Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (184)

Search Parameters:
Keywords = solar radiance

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 5813 KiB  
Article
Integrated Lighting and Solar Shading Strategies for Energy Efficiency, Daylighting and User Comfort in a Library Design Proposal
by Egemen Kaymaz and Banu Manav
Buildings 2025, 15(15), 2669; https://doi.org/10.3390/buildings15152669 - 28 Jul 2025
Viewed by 137
Abstract
This research proposes an integrated lighting and solar shading strategy to improve energy efficiency and user comfort in a retrofit project in a temperate-humid climate. The study examines a future library addition to an existing faculty building in Bursa, featuring highly glazed façades [...] Read more.
This research proposes an integrated lighting and solar shading strategy to improve energy efficiency and user comfort in a retrofit project in a temperate-humid climate. The study examines a future library addition to an existing faculty building in Bursa, featuring highly glazed façades (77% southwest, 81% northeast window-to-wall ratio), an open-plan layout, and situated within an unobstructed low-rise campus environment. Trade-offs between daylight availability, heating, cooling, lighting energy use, and visual and thermal comfort are evaluated through integrated lighting (DIALux Evo), climate-based daylight (CBDM), and energy simulations (DesignBuilder, EnergyPlus, Radiance). Fifteen solar shading configurations—including brise soleil, overhangs, side fins, egg crates, and louvres—are evaluated alongside a daylight-responsive LED lighting system that meets BS EN 12464-1:2021. Compared to the reference case’s unshaded glazing, optimal design significantly improves building performance: a brise soleil with 0.4 m slats at 30° reduces annual primary energy use by 28.3% and operational carbon emissions by 29.1% and maintains thermal comfort per ASHRAE 55:2023 Category II (±0.7 PMV; PPD < 15%). Daylight performance achieves 91.5% UDI and 2.1% aSE, with integrated photovoltaics offsetting 129.7 kWh/m2 of grid energy. This integrated strategy elevates the building’s energy class under national benchmarks while addressing glare and overheating in the original design. Full article
(This article belongs to the Special Issue Lighting in Buildings—2nd Edition)
Show Figures

Figure 1

20 pages, 2263 KiB  
Article
Optimizing the Sampling Strategy for Future Libera Radiance to Irradiance Conversions
by Mathew van den Heever, Jake J. Gristey and Peter Pilewskie
Remote Sens. 2025, 17(15), 2540; https://doi.org/10.3390/rs17152540 - 22 Jul 2025
Viewed by 226
Abstract
The Earth Radiation Budget (ERB), a measure of the difference between incoming solar irradiance and outgoing reflected and emitted radiant energy, is a fundamental property of Earth’s climate system. The Libera satellite mission will measure the ERB’s outgoing components to continue the long-term [...] Read more.
The Earth Radiation Budget (ERB), a measure of the difference between incoming solar irradiance and outgoing reflected and emitted radiant energy, is a fundamental property of Earth’s climate system. The Libera satellite mission will measure the ERB’s outgoing components to continue the long-term climate data record established by NASA’s Clouds and the Earth’s Radiant Energy System (CERES) mission. In addition to ensuring data continuity, Libera will introduce a novel split-shortwave spectral channel to quantify the partitioning of the outgoing reflected solar component into visible and near-infrared sub-components. However, converting these split-shortwave radiances into the ERB-relevant irradiances requires the development of split-shortwave Angular Distribution Models (ADMs), which demand extensive angular sampling. Here, we show how Rotating Azimuthal Plane Scan (RAPS) parameters—specifically operational cadence and azimuthal scan rate—affect the observational coverage of a defined scene and angular space. Our results show that for a fixed number of azimuthal rotations, a relatively slow azimuthal scan rate of 0.5° per second, combined with more time spent in the RAPS observational mode, provides a more comprehensive sampling of the desired scene and angular space. We also show that operating the Libera instrument in RAPS mode at a cadence between every fifth day and every other day for the first year of space-based operations will provide sufficient scene and angular sampling for the observations to achieve radiance convergence for the scenes that comprise more than half of the expected Libera observations. Obtaining radiance convergence is necessary for accurate ADMs. Full article
Show Figures

