Inter-Comparison of Particle and Gaseous Pollutant Emissions of a Euro 4 Motorcycle at Two Laboratories
Abstract
:1. Introduction
2. Materials and Methods
2.1. Overview
- During each campaign (2017 or 2020) the same fuel was used (i.e., the second laboratory measured with the fuel in the tank of the motorcycle). However, between the two campaigns the fuel was different (fulfilled the same specifications EN 228, but not from the same batch) (noted as #1 and #2 in Table 1). Some of the most important specifications of the fuels can be found in Table 2. The differences between them were small and they were within the EN 228 requirements.
- During each measurement campaign (2017 or 2020) the same driver drove the test cycles at both laboratories. The test cycle is described in the regulation (details later) and was the same for both campaigns. However, between the two campaigns the drivers were different (noted as A and B in Table 1). Both were experienced at dynamometer driving and followed the test cycle without speed trace violations (i.e., they followed precisely the cycle on the monitor in front of them, without errors).
- During the first campaign no particulate measurements were performed. Since particulates are sensitive to the emissions sampling/transfer setup, in the second campaign JRC assessed the impact of two configurations (open and closed sample transfer connections), which will be described in detail later.
2.2. Motorcycle
2.3. Experimental Setup
3. Results
3.1. Laboratories’ Comparisons
3.2. Particle Investigations
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Favre, C.; Bosteels, D.; May, J.; De Souza, I.; Beale, L.; Andersson, J. An Emissions Performance Evaluation of State-of-the-Art Motorcycles over Euro 3 and WMTC Drive Cycles; SAE International: Warrendale, PA, USA, 2009; no 2009-01–1841. [Google Scholar] [CrossRef]
- Fu, J.; Deng, B.; Liu, X.; Shu, J.; Xu, Y.; Liu, J. The experimental study on transient emissions and engine behaviors of a sporting motorcycle under world motorcycle test cycle. Energy 2020, 211, 118670. [Google Scholar] [CrossRef]
- Giechaskiel, B. Gaseous and particulate emissions of a Euro 4 motorcycle and effect of driving style and open or closed sampling configuration. Sustainability 2020, 12, 9122. [Google Scholar] [CrossRef]
- Hou, K.; Deng, B.; Chen, Y.; Ran, J.; Fu, J. For cleaner exhaust of a high performance motorcycle: A macroscopic comparative study of catalytic converters under world-wide motorcycle test cycle. J. Clean. Prod. 2021, 284, 124730. [Google Scholar] [CrossRef]
- ACEM Association Des Constructeurs Européens de Motocycles. Market Data. 2021. Available online: https://www.acem.eu/Market-Data (accessed on 2 December 2021).
- Dorocki, S. Changes in the market of two and three-wheeled motor vehicles in Europe at the beginning of the 21st Century. Entrep. Bus. Econ. Rev. 2018, 6, 175–193. [Google Scholar] [CrossRef]
- Tan, X.; Zeng, Y.; Gu, B.; Wang, Y.; Xu, B. Scenario analysis of urban road transportation energy demand and GHG emissions in China—A case study for Chongqing. Sustainability 2018, 10, 2033. [Google Scholar] [CrossRef] [Green Version]
- Iqbal, A.; Afroze, S.; Rahman, M. Vehicular PM emissions and urban public health sustainability: A probabilistic analysis for Dhaka City. Sustainability 2020, 12, 6284. [Google Scholar] [CrossRef]
- Surico, J. The pandemic kick-started an urban motorcycle boom. Are cities ready? Bloomberg. 27 October 2020. Available online: https://www.bloomberg.com/news/articles/2020-10-22/the-pandemic-has-kick-started-a-motorcycle-boom (accessed on 2 December 2021).
- TRUE: The real urban emissions initiative. Pollutant Emissions from Mopeds, Motorcycles, and Other L-Category Vehicles in Paris. Fact Sheet. September 2019. Available online: https://theicct.org/sites/default/files/TRUE%202.%20Paris%20L-cat%20Fact%20Sheet%20WEB%209.9.19.pdf (accessed on 2 December 2021).
