Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (223)

Search Parameters:
Keywords = solar thermal coating

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 1309 KiB  
Proceeding Paper
A Sustainable Approach to Cooking: Design and Evaluation of a Sun-Tracking Concentrated Solar Stove
by Hasan Ali Khan, Malik Hassan Nawaz, Main Omair Gul and Mazhar Javed
Mater. Proc. 2025, 23(1), 4; https://doi.org/10.3390/materproc2025023004 - 29 Jul 2025
Viewed by 154
Abstract
Access to clean cooking remains a major challenge in rural and off-grid areas where traditional fuels are costly, harmful, or scarce. Solar cooking offers a sustainable solution, but many existing systems suffer from fixed positioning and low efficiency. This study presents a low-cost, [...] Read more.
Access to clean cooking remains a major challenge in rural and off-grid areas where traditional fuels are costly, harmful, or scarce. Solar cooking offers a sustainable solution, but many existing systems suffer from fixed positioning and low efficiency. This study presents a low-cost, dual-axis solar tracking parabolic dish cooker designed for such regions, featuring adjustable pot holder height and portability for ease of use. The system uses an Arduino UNO, LDR sensors, and a DC gear motor to automate sun tracking, ensuring optimal alignment throughout the day. A 0.61 m parabolic dish with ≥97% reflective silver-coated mirrors concentrates sunlight to temperatures exceeding 300 °C. Performance tests in April, June, and November showed boiling times as low as 3.37 min in high-irradiance conditions (7.66 kWh/m2/day) and 6.63 min under lower-irradiance conditions (3.86 kWh/m2/day). Compared to fixed or single-axis systems, this design achieved higher thermal efficiency and reliability, even under partially cloudy skies. Built with locally available materials, the system offers an affordable, clean, and effective cooking solution that supports energy access, health, and sustainability in underserved communities. Full article
Show Figures

Figure 1

13 pages, 2134 KiB  
Article
Optimising Tubular Solar Still Performance with Gamma Aluminium Nanocoatings: Experimental Insights on Yield, Efficiency, and Economic Viability
by Ajay Kumar Kaviti, Niharika Mudavath and Vineet Singh Sikarwar
Processes 2025, 13(8), 2413; https://doi.org/10.3390/pr13082413 - 29 Jul 2025
Viewed by 309
Abstract
This study evaluates the performance of tubular solar stills coated with gamma aluminium nanocoatings at concentrations of 5%, 10%, and 15%, compared to a conventional tubular solar still. This is the first experimental study to apply gamma aluminium nanocoatings on tubular solar stills [...] Read more.
This study evaluates the performance of tubular solar stills coated with gamma aluminium nanocoatings at concentrations of 5%, 10%, and 15%, compared to a conventional tubular solar still. This is the first experimental study to apply gamma aluminium nanocoatings on tubular solar stills (TSS). The stills were tested for three days, from 9:00 a.m. to 5:00 p.m., under consistent conditions with varying water depths of 1 cm, 2 cm, and 3 cm. The results indicated that the 5% nanocoating achieved the highest water yield, producing 2.571 L/m2 with a 1 cm water depth. The 10% coating produced 2.514 L/m2, while the conventional solar still generated 2.286 L/m2. Thermal efficiency was highest on Day 1 for the 5% concentration, reaching 60.9%, followed by 10% concentration at 59.1%, while the 15% concentration showed the lowest efficiency at 33.8%. In terms of cost-effectiveness, the 5% concentration was the most economical, with the lowest cost per litre (CPL) of USD 0.10 and a payback period of 3.03 months. The 10% concentration had a CPL of USD 0.11 and a payback period of 3.33 months, while the 15% concentration had the highest CPL at USD 0.19 and the longest payback period of 5.63 months. Overall, the 5% concentration offered the best balance of water yield, efficiency, and cost-effectiveness. This research highlights γ-Al2O3 as an innovative, cost-effective material for solar distillation, paving the way for sustainable freshwater production. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