Figure 1

31 pages, 5746 KiB  
Article
Twilight Near-Infrared Radiometry for Stratospheric Aerosol Layer Height
by Lipi Mukherjee, Dong L. Wu, Nader Abuhassan, Thomas F. Hanisco, Ukkyo Jeong, Yoshitaka Jin, Thierry Leblanc, Bernhard Mayer, Forrest M. Mims, Isamu Morino, Tomohiro Nagai, Stephen Nicholls, Richard Querel, Tetsu Sakai, Ellsworth J. Welton, Stephen Windle, Peter Pantina and Osamu Uchino
Remote Sens. 2025, 17(12), 2071; https://doi.org/10.3390/rs17122071 - 16 Jun 2025
Viewed by 559
Abstract
The impact of stratospheric aerosols on Earth’s climate, particularly through atmospheric heating and ozone depletion, remains a critical area of atmospheric research. While satellite data provide valuable insights, independent validation methods are necessary for ensuring accuracy. Twilight near-infrared (NIR) radiometry offers a promising [...] Read more.
The impact of stratospheric aerosols on Earth’s climate, particularly through atmospheric heating and ozone depletion, remains a critical area of atmospheric research. While satellite data provide valuable insights, independent validation methods are necessary for ensuring accuracy. Twilight near-infrared (NIR) radiometry offers a promising approach for investigating aerosol properties, such as optical depth and layer height, at high altitudes. This study aims to evaluate the effectiveness of twilight radiometry in corroborating satellite data and assessing aerosol characteristics. Two methods based on twilight radiometry—the color ratio and the derivative method—are employed to derive the aerosol layer height and optical depth. Radiances at 450, 550, 762, 775, and 1050 nm wavelengths are analyzed at varying solar zenith angles, using zenith viewing geometry for consistency. Comparisons of aerosol optical depths (AODs) between Research Pandora (ResPan) and AErosol RObotic NETwork (AERONET) data (R = 0.99) and between ResPan and Modern-Era Retrospective analysis for Research and Applications (MERRA-2) data (R = 0.86) demonstrate a strong correlation. Twilight ResPan data are also used to estimate the aerosol layer height, with results in good agreement with SAGE and lidar measurements, particularly following the Hunga Tonga eruption in Lauder, New Zealand. The simulation database, created using the libRadtran DISORT and Monte Carlo packages for daylight and twilight calculations, is capable of detecting AODs as low as 10−3 using the derivative method. This work highlights the potential of twilight radiometry as a simple, cost-effective tool for atmospheric research and satellite data validation, offering valuable insights into aerosol dynamics at stratospheric altitudes. Full article
Show Figures

Figure 1

32 pages, 11638 KiB  
Article
Solar Heat Gain Simulations for Energy-Efficient Guest Allocation in a Large Hotel Tower in Madrid
by Iker Landa del Barrio, Markel Flores Iglesias, Juan Odriozola González, Víctor Fabregat and Jan L. Bruse
Buildings 2025, 15(11), 1960; https://doi.org/10.3390/buildings15111960 - 5 Jun 2025
Viewed by 474
Abstract
The current climate and energy crises demand innovative approaches to operating buildings more sustainably. HVAC systems, which significantly contribute to a building’s energy consumption, have been a major focus of research aimed at improving operational efficiency. However, a critical factor often overlooked is [...] Read more.
The current climate and energy crises demand innovative approaches to operating buildings more sustainably. HVAC systems, which significantly contribute to a building’s energy consumption, have been a major focus of research aimed at improving operational efficiency. However, a critical factor often overlooked is the seasonal and hourly variation in solar radiation and the resulting solar heat gain, which heats specific rooms differently depending on their orientation, type, and location within the building. This study proposes a simulation-based strategy to reduce HVAC energy use in hotels by allocating guests to rooms with more favorable thermal characteristics depending on the season. A high-resolution building energy model (BEM) was developed to represent a real 17-floor hotel tower in Madrid, incorporating detailed geometry and surrounding shading context. The model includes 439 internal thermal zones and simulates solar radiation using EnergyPlus’ Radiance module. The simulation results revealed large room-by-room differences in thermal energy demand. When applying an energetically optimized guest allocation strategy based on these simulations and using real occupancy data, potential reductions in HVAC energy demand were estimated to reach around 6% during summer and up to 20% in winter. These findings demonstrate that data-driven guest allocation, informed by physics-based building simulations, can provide substantial energy savings without requiring physical renovations or equipment upgrades, offering a promising approach for more sustainable hotel operation. Full article
(This article belongs to the Special Issue Research on Advanced Technologies Applied in Green Buildings)
Show Figures