- Bielaczyc, P.; Klimkiewicz, D.; Woodburn, J.; Szczotka, A. Exhaust emission testing methods—Bosmal’s legislative and development emission testing laboratories. Combust. Engines 2019, 58, 88–98. [Google Scholar] [CrossRef]
- Giechaskiel, B. Effect of sampling conditions on the Sub-23 Nm nonvolatile particle emissions measurements of a moped. Appl. Sci. 2019, 9, 3112. [Google Scholar] [CrossRef] [Green Version]
- Giechaskiel, B.; Clairotte, M.; Valverde-Morales, V.; Bonnel, P.; Kregar, Z.; Franco, V.; Dilara, P. Framework for the assessment of PEMS (Portable Emissions Measurement Systems) uncertainty. Environ. Res. 2018, 166, 251–260. [Google Scholar] [CrossRef]
- Bielaczyc, P.; Szczotka, A. Analysis of Uncertainty of the Emission Measurement of Gaseous Pollutants on Chassis Dynamometer; SAE International: Warrendale, PA, USA, 2007; no 2007-01–1324. [Google Scholar] [CrossRef]
- Giechaskiel, B.; Cresnoverh, M.; Jörgl, H.; Bergmann, A. Calibration and accuracy of a particle number measurement system. Meas. Sci. Technol. 2010, 21, 45102. [Google Scholar] [CrossRef]
- Wei, Q.; Akard, M.; Asano, I.; Rahman, M. Penetration calibration and verification for the solid particle counting system with polydisperse and monodisperse particles. SAE Int. J. Fuels Lubr. 2008, 1, 593–602. [Google Scholar] [CrossRef]
- Giechaskiel, B.; Wang, X.; Horn, H.-G.; Spielvogel, J.; Gerhart, C.; Southgate, J.; Jing, L.; Kasper, M.; Drossinos, Y.; Krasenbrink, A. Calibration of condensation particle counters for legislated vehicle number emission measurements. Aerosol Sci. Technol. 2009, 43, 1164–1173. [Google Scholar] [CrossRef]
- Wang, X.; Caldow, R.; Sem, G.J.; Hama, N.; Sakurai, H. Evaluation of a condensation particle counter for vehicle emission measurement: Experimental procedure and effects of calibration aerosol material. J. Aerosol Sci. 2010, 41, 306–318. [Google Scholar] [CrossRef]
- Takegawa, N.; Sakurai, H. Laboratory evaluation of a TSI condensation particle counter (Model 3771) under airborne measurement conditions. Aerosol Sci. Technol. 2011, 45, 272–283. [Google Scholar] [CrossRef]
- Lahde, T.; Giechaskiel, B.; Martini, G. Development of measurement methodology for Sub 23 Nm particle number (PN) Measurements. SAE Int. J. Adv. Curr. Pract. Mobil. 2020, 3, 551–560. [Google Scholar] [CrossRef]
- Giechaskiel, B.; Melas, A.D.; Lähde, T.; Martini, G. Non-volatile particle number emission measurements with catalytic strippers: A review. Vehicles 2020, 2, 19. [Google Scholar] [CrossRef]
- Amanatidis, S.; Ntziachristos, L.; Giechaskiel, B.; Katsaounis, D.; Samaras, Z.; Bergmann, A. Evaluation of an oxidation catalyst (“Catalytic Stripper”) in eliminating volatile material from combustion aerosol. J. Aerosol Sci. 2013, 57, 144–155. [Google Scholar] [CrossRef]
- Wang, X.; Grose, M.A.; Avenido, A.; Stolzenburg, M.R.; Caldow, R.; Osmondson, B.L.; Chow, J.C.; Watson, J.G. Improvement of engine exhaust particle sizer (EEPS) size distribution measurement—I. Algorithm and applications to compact-shape particles. J. Aerosol Sci. 2016, 92, 95–108. [Google Scholar] [CrossRef]