14 pages, 4651 KiB  
Article
Thermal-Induced Oxygen Vacancy Enhancing the Thermo-Chromic Performance of W-VO2−x@AA/PVP Nanoparticle Composite-Based Smart Windows
by Jiran Liang, Tong Wu, Chengye Zhang, Yunfei Bai, Dequan Zhang and Dangyuan Lei
Nanomaterials 2025, 15(14), 1084; https://doi.org/10.3390/nano15141084 - 12 Jul 2025
Viewed by 304
Abstract
Tungsten-doped vanadium dioxide (W-VO2) shows semiconductor-to-metal phase transition properties at room temperature, which is an ideal thermo-chromic smart window material. However, low visual transmittance and solar modulation limit its application in building energy saving. In this paper, a W-VO2−x@AA [...] Read more.
Tungsten-doped vanadium dioxide (W-VO2) shows semiconductor-to-metal phase transition properties at room temperature, which is an ideal thermo-chromic smart window material. However, low visual transmittance and solar modulation limit its application in building energy saving. In this paper, a W-VO2−x@AA core-shell nanoparticle is proposed to improve the thermo-chromic performance of W-VO2. Oxygen vacancies were used to promote the connection of W-VO2−x nanoparticles with L-ascorbic acid (AA) molecules. Oxygen vacancies were tuned in W-VO2 nanoparticles by thermal annealing temperatures in vacuum, and W-VO2−x@AA nanoparticles were synthesized by the hydrothermal method. A smart window was formed by dispersing W-VO2−x@AA core-shell nanoparticles into PVP evenly and spin-coating them on the surface of glass. The visual transmittance of this smart window reaches up to 67%, and the solar modulation reaches up to 12.1%. This enhanced thermo-chromic performance is related to the electron density enhanced by the AA surface molecular coordination effect through W dopant and oxygen vacancies. This work provides a new strategy to enhance the thermo-chromic performance of W-VO2 and its application in the building energy-saving field. Full article
(This article belongs to the Special Issue Nano Surface Engineering: 2nd Edition)
Show Figures

Figure 1

15 pages, 4738 KiB  
Article
Mechanical Performance of Ceria-Coated 3D-Printed Black Zirconia Cellular Structures After Solar Thermochemical CO/H2 Fuel Production Cycles
by Fernando A. Costa Oliveira, Manuel Sardinha, Joaquim M. Justino Netto, Miguel Farinha, Marco Leite, M. Alexandra Barreiros, Stéphane Abanades and Jorge Cruz Fernandes
Crystals 2025, 15(7), 629; https://doi.org/10.3390/cryst15070629 - 8 Jul 2025
Viewed by 354
Abstract
Solar fuels production requires developing redox active materials with porous structures able to withstand thermochemical cycles with enhanced thermal stability under concentrated solar irradiation conditions. The mechanical performance of 3D-printed, macroporous black zirconia gyroid structures, coated with redox-active ceria, was assessed for their [...] Read more.
Solar fuels production requires developing redox active materials with porous structures able to withstand thermochemical cycles with enhanced thermal stability under concentrated solar irradiation conditions. The mechanical performance of 3D-printed, macroporous black zirconia gyroid structures, coated with redox-active ceria, was assessed for their suitability in solar thermochemical cycles for CO2 and H2O splitting. Experiments were conducted using a 1.5 kW solar furnace to supply the high-temperature concentrated heat to a windowed reaction chamber to carry out thermal redox cycling under realistic on-sun conditions. The ceria coating on ceramic structures improved the thermal stability and redox efficiency while minimizing the quantity of the redox material involved. Crushing strength measurements showed that samples not directly exposed to the concentrated solar flux retained their mechanical performance after thermal cycling (~10 MPa), while those near the concentrated solar beam focus exhibited significant degradation due to thermal stresses and the formation of CexZr1−xO2 solid solutions (~1.5 MPa). A Weibull modulus of 8.5 was estimated, marking the first report of such a parameter for fused filament fabrication (FFF)-manufactured black zirconia with gyroid architecture. Failure occurred via a damage accumulation mechanism at both micro- and macro-scales. These findings support the viability of ceria-coated cellular ceramics for scalable solar fuel production and highlight the need for optimized reactor designs. Full article
(This article belongs to the Section Materials for Energy Applications)
Show Figures