Figure 1

23 pages, 35780 KiB  
Article
SatGS: Remote Sensing Novel View Synthesis Using Multi- Temporal Satellite Images with Appearance-Adaptive 3DGS
by Nan Bai, Anran Yang, Hao Chen and Chun Du
Remote Sens. 2025, 17(9), 1609; https://doi.org/10.3390/rs17091609 - 1 May 2025
Viewed by 722
Abstract
Novel view synthesis of remote sensing scenes from satellite images is a meaningful but challenging task. Due to the wide temporal span of image acquisition, satellite image collections often exhibit significant appearance variations, such as seasonal changes and shadow movements, as well as [...] Read more.
Novel view synthesis of remote sensing scenes from satellite images is a meaningful but challenging task. Due to the wide temporal span of image acquisition, satellite image collections often exhibit significant appearance variations, such as seasonal changes and shadow movements, as well as transient objects, making it difficult to reconstruct the original scene accurately. Previous work has noted that a large amount of image variation in satellite images is caused by changing light conditions. To address this, researchers have proposed incorporating the direction of solar rays into neural radiance fields (NeRF) to model the amount of sunlight reaching each point in the scene. However, this approach fails to effectively account for seasonal variations and suffers from a long training time and slow rendering speeds due to the need to evaluate numerous samples from the radiance field for each pixel. To achieve fast, efficient, and high-quality novel view synthesis for multi-temporal satellite scenes, we propose SatGS, a novel method that leverages 3D Gaussian points for scene reconstruction with an appearance-adaptive adjustment strategy. This strategy enables our model to adaptively adjust the seasonal appearance features and shadow regions of the rendered images based on the appearance characteristics of the training images and solar angles. Additionally, the impact of transient objects is mitigated through the use of visibility maps and uncertainty optimization. Experiments conducted on WorldView-3 images demonstrate that SatGS not only renders superior image quality compared to existing State-of-the-Art methods but also surpasses them in rendering speed, showcasing its potential for practical applications in remote sensing. Full article
Show Figures

Figure 1

29 pages, 12604 KiB  
Article
The Characterization of the Railroad Valley Playa Test Site Using the DESIS Imaging Spectrometer from the Space Station Orbit
by Mohammad H. Tahersima, Kurtis Thome, Brian N. Wenny, Derrick Lampkin, Norvik Voskanian, Sarah Eftekharzadeh Kay and Mehran Yarahmadi
Remote Sens. 2025, 17(3), 396; https://doi.org/10.3390/rs17030396 - 24 Jan 2025
Viewed by 860
Abstract
The reflectance-based vicarious calibration approach uses measurements at well-understood test sites to provide top-of-atmosphere reference reflectance values suitable for inter-calibration approaches and does not require coincident views. The challenge is that results from such data may suffer from high variability from day to [...] Read more.
The reflectance-based vicarious calibration approach uses measurements at well-understood test sites to provide top-of-atmosphere reference reflectance values suitable for inter-calibration approaches and does not require coincident views. The challenge is that results from such data may suffer from high variability from day to day. Data from high-quality sensors, such as the imaging spectrometers on the International Space Station (ISS) platform, provide an opportunity to use improved fine spectral information about the test sites with various sun/sensor geometries and site surface and atmospheric conditions to improve the test sites’ characterization. The results here are based on data from the DLR Earth Sensing Imaging Spectrometer (DESIS) instrument installed on the ISS since 2018 combined with output from the Radiometric Calibration Network (RadCalNet) site at Railroad Valley Playa (RRV) to decouple the effects of sun/sensor geometry from the RadCalNet predictions. The approach here uses the precessing orbit of the ISS to allow similar sensor view zenith angles at varying sun angles over short periods that limit the impact of any sensor changes and highlight the bi-directional effects of the surface reflectance and atmospheric conditions. DESIS data collected at (i) similar solar angles but varying view angles, (ii) similar sensor angles and varying solar angles, and (iii) similar scatter angles are compared. The DESIS results indicate that the top-of-atmosphere reflectance spectra for RRV at similar solar zenith angles but with varying sensor viewing angles provide more consistent data than those with varying solar zenith but with similar sensor viewing angles. In addition, comparisons of reflectance spectra of the site performed in terms of the sensor view scatter angle show good agreement, indicating that a directional reflectance correction would be straightforward and could offer a significant improvement in the use of RadCalNet data. The work shows that observations from imaging spectroscopy data from DESIS, and eventually Earth Surface Mineral Dust Source Investigation (EMIT), Surface Biology and Geology (SBG), and the climate-quality sensor CLARREO Pathfinder (CPF), provide the opportunity for the development of a model-based, SI-traceable prediction of at-sensor radiance over the RRV site that would serve as the basis for similar site characterizations with error budgets valid for arbitrary view and illumination angles. Full article
Show Figures