- Giechaskiel, B.; Zardini, A.A.; Lähde, T.; Perujo, A.; Kontses, A.; Ntziachristos, L. Particulate emissions of Euro 4 motorcycles and sampling considerations. Atmosphere 2019, 10, 421. [Google Scholar] [CrossRef] [Green Version]
- Silva, P.R.M.; Cunha, V.S.; de Carvalho Rocha, W.F.; Sarmanho, G.F.; Andrade, J.C.; Depieri, M. Use of proficiency testing schemes for motorcycle exhaust emissions laboratory: Brazilian experience. IET Sci. Meas. Technol. 2014, 8, 116–121. [Google Scholar] [CrossRef]
- Kontses, A.; Ntziachristos, L.; Zardini, A.A.; Papadopoulos, G.; Giechaskiel, B. Particulate emissions from L-category vehicles towards Euro 5. Environ. Res. 2020, 182, 109071. [Google Scholar] [CrossRef] [PubMed]
- Giechaskiel, B.; Melas, A. Emissions of a Euro 5 Motorcycle over the world harmonized motorcycle test cycle (WMTC). Combust. Engines 2021, 185, 21–25. [Google Scholar] [CrossRef]
- Yao, Y.-C.; Tsai, J.-H.; Ye, H.-F.; Chiang, H.-L. Comparison of exhaust emissions resulting from Cold- and Hot-start motorcycle driving modes. J. Air Waste Manag. Assoc. 2009, 59, 1339–1346. [Google Scholar] [CrossRef] [Green Version]
- Iodice, P.; Senatore, A. Exhaust emissions of new high-performance motorcycles in hot and cold conditions. Int. J. Environ. Sci. Technol. 2015, 12, 3133–3144. [Google Scholar] [CrossRef] [Green Version]
- Kumar, R.; Durai, B.K.; Saleh, W.; Boswell, C. Comparison and evaluation of emissions for different driving cycles of motorcycles: A note. Transp. Res. D Transp. Environ. 2011, 16, 61–64. [Google Scholar] [CrossRef]
- Rosenblatt, D.; Stokes, J.; Caffrey, C.; Brown, K.F. Effect of Driving Cycles on Emissions from On-Road Motorcycles; SAE International: Warrendale, PA, USA, 2020; no 2020-01–0377. [Google Scholar] [CrossRef]
- Yang, H.-H.; Dhital, N.B.; Cheruiyot, N.K.; Wang, L.-C.; Wang, S.-X. Effects of road grade on real-world tailpipe emissions of regulated gaseous pollutants and volatile organic compounds for a Euro 5 motorcycle. Atmos. Pollut. Res. 2021, 12, 101167. [Google Scholar] [CrossRef]
- Yao, Y.-C.; Tsai, J.-H.; Chiang, H.-L. Effects of ethanol-blended gasoline on air pollutant emissions from motorcycle. Sci. Total Environ. 2009, 407, 5257–5262. [Google Scholar] [CrossRef] [PubMed]
- Karavalakis, G.; Short, D.; Vu, D.; Villela, M.; Asa-Awuku, A.; Durbin, T.D. Evaluating the regulated emissions, air toxics, ultrafine particles, and black carbon from SI-PFI and SI-DI vehicles operating on different ethanol and iso-butanol blends. Fuel 2014, 128, 410–421. [Google Scholar] [CrossRef] [Green Version]
- Tesfa, B.; Gu, F.; Mishra, R.; Ball, A. Emission characteristics of a ci engine running with a range of biodiesel feedstocks. Energies 2014, 7, 334–350. [Google Scholar] [CrossRef]
- Niculescu, R.; Clenci, A.; Iorga-Siman, V. Review on the use of diesel–biodiesel–alcohol blends in compression ignition engines. Energies 2019, 12, 1194. [Google Scholar] [CrossRef] [Green Version]