Figure 1

16 pages, 2628 KiB  
Article
Alternatives to Lime Plaster: Evaluation of Paints with Inorganic Pigments for the Conservation of Heritage Buildings in Peru
by Carlos Guillermo Vargas Febres, Juan Serra Lluch, Ana Torres Barchino and Edwin Roberto Gudiel Rodríguez
Constr. Mater. 2025, 5(3), 44; https://doi.org/10.3390/constrmater5030044 - 4 Jul 2025
Viewed by 220
Abstract
Lime plaster has historically been a key material in the preservation of architectural heritage in Peru; however, its availability has been restricted by state regulations that limit its production and commercialization. This study evaluates the performance of paints formulated with inorganic pigments extracted [...] Read more.
Lime plaster has historically been a key material in the preservation of architectural heritage in Peru; however, its availability has been restricted by state regulations that limit its production and commercialization. This study evaluates the performance of paints formulated with inorganic pigments extracted from soils in the Cusco valley, combined with natural and synthetic binders, as a sustainable alternative for the protection of heritage buildings in this Andean region characterized by high altitude, wide thermal variations, and high solar radiation. Adhesion, hardness, drying time, and weather resistance tests were conducted according to applicable ASTM standards for architectural coatings. The results show that these formulations exhibit good adhesion to historic surfaces and greater durability against extreme environmental conditions compared to traditional lime plaster. Their potential compatibility with historic substrates and lower environmental impact suggest that these paints represent a viable alternative in sustainable conservation strategies; however, further studies are needed to more accurately characterize the mineralogical composition of the pigments used. Full article
Show Figures

Figure 1

20 pages, 7167 KiB  
Article
Drone-Based 3D Thermal Mapping of Urban Buildings for Climate-Responsive Planning
by Haowen Yan, Bo Zhao, Yaxing Du and Jiajia Hua
Sustainability 2025, 17(12), 5600; https://doi.org/10.3390/su17125600 - 18 Jun 2025
Viewed by 453
Abstract
Urban thermal environment is directly linked to the health and comfort of local residents, as well as energy consumption. Drone-based thermal infrared image acquirement provides an efficient and flexible way of assessing urban heat distribution, thereby supporting climate-resilient and sustainable urban development. Here, [...] Read more.
Urban thermal environment is directly linked to the health and comfort of local residents, as well as energy consumption. Drone-based thermal infrared image acquirement provides an efficient and flexible way of assessing urban heat distribution, thereby supporting climate-resilient and sustainable urban development. Here, we present an advanced approach that utilizes the thermal infrared camera mounted on the drone for high-resolution building wall temperature measurement and achieves centimeter accuracy. According to the binocular vision theory, the three-dimensional (3D) reconstruction of thermal infrared images is first conducted, and then the two-dimensional building wall temperature is extracted. Real-world validation shows that our approach can measure the wall temperature within a 5 °C error, which confirms the reliability of this approach. The field measurement of Yuquanting in Xiong’an New Area China during three time periods, i.e., morning (7:00–8:00), noon (13:00–14:00) and evening (18:00–19:00), was used as a case study to demonstrate our approach. The results show that during the heating season, the building wall temperature was the highest at noon time and the lowest in evening time, which were mostly caused by solar radiation. The highest wall temperature at noon time was 55 °C, which was under direct sun radiation. The maximum wall temperature differences were 39 °C, 55 °C, and 20 °C during morning, noon and evening time, respectively. The lighter wall coating color tended to have a lower temperature than the darker wall coating color. Beyond this application, this approach has potential in future autonomous thermal environment measuring systems as a foundational element. Full article
(This article belongs to the Special Issue Air Pollution Control and Sustainable Urban Climate Resilience)
Show Figures