Figure 1

36 pages, 10632 KiB  
Article
SQM Ageing and Atmospheric Conditions: How Do They Affect the Long-Term Trend of Night Sky Brightness Measurements?
by Pietro Fiorentin, Stefano Cavazzani, Andrea Bertolo, Sergio Ortolani, Renata Binotto and Ivo Saviane
Sensors 2025, 25(2), 516; https://doi.org/10.3390/s25020516 - 17 Jan 2025
Cited by 2 | Viewed by 902
Abstract
The most widely used radiance sensor for monitoring Night Sky Brightness (NSB) is the Sky Quality Meter (SQM), making its measurement stability fundamental. A method using the Sun as a calibrator was applied to analyse the quality of the measures recorded in the [...] Read more.
The most widely used radiance sensor for monitoring Night Sky Brightness (NSB) is the Sky Quality Meter (SQM), making its measurement stability fundamental. A method using the Sun as a calibrator was applied to analyse the quality of the measures recorded in the Veneto Region (Italy) and at La Silla (Chile). The analysis mainly revealed a tendency toward reductions in measured NSB due to both instrument ageing and atmospheric variations. This work compared the component due to instrumental ageing with the contribution of atmospheric conditions. The spectral responsivity of two SQMs working outdoors were analysed in a laboratory after several years of operation, revealing a significant decay, but not enough to justify the measured long-term trends. The contribution of atmospheric variations was studied through the analysis of solar irradiance at the ground, considering it as an indicator of air transparency, and values of the aerosol optical depth obtained from satellite measurements. The long-term trends measured by weather stations at different altitudes and conditions indicated an increase in solar irradiance in the Italian study sites. The comparison among the daily irradiance increase, the reduction in the aerosol optical depth, and the NSB measurements highlighted a darker sky for sites contaminated by light pollution (LP) and a brighter sky for sites not affected by LP, showing a significant and predominant role of atmospheric conditions in relation to NSB change. In the most significant case, the fraction of the variation in NSB explained by AOD changes exceeded 75%. Full article
Show Figures

Figure 1

31 pages, 8626 KiB  
Article
Calibration and Validation of NOAA-21 Ozone Mapping and Profiler Suite (OMPS) Nadir Mapper Sensor Data Record Data
by Banghua Yan, Trevor Beck, Junye Chen, Steven Buckner, Xin Jin, Ding Liang, Sirish Uprety, Jingfeng Huang, Lawrence E. Flynn, Likun Wang, Quanhua Liu and Warren D. Porter
Remote Sens. 2024, 16(23), 4488; https://doi.org/10.3390/rs16234488 - 29 Nov 2024
Viewed by 1021
Abstract
The Ozone Mapping and Profiler Suites (OMPS) Nadir Mapper (NM) is a grating spectrometer within the OMPS nadir instruments onboard the SNPP, NOAA-20, and NOAA-21 satellites. It is designed to measure Earth radiance and solar irradiance spectra in wavelengths from 300 nm to [...] Read more.
The Ozone Mapping and Profiler Suites (OMPS) Nadir Mapper (NM) is a grating spectrometer within the OMPS nadir instruments onboard the SNPP, NOAA-20, and NOAA-21 satellites. It is designed to measure Earth radiance and solar irradiance spectra in wavelengths from 300 nm to 380 nm for operational retrievals of the nadir total column ozone. This study presents calibration and validation analysis results for the NOAA-21 OMPS NM SDR data to meet the JPSS scientific requirements. The NOAA-21 OMPS SDR calibration derives updates of several previous OMPS algorithms, including the dark current correction algorithm, one-time wavelength registration from ground to on-orbit, daily intra-orbit wavelength shift correction, and stray light correction. Additionally, this study derives an empirical scale factor to remove 2.2% of systematic biases in solar flux data, which were caused by pre-launch solar calibration errors of the OMPS nadir instruments. The validation of the NOAA-21 OMPS SDR data is conducted using various methods. For example, the 32-day average method and radiative transfer model are employed to estimate inter-sensor radiometric calibration differences from either the SNPP or NOAA-20 data. The quality of the NOAA-21 OMPS NM SDR data is largely consistent with that of the SNPP and NOAA-20 OMPS data, with differences generally within ±2%. This meets the scientific requirements, except for some deviations mainly in the dichroic range between 300 nm and 303 nm. The deep convective cloud target approach is used to monitor the stability of NOAA-21 OMPS reflectance above 330 nm, showing a variation of 0.5% over the observed period. Data from the NOAA-21 VIIRS M1 band are used to estimate OMPS NM data geolocation errors, revealing that along-track errors can reach up to 3 km, while cross-track errors are generally within ±1 km. Full article
(This article belongs to the Special Issue Remote Sensing Satellites Calibration and Validation)
Show Figures

