger Vehicles Operating on Unleaded Petrol and LPG Fuel. Sci. Total Environ. 2005, 345, 93–98. [Google Scholar] [CrossRef] [Green Version]
Abbreviation | VCNG1 | VCNG2 | VLPG |
---|---|---|---|
Vehicle class | M1 | M1 | M1 |
Model Year | 2018 | 2019 | 2018 |
Odometer reading | 4253 | 1223 | 3003 |
Emissions standard | 6d-temp | 6d-temp-evap | 6d-temp-evap |
Rated power (kW) | 63 | 96 | 51 |
Emission control | TWC | TWC | TWC |
Engine capacity (cm3) | 875 | 1498 | 1242 |
Vehicle type | Bi-fuel | Mono-fuel (gas) | Bi-fuel |
Fuels | CNG/E10 | CNG/(E5) | LPG/E10 |
Fuel injection | PFI/PFI | PFI * | PFI/PFI |
Declared CO2 (g/km) | 110/149 | 96/- | 135/147 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lähde, T.; Giechaskiel, B. Particle Number Emissions of Gasoline, Compressed Natural Gas (CNG) and Liquefied Petroleum Gas (LPG) Fueled Vehicles at Different Ambient Temperatures. Atmosphere 2021, 12, 893. https://doi.org/10.3390/atmos12070893
Lähde T, Giechaskiel B. Particle Number Emissions of Gasoline, Compressed Natural Gas (CNG) and Liquefied Petroleum Gas (LPG) Fueled Vehicles at Different Ambient Temperatures. Atmosphere. 2021; 12(7):893. https://doi.org/10.3390/atmos12070893
Chicago/Turabian StyleLähde, Tero, and Barouch Giechaskiel. 2021. "Particle Number Emissions of Gasoline, Compressed Natural Gas (CNG) and Liquefied Petroleum Gas (LPG) Fueled Vehicles at Different Ambient Temperatures" Atmosphere 12, no. 7: 893. https://doi.org/10.3390/atmos12070893
APA StyleLähde, T., & Giechaskiel, B. (2021). Particle Number Emissions of Gasoline, Compressed Natural Gas (CNG) and Liquefied Petroleum Gas (LPG) Fueled Vehicles at Different Ambient Temperatures. Atmosphere, 12(7), 893. https://doi.org/10.3390/atmos12070893