Figure 1

10 pages, 4047 KiB  
Article
Super-Hydrophobic Photothermal Copper Foam for Multi-Scenario Solar Desalination: Integrating Anti-Icing, Self-Cleaning, and Mechanical Durability
by Chen Shao, Guojian Yang, Kang Yuan and Liming Liu
Coatings 2025, 15(5), 578; https://doi.org/10.3390/coatings15050578 - 13 May 2025
Viewed by 664
Abstract
Solar desalination is widely regarded as an effective way to solve freshwater scarcity. However, the balance between the costs of micro-nanostructures, thermal regulation, and the durability of interface evaporators must all be considered. In this study, a super-hydrophobic copper foam with hierarchical micro-nanostructures [...] Read more.
Solar desalination is widely regarded as an effective way to solve freshwater scarcity. However, the balance between the costs of micro-nanostructures, thermal regulation, and the durability of interface evaporators must all be considered. In this study, a super-hydrophobic copper foam with hierarchical micro-nanostructures exhibited temperatures greater than 66 °C under solar illumination of 1 kW·m−2. Significantly, the modified copper foam acting as a solar interface evaporator had a water harvesting efficiency of 1.76 kg·m−2·h−1, resulting from its good photothermal conversion and porous skeleton. Further, the anti-deicing, self-cleaning, and anti-abrasion tests were carried out to demonstrate its durability. The whole fabrication of the as-prepared CF was only involved in mechanical extrusion and spray-coating, which is suitable for large-scale production. This work endows the interface evaporator with super-hydrophobicity, photo-thermal conversion, anti-icing, and mechanical stability, all of which are highly demanded in multi-scenario solar desalination. Full article
(This article belongs to the Special Issue Self-Cleaning and Anti-Fouling Coatings)
Show Figures

Figure 1

24 pages, 5625 KiB  
Review
A Review of High-Temperature Resistant Silica Aerogels: Structural Evolution and Thermal Stability Optimization
by Zhenyu Zhu, Wanlin Zhang, Hongyan Huang, Wenjing Li, Hao Ling and Hao Zhang
Gels 2025, 11(5), 357; https://doi.org/10.3390/gels11050357 - 13 May 2025
Cited by 1 | Viewed by 1580
Abstract
Silica aerogels exhibit exceptionally low thermal conductivity and a low apparent density, as they are unique porous nanomaterials. They are extensively used in thermal insulation in terms of aerospace and building construction, adsorption processes for environmental applications, concentrating solar power systems, and so [...] Read more.
Silica aerogels exhibit exceptionally low thermal conductivity and a low apparent density, as they are unique porous nanomaterials. They are extensively used in thermal insulation in terms of aerospace and building construction, adsorption processes for environmental applications, concentrating solar power systems, and so on. However, the degradation of the silica aerogel’s nanoporous structure at high temperatures seriously restricts their practical applications. Through a comprehensive review of the high-temperature structural evolution and sintering mechanisms of silica aerogels, this paper introduces two strategies to enhance their thermal stability, including heteroatom doping and surface heterogeneous structure construction. In particular, atomic layer deposition (ALD) of ultra-thin coatings on silica aerogel holds significant potential for enhancing thermal stability, while preserving its ultra-low thermal conductivity. Full article
(This article belongs to the Special Issue Advanced Aerogels: From Design to Application)
Show Figures

Graphical abstract

14 pages, 4598 KiB  
Article
Solar Spectral Beam Splitting Simulation of Aluminum-Based Nanofluid Compatible with Photovoltaic Cells
by Gang Wang, Peng Chou, Yongxiang Li, Longyu Xia, Ye Liu and Gaosheng Wei
Energies 2025, 18(10), 2460; https://doi.org/10.3390/en18102460 - 11 May 2025
Viewed by 383
Abstract
Solar photovoltaic/thermal (PV/T) systems can simultaneously solve PV overheating and obtain high-quality thermal energy through nanofluid spectral splitting technology. However, the existing nanofluid splitting devices have insufficient short-wavelength extinction and stability defects. To achieve the precise matching of the nanofluid splitting performance with [...] Read more.
Solar photovoltaic/thermal (PV/T) systems can simultaneously solve PV overheating and obtain high-quality thermal energy through nanofluid spectral splitting technology. However, the existing nanofluid splitting devices have insufficient short-wavelength extinction and stability defects. To achieve the precise matching of the nanofluid splitting performance with the optimal spectral window of the PV/T system, this paper carries out a relevant study on the optical properties of Al nanoparticles and proposes an Al@Ag nanoparticle. The optical behaviors of nanoparticles and nanofluids are numerically analyzed using the finite-difference time-domain (FDTD) method and the Beer–Lambert law. The results demonstrate that adjusting particle size enables modulation of nanoparticle extinction performance, including extinction intensity and resonance peak range. The Al@Ag core–shell structure effectively mitigates the oxidation susceptibility of pure Al nanoparticles. Furthermore, coating Al nanoparticles with an Ag shell significantly enhances their extinction efficiency in the short-wavelength range (350–640 nm). After dispersing Al nanoparticles into water to form a nanofluid, the transmittance in the short-wavelength range is significantly reduced compared to pure water. Compared to 50 nm pure Al particles, the Al@Ag nanofluid further reduces the transmittance by up to 13% in the wavelength range of 350–650 nm, while having almost no impact on the transmittance in the photovoltaic window (640–1080 nm). Full article
(This article belongs to the Section A2: Solar Energy and Photovoltaic Systems)
Show Figures