Figure 1

16 pages, 8045 KiB  
Article
Deep Learning-Based Dust Detection on Solar Panels: A Low-Cost Sustainable Solution for Increased Solar Power Generation
by Aadel Mohammed Alatwi, Hani Albalawi, Abdul Wadood, Hafeez Anwar and Hazem M. El-Hageen
Sustainability 2024, 16(19), 8664; https://doi.org/10.3390/su16198664 - 7 Oct 2024
Cited by 4 | Viewed by 5106
Abstract
The world is shifting towards renewable energy sources due to the harmful effects of fossils fuel-based power generation in the form of global warming and climate change. When it comes to renewable energy sources, solar-based power generation remains on top of the list [...] Read more.
The world is shifting towards renewable energy sources due to the harmful effects of fossils fuel-based power generation in the form of global warming and climate change. When it comes to renewable energy sources, solar-based power generation remains on top of the list as a clean and carbon cutting alternative to the fossil fuels. Naturally, the sites chosen for installing solar parks to generate electricity are the ones that get maximum solar radiance throughout the year. Consequently, such sites offer challenges for the solar panels such as increased temperature, humidity and high dust levels that negatively affect their power generation capability. In this work, we are more concerned with the detection of dust from the images of the solar panels so that the cleaning process can be done in time to avoid power loses due to dust accumulation on the surface of solar panels. To this end, we utilize state-of-art deep learning-based image classification models and evaluate them on a publicly available dataset to identify the one that gives maximum classification accuracy for dusty solar panel detection. We utilize pre-trained models of 20 deep learning models to encode the images that are then used to train and validate four variants of a support vector machine. Among the 20 models, we get the maximum classification of 86.79% when the images are encoded with the pre-trained model of DenseNet169 and then use these encodings with a linear SVM for image classification. Full article
(This article belongs to the Special Issue Secure, Sustainable Smart Cities and the IoT)
Show Figures

Figure 1

34 pages, 4554 KiB  
Article
Early Mission Calibration Performance of NOAA-21 VIIRS Reflective Solar Bands
by Ning Lei, Xiaoxiong Xiong, Kevin Twedt, Sherry Li, Tiejun Chang, Qiaozhen Mu and Amit Angal
Remote Sens. 2024, 16(19), 3557; https://doi.org/10.3390/rs16193557 - 24 Sep 2024
Cited by 1 | Viewed by 1201
Abstract
The Visible Infrared Imaging Radiometer Suite (VIIRS) is one of the key instruments on the recently launched NOAA-21 (previously known as JPSS-2) satellite. The VIIRS, like its predecessors on the SNPP and NOAA-20 satellites, provides daily global coverage in 22 spectral bands from [...] Read more.
The Visible Infrared Imaging Radiometer Suite (VIIRS) is one of the key instruments on the recently launched NOAA-21 (previously known as JPSS-2) satellite. The VIIRS, like its predecessors on the SNPP and NOAA-20 satellites, provides daily global coverage in 22 spectral bands from 412 nm to 12 μm. The geometrically and radiometrically calibrated observations are the basis for many operational applications and scientific research studies. A total of 14 of the 22 bands are reflective solar bands (RSBs), covering photon wavelengths from 412 nm to 2.25 μm. The RSBs were radiometrically calibrated prelaunch and have been regularly calibrated on orbit through the onboard solar diffuser (SD) and scheduled lunar observations. The on-orbit SD’s reflectance change is determined by the onboard solar diffuser stability monitor (SDSM). We review the calibration algorithms and present the early mission performance of the NASA N21 VIIRS RSBs. Using the calibration data collected at both the yaw maneuver and regular times, we derive the screen transmittance functions. The visible and near-infrared bands’ radiometric gains have been stable, nearly independent of time, and so were the radiometric gains of the shortwave-infrared bands after the second mid-mission outgassing. Further, we assess the Earth-view striping observed in the immediate prior collection (Collection 2.0) and apply a previously developed algorithm to mitigate the striping. The N21 VIIRS RSB detector signal-to-noise ratios are all above the design values with large margins. Finally, the uncertainties of the retrieved Earth-view top-of-the-atmosphere spectral reflectance factors at the respective typical spectral radiance levels are estimated to be less than 1.5% for all the RSBs, except band M11 whose reflectance factor uncertainty is 2.2%. Full article
(This article belongs to the Collection The VIIRS Collection: Calibration, Validation, and Application)
Show Figures