- Li, G.; Bai, X.; Huo, S.; Huang, Z. Fast pyrolysis of lerdades for renewable biofuels. IET Renew. Power Gener. 2020, 14, 959–967. [Google Scholar] [CrossRef]
- Pérez, A.; Mateos, D.; García, C.; Caraveo, C.; Montero, G.; Coronado, M.; Valdez, B. Quantitative evaluation of the emissions of a transport engine operating with diesel-biodiesel. Energies 2020, 13, 3594. [Google Scholar] [CrossRef]
- Li, G.; Lu, Z.; Zhang, J.; Li, H.; Zhou, Y.; Mohammed Ibrahim Zayan, A.; Huang, Z. Life cycle assessment of biofuel production from microalgae cultivated in anaerobic digested wastewater. Int. J. Agric. Biol. Eng. 2020, 13, 241–246. [Google Scholar] [CrossRef] [Green Version]
- Mattarelli, E.; Rinaldini, C.; Savioli, T. Combustion analysis of a diesel engine running on different biodiesel blends. Energies 2015, 8, 3047–3057. [Google Scholar] [CrossRef] [Green Version]
- Wu, G.; Ge, J.C.; Choi, N.J. A comprehensive review of the application characteristics of biodiesel blends in diesel engines. Appl. Sci. 2020, 10, 8015. [Google Scholar] [CrossRef]
- Wu, Y.-Y.; Jang, C.-T. Combustion analysis of homogeneous charge compression ignition in a motorcycle engine using a dual-fuel with exhaust gas recirculation. Energies 2019, 12, 847. [Google Scholar] [CrossRef] [Green Version]
- Chen, P.-T.; Shen, D.-J.; Yang, C.-J.; Huang, K.D. Development of a hybrid electric motorcycle that accords energy efficiency and controllability via an inverse differential gear and power mode switching control. Appl. Sci. 2019, 9, 1787. [Google Scholar] [CrossRef] [Green Version]
- Giechaskiel, B.; Zardini, A.; Martini, G. Particle emission measurements from L-category vehicles. SAE Int. J. Engines 2015, 8, 2322–2337. [Google Scholar] [CrossRef]
- Giechaskiel, B.; Drossinos, Y. Theoretical investigation of volatile removal efficiency of particle number measurement systems. SAE Int. J. Engines 2010, 3, 1140–1151. [Google Scholar] [CrossRef]
- Vaaraslahti, K.; Virtanen, A.; Ristimäki, J.; Keskinen, J. Nucleation mode formation in heavy-duty diesel exhaust with and without a particulate filter. Environ. Sci. Technol. 2004, 38, 4884–4890. [Google Scholar] [CrossRef]
- Ristimäki, J.; Vaaraslahti, K.; Lappi, M.; Keskinen, J. Hydrocarbon condensation in heavy-duty diesel exhaust. Environ. Sci. Technol. 2007, 41, 6397–6402. [Google Scholar] [CrossRef]
- Yang, J.; Pham, L.; Johnson, K.C.; Durbin, T.D.; Karavalakis, G.; Kittelson, D.; Jung, H. Impacts of exhaust transfer system contamination on particulate matter measurements. Emiss. Control Sci. Technol. 2020, 6, 163–177. [Google Scholar] [CrossRef] [Green Version]
- Samaras, Z.; Andersson, J.; Aakko-Saksa, P.; Cuelenaere, R.; Mellios, G. Additional technical issues for Euro 7 (LDV) 2021. In Proceedings of the AGVES Meeting, Online, 27 October 2021; Available online: https://circabc.europa.eu/sd/a/fdd70a2d-b50a-4d0b-a92a-e64d41d0e947/CLOVE%20test%20limits%20AGVES%202020-10-27%20final%20vs2.pdf (accessed on 2 December 2021).