Figure 1

16 pages, 6192 KiB  
Article
Preparation and Characterization of Co-CuCoMnOx Solar Selective Absorption Coatings
by Xian Zeng, Ziqiang Long, Ziyong Liu, Qian Cao and Xudong Cheng
Coatings 2025, 15(5), 547; https://doi.org/10.3390/coatings15050547 - 2 May 2025
Viewed by 451
Abstract
The Co-CuCoMnOx coatings with varying proportions were prepared and investigated to develop a novel metal–ceramic solar selective absorption coating employed at high temperature. The CuCoMnOx powders were synthesized using the solid-phase reaction method. Subsequently, Co-CuCoMnOx coatings were deposited on the [...] Read more.
The Co-CuCoMnOx coatings with varying proportions were prepared and investigated to develop a novel metal–ceramic solar selective absorption coating employed at high temperature. The CuCoMnOx powders were synthesized using the solid-phase reaction method. Subsequently, Co-CuCoMnOx coatings were deposited on the surface of 316L steels utilizing the atmospheric plasma spraying (APS) technique. The results showed that the synthesized CuCoMnOx powders were mainly composed of two phases, which were Cu1.5Mn1.5O4 and MnCo2O4. The CuCoMnOx powders had a solar absorptance of 0.929 and an infrared emittance of 0.862, which was considered a good solar absorbent. The synthesized Co-CuCoMnOx coating had a typical thermal spray layered stacking structure. The chemical phases of the coatings were mainly Co, CoO, and CoCuMnOx. Due to the addition of CuCoMnOx inhibiting the oxidation of Co during the thermal spraying process, the 95Co-5CuCoMnOx (wt%) coating exhibited the optimal quality factor (α/ε) of 2.184, with a solar absorptance α of 0.808 and an infrared emittance ε of 0.370, respectively. Moreover, this specific coating demonstrated a good thermal stability for up to 3 h when exposed to an atmospheric environment at 450 °C. The results indicate its significant potential for high-temperature solar selective absorption coating. Full article
Show Figures

Figure 1

19 pages, 7711 KiB  
Article
Exploring Options for the Application of Azobenzene for Molecular Solar Thermal Energy Storage: Integration with Parabolic Trough Solar Systems
by Li Zhang, Changcheng Guo, Yazhu Zhang, Haofeng Wang, Wenjing Liu, Jing Jin, Shaopeng Guo and Erdem Cuce
Energies 2025, 18(9), 2298; https://doi.org/10.3390/en18092298 - 30 Apr 2025
Viewed by 543
Abstract
Molecular solar thermal (MOST) energy systems can be utilized for the absorption, storage, and release of energy from the ultraviolet (UV) band of the solar spectrum. In this study, we designed a molecular solar thermal energy storage and release device based on the [...] Read more.
Molecular solar thermal (MOST) energy systems can be utilized for the absorption, storage, and release of energy from the ultraviolet (UV) band of the solar spectrum. In this study, we designed a molecular solar thermal energy storage and release device based on the photoisomerization reaction of azobenzene. The device was integrated with a parabolic trough solar system, broadening the absorption range of the solar spectrum. By utilizing a coated secondary reflector, the system achieved efficient reflection of ultraviolet (UV) light in the 290–490 nm range, while solid-state azobenzene enabled the conversion of photon energy into chemical energy for storage and release. Experimental results under winter outdoor conditions demonstrated that: the secondary reflector significantly enhanced UV light concentration; the molecular solar thermal energy device exhibited remarkable thermal efficiency. Under an average solar irradiance of 302.23 W·m−2, the device demonstrated excellent thermal performance, with the azobenzene reaching a peak temperature of 42.07 °C. The maximum heat release capacity was measured at 10.89 kJ·kg−1·m−1, while achieving a remarkable heat release power of 29.31 W·kg−1·m−1. Full article
(This article belongs to the Section A2: Solar Energy and Photovoltaic Systems)
Show Figures