Figure 1

21 pages, 8025 KiB  
Article
Design and Characterization of a Portable Multiprobe High-Resolution System (PMHRS) for Enhanced Inversion of Water Remote Sensing Reflectance with Surface Glint Removal
by Shuangkui Liu, Ye Jiang, Kai Wang, Yachao Zhang, Zhe Wang, Xu Liu, Shiyu Yan and Xin Ye
Photonics 2024, 11(9), 837; https://doi.org/10.3390/photonics11090837 - 4 Sep 2024
Cited by 1 | Viewed by 1061
Abstract
Surface glint significantly reduces the measurement accuracy of remote sensing reflectance of water, Rrs, making it difficult to effectively use field measurements for studying water optical properties, accurately retrieving water quality parameters, and validating satellite remote sensing products. To accurately assess [...] Read more.
Surface glint significantly reduces the measurement accuracy of remote sensing reflectance of water, Rrs, making it difficult to effectively use field measurements for studying water optical properties, accurately retrieving water quality parameters, and validating satellite remote sensing products. To accurately assess the effectiveness of various glint removal methods and enhance the accuracy of water reflectance measurements, a portable multiprobe high-resolution System (PMHRS) is designed. The system is composed of a spectrometer, fiber bundles, an irradiance probe, and three radiance probes. The reliability and measurement accuracy of the PMHRS are ensured through rigorous laboratory radiometric calibration and temperature correction. The comprehensive uncertainty of laboratory calibration ranges from 1.29% to 1.43% for irradiance calibration and from 1.47% to 1.59% for radiance calibration. Field measurement results show a strong correlation with both synchronous ASD data, and Sen2Cor-atmospherically corrected Sentinel-2B data (R2 = 0.949, RMSE = 0.013; R2 = 0.926, RMSE = 0.0105). The water-leaving radiance measurements obtained under different solar elevation angles using three methods (M99 method, polarization method, and SBA) demonstrate that the improved narrow field-of-view polarization probe effectively removes surface glint across various solar elevation angles (with overall better performance than the traditional M99 method). At a solar elevation angle of 69.7°, the MAPD and MAD between the measurements of this method and those of the SBA are 5.8% and 1.4 × 10−4, respectively. The results demonstrate that the PMHRS system outperforms traditional methods in sun glint removal, significantly enhancing the accuracy of water remote sensing reflectance measurements and improving the validation quality of satellite data. This work provides a crucial technical foundation for the development of high-resolution continuous observation platforms in complex aquatic environments. It holds significant implications for improving the accuracy of field-based water remote sensing reflectance measurements and for enhancing the quality of water ecological monitoring data and satellite validation data. Full article
Show Figures