Year/Month | Lab | Fuel | Driver | Cycles | Comment |
---|---|---|---|---|---|
2017/02 | BOSMAL | EN 228 #1 | A | WMTC cold & hot | No PM, SPN23 |
2017/03 | JRC | EN 228 #1 | A | WMTC cold & hot | No PM, SPN23 |
2020/10 | JRC | EN 228 #2 | B | WMTC cold & hot | |
2020/10 | JRC | EN 228 #2 | B | WMTC cold & hot | Open configuration |
2020/11 | BOSMAL | EN 228 #2 | B | WMTC cold & hot |
Property | Limits | 2017 | 2020 |
---|---|---|---|
RON | ≥95 | 95.0 | 95.4 |
MON | ≥85 | 86.8 | 85.2 |
Density (at 15 °C) (kg/m3) | 720–775 | 736.3 | 740.0 |
Sulfur content (mg/kg) | ≤10 | 1.1 | 6.5 |
Maximum oxygen content | 2.7% (m/m) | 1.9% | 2.0% |
Ethanol | <12% (v/v) | 4.7% | 4.9% |
Model | BMW R 1200 GS |
---|---|
Swept volume | 1170 cm3 |
Maximum engine power | 92 kW (7750 rpm) |
Aftertreatment | Three-way catalyst (TWC) |
Mileage 2017 and 2020 | 2645 km and 4520 km |
Emission level | Euro 4 |
Equipment | BOSMAL | JRC |
---|---|---|
Chassis dynamometer | AVL Zoellner 48″ | AVL Zoellner 48″ |
Gas analyzers | Horiba MEXA 7400 | AVL AMA i60 |
Dilution tunnel | Horiba CVS 7400 S | CGM 308 |
Particle number | Horiba SPCS 2100 | AVL APC 489 |
WMTC | CO2 g/km | CO mg/km | NOx mg/km | HC mg/km | PM mg/km | SPN23_ET #/km |
---|---|---|---|---|---|---|
Cold start | 109.7 | 488 | 15.5 | 89.8 | 0.7 | 1.3 × 1011 |
0.5% | 6.9% | 11.1% | 5.5% | 50% | 4% | |
Hot start | 105.9 | 157 | 8.5 | 51.7 | 1.0 | 0.5 × 1011 |
0.5% | 6.2% | 18.7% | 13.4% | 60% | 19% |
WMTC | CO2 g/km | CO mg/km | NOx mg/km | HC mg/km | PM mg/km | SPN23_ET #/km | SPN10_ET #/km | TPN6 #/km |
---|---|---|---|---|---|---|---|---|
Cold closed | 109.5 | 473 | 18 | 96 | 1.1 | 1.3 × 1011 | 4.5 × 1011 | 305 × 1011 |
Cold open | 109.4 | 492 | 16 | 101 | 1.1 | 1.5 × 1011 | 5.3 × 1011 | 89 × 1011 |
Difference | −0.1% | 4.0% | −13.0% | 4.6% | −4.3% | 14.7% | 17.8% | −71.0% |
Hot closed | 105.5 | 143 | 11 | 62 | 1.52 | 0.4 × 1011 | 3.3 × 1011 | 311 × 1011 |
Hot open | 104.8 | 150 | 8 | 56 | 0.67 | 0.5 × 1011 | 2.8 × 1011 | 95 × 1011 |
Difference | −0.6% | 5.4% | −26.4% | −8.5% | −56.2% | 21.0% | −14.6% | −69.6% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bielaczyc, P.; Honkisz, W.; Woodburn, J.; Szczotka, A.; Forloni, F.; Lesueur, D.; Giechaskiel, B. Inter-Comparison of Particle and Gaseous Pollutant Emissions of a Euro 4 Motorcycle at Two Laboratories. Energies 2021, 14, 8101. https://doi.org/10.3390/en14238101
Bielaczyc P, Honkisz W, Woodburn J, Szczotka A, Forloni F, Lesueur D, Giechaskiel B. Inter-Comparison of Particle and Gaseous Pollutant Emissions of a Euro 4 Motorcycle at Two Laboratories. Energies. 2021; 14(23):8101. https://doi.org/10.3390/en14238101
Chicago/Turabian StyleBielaczyc, Piotr, Wojciech Honkisz, Joseph Woodburn, Andrzej Szczotka, Fabrizio Forloni, Dominique Lesueur, and Barouch Giechaskiel. 2021. "Inter-Comparison of Particle and Gaseous Pollutant Emissions of a Euro 4 Motorcycle at Two Laboratories" Energies 14, no. 23: 8101. https://doi.org/10.3390/en14238101
APA StyleBielaczyc, P., Honkisz, W., Woodburn, J., Szczotka, A., Forloni, F., Lesueur, D., & Giechaskiel, B. (2021). Inter-Comparison of Particle and Gaseous Pollutant Emissions of a Euro 4 Motorcycle at Two Laboratories. Energies, 14(23), 8101. https://doi.org/10.3390/en14238101