Figure 1

27 pages, 7505 KiB  
Article
Modular Multifunctional Composite Structure for CubeSat Applications: Embedded Battery Prototype Thermal Analysis
by Giorgio Capovilla, Enrico Cestino, Leonardo Reyneri and Federico Valpiani
Batteries 2025, 11(5), 172; https://doi.org/10.3390/batteries11050172 - 23 Apr 2025
Viewed by 555
Abstract
The present work aims to develop the current CubeSats architecture. Starting from the framework of project ARAMIS (an Italian acronym for a highly modular architecture for satellite infrastructures), a new concept of smart tiles has been developed, employing multifunctional structures and lightweight, composite [...] Read more.
The present work aims to develop the current CubeSats architecture. Starting from the framework of project ARAMIS (an Italian acronym for a highly modular architecture for satellite infrastructures), a new concept of smart tiles has been developed, employing multifunctional structures and lightweight, composite materials. This enables increased CubeSat mass efficiency and payload volume. An embedded battery tile has been designed, built, and tested from a vibration point of view. In the present work, the LiPo batteries selected for the prototype have been tested with the HPPC testing procedure, to extract their equivalent Randles circuit parameters. Thus, the thermal power dissipation from the batteries can be estimated. With these data, Thermal Desktop simulations of a representative ARAMIS CubeSat are performed, considering LEO orbit and hot/cold cases. Firstly, a parametric analysis was conducted to evaluate the thermal behaviors of various design alternatives. A suitable configuration for the CubeSat was then found, enabling the validation of the embedded battery tile from a thermal point of view. The final configuration includes heaters for the LiPo batteries, a commercial CubeSat skeleton made in aluminum alloy, and a top coating for smart tiles with proper solar absorptivity. Full article
(This article belongs to the Special Issue Rechargeable Batteries)
Show Figures

Figure 1

37 pages, 12224 KiB  
Review
Research Progress of Photothermal Superhydrophobic Surfaces for Anti-Icing/Deicing
by Hui Gao, Tianjun Yin, Jieyin Ma, Yuqin Zhou, Ke Li and Jiayi Bao
Molecules 2025, 30(9), 1865; https://doi.org/10.3390/molecules30091865 - 22 Apr 2025
Cited by 1 | Viewed by 1613
Abstract
Photothermal superhydrophobic surfaces with micro/nano-structured morphologies have emerged as promising candidates for anti-icing and deicing applications due to their exceptional water repellency and efficient solar-to-thermal conversion. These surfaces synergistically integrate the passive icephobicity of superhydrophobic coatings with the active heating capability of photothermal [...] Read more.
Photothermal superhydrophobic surfaces with micro/nano-structured morphologies have emerged as promising candidates for anti-icing and deicing applications due to their exceptional water repellency and efficient solar-to-thermal conversion. These surfaces synergistically integrate the passive icephobicity of superhydrophobic coatings with the active heating capability of photothermal materials, offering energy-efficient and environmentally friendly solutions for sectors such as aviation, wind energy, and transportation. Hence, they have received widespread attention in recent years. This review provides a comprehensive overview of recent advances in photothermal superhydrophobic coatings, focusing on their anti-icing/deicing mechanisms, surface wettability, and photothermal conversion performance for anti-icing/deicing applications. Special emphasis is placed on material categories, including metals and their compounds, carbon-based materials, and polymers, analyzing their structural features and application effectiveness. Furthermore, the application of anti-icing/deicing in various fields is described. Finally, perspectives on future development are presented, including pursuing fluorine-free, cost-effective, and multifunctional coatings to meet the growing demand for innovative, sustainable anti-icing/deicing technologies. Full article
(This article belongs to the Special Issue Micro/Nano-Materials for Anti-Icing and/or De-Icing Applications)
Show Figures

Figure 1

17 pages, 9301 KiB  
Review
Recent Progress in Copper Nanowire-Based Flexible Transparent Conductors
by Jiaxin Shi, Mingyang Zhang, Su Ding and Ge Cao
Coatings 2025, 15(4), 465; https://doi.org/10.3390/coatings15040465 - 15 Apr 2025
Viewed by 1119
Abstract
With the increasing demand for alternatives to traditional indium tin oxide (ITO), copper nanowires (Cu NWs) have gained significant attention due to their excellent conductivity, cost-effectiveness, and ease of synthesis. However, challenges such as wire–wire contact resistance and oxidation susceptibility hinder their practical [...] Read more.
With the increasing demand for alternatives to traditional indium tin oxide (ITO), copper nanowires (Cu NWs) have gained significant attention due to their excellent conductivity, cost-effectiveness, and ease of synthesis. However, challenges such as wire–wire contact resistance and oxidation susceptibility hinder their practical applications. This review discusses the development and challenges associated with Cu NW-based flexible transparent conductors (FTCs). Cu NWs are considered a promising alternative to traditional materials like ITO, thanks to their high electrical conductivity and low cost. This paper explores various synthesis methods for Cu NWs, including template-assisted synthesis, hydrazine reduction, and hydrothermal processes, while highlighting the advantages and limitations of each approach. The key challenges, such as contact resistance, oxidation, and the need for protective coatings, are also addressed. Several strategies to enhance the conductivity and stability of Cu NW-based FTCs are proposed, including thermal sintering, laser sintering, acid treatment, and photonic sintering. Additionally, protective coatings like noble metal core–shell layers, electroplated layers, and conductive polymers like PEDOT:PSS are discussed as effective solutions. The integration of graphene with Cu NWs is explored as a promising method to improve oxidation resistance and overall performance. The review concludes with an outlook on the future of Cu NWs in flexible electronics, emphasizing the need for scalable, cost-effective solutions to overcome current challenges and improve the practical application of Cu NW-based FTCs in advanced technologies such as displays, solar cells, and flexible electronics. Full article
(This article belongs to the Special Issue Design of Nanostructures for Energy and Environmental Applications)
Show Figures

Figure 1

22 pages, 3815 KiB  
Review
Vacuum Processability of Self-Assembled Monolayers and Their Chemical Interaction with Perovskite Interfaces
by Hyeji Han, Siwon Yun, Zobia Irshad, Wonjong Lee, Min Kim, Jongchul Lim and Jinseck Kim
Energies 2025, 18(7), 1782; https://doi.org/10.3390/en18071782 - 2 Apr 2025
Viewed by 1717
Abstract
Self-assembled monolayers (SAMs) have gained significant attention as an interfacial engineering strategy for perovskite solar cells (PSCs) due to their efficient charge transport ability and work function tunability. While solution-based methods such as dip-coating and spin-coating are widely used for SAM deposition, challenges [...] Read more.
Self-assembled monolayers (SAMs) have gained significant attention as an interfacial engineering strategy for perovskite solar cells (PSCs) due to their efficient charge transport ability and work function tunability. While solution-based methods such as dip-coating and spin-coating are widely used for SAM deposition, challenges such as non-uniform coverage, solvent contamination, and limited control over molecular orientation hinder their scalability and reproducibility. In contrast, vacuum deposition techniques, including thermal evaporation, overcome these limitations by enabling the formation of highly uniform materials with precise control over thickness and molecular arrangement. Importantly, the chemical interactions between SAM materials and perovskite layers, including coordination bonding with Pb2+ ions, play an important role in passivating surface defects, modulating energy levels, and promoting uniform perovskite crystallization. These interactions not only enhance wettability but also improve the overall quality and stability of perovskite films. This review highlights the advantages of vacuum-deposited SAMs, promoting strong chemical interactions with perovskite layers and improving interfacial properties critical for scalable applications. Full article
(This article belongs to the Section A2: Solar Energy and Photovoltaic Systems)
Show Figures

Figure 1

Back to TopTop