Figure 1

26 pages, 10154 KiB  
Article
Retrieval of At-Surface Upwelling Radiance and Albedo by Parameterizing Cloud Scattering and Transmittance over Rugged Terrain
by Junru Jia, Massimo Menenti, Li Jia, Qiting Chen and Anlun Xu
Remote Sens. 2024, 16(10), 1723; https://doi.org/10.3390/rs16101723 - 13 May 2024
Viewed by 1742
Abstract
Accurate and continuous estimation of surface albedo is vital for assessing and understanding land–surface–atmosphere interactions. We developed a method for estimating instantaneous all-sky at-surface shortwave upwelling radiance and albedo over the Tibetan Plateau. The method accounts for the complex interplay of topography and [...] Read more.
Accurate and continuous estimation of surface albedo is vital for assessing and understanding land–surface–atmosphere interactions. We developed a method for estimating instantaneous all-sky at-surface shortwave upwelling radiance and albedo over the Tibetan Plateau. The method accounts for the complex interplay of topography and atmospheric interactions and aims to mitigate the occurrence of data gaps. Employing an RTLSR-kernel-driven model, we retrieved surface shortwave albedo with a 1 km resolution, incorporating direct, isotropic diffuse; circumsolar diffuse; and surrounding terrain irradiance into the all-sky solar surface irradiance. The at-surface upwelling radiance and surface shortwave albedo estimates were in satisfactory agreement with ground observations at four stations in the Tibetan Plateau, with RMSE values of 56.5 W/m2 and 0.0422, 67.6 W/m2 and 0.0545, 98.6 W/m2 and 0.0992, and 78.0 98.6 W/m2 and 0.639. This comparison indicated an improved accuracy of at-surface upwelling radiance and surface albedo and significantly reduced data gaps. Valid observations increased substantially in comparison to the MCD43A2 data product, with the new method achieving an increase ranging from 40% to 200% at the four stations. Our study demonstrates that by integrating terrain, cloud properties, and radiative transfer modeling, the accuracy and completeness of retrieved surface albedo and radiance in complex terrains can be effectively improved. Full article
Show Figures

Figure 1

16 pages, 3346 KiB  
Technical Note
Spatial and Temporal Variation Patterns of NO 5.3 µm Infrared Radiation during Two Consecutive Auroral Disturbances
by Fan Wu, Congming Dai, Shunping Chen, Cong Zhang, Wentao Lian and Heli Wei
Remote Sens. 2024, 16(8), 1420; https://doi.org/10.3390/rs16081420 - 17 Apr 2024
Viewed by 1056
Abstract
The variation in key parameters of the solar–terrestrial space during two consecutive auroral disturbances (the magnetic storm index, Dst index = −422 nT) that occurred during the 18–23 November 2003 period was analyzed in this paper, as well as the spatiotemporal characteristics of [...] Read more.
The variation in key parameters of the solar–terrestrial space during two consecutive auroral disturbances (the magnetic storm index, Dst index = −422 nT) that occurred during the 18–23 November 2003 period was analyzed in this paper, as well as the spatiotemporal characteristics of NO 5.3 μm radiation with an altitude around the location of 55°N 160°W. The altitude was divided into four regions (50–100 km, 100–150 km, 150–200 km, and 200–250 km), and it was found that the greatest amplification occurs at the altitude of 200–250 km. However, the radiance reached a maximum of 3.38 × 10−3 W/m2/sr at the altitude of 123 km during the aurora event, which was approximately 10 times higher than the usual value during “quiet periods”. Based on these findings, the spatiotemporal variations in NO 5.3 μm radiance within the range of latitude 51°S–83°N and longitude of 60°W–160°W were analyzed at 120 km, revealing an asymmetry between the northern and southern hemispheres during the recovery period. Additionally, the recovery was also influenced by the superposition of a second auroral event. The data used in this study were obtained from the OMNI database and the SABER (Sounding of the Atmosphere using Broadband Emission Radiometry) infrared radiometer onboard the TIMED (Thermosphere-Ionosphere-Mesosphere Energetics and Dynamics) satellite. Finally, the correlation of NO 5.3 μm radiance at 120 km with temperature, solar wind speed, auroral electrojet index (AE index), and Dst index were analyzed. It was found that only the Dst index had a good correlation with the radiance value. Furthermore, the correlation between the Dst index and radiance at different altitudes was also analyzed, and the highest correlation was found at 170 km. Full article
(This article belongs to the Special Issue Earth Radiation Budget and Earth Energy Imbalance)
Show Figures

Graphical abstract

28 pages, 4685 KiB  
Article
Landsat 9 Transfer to Orbit of Pre-Launch Absolute Calibration of Operational Land Imager (OLI)
by Raviv Levy, Jeffrey A. Miller, Julia A. Barsi, Kurtis J. Thome and Brian L. Markham
Remote Sens. 2024, 16(8), 1360; https://doi.org/10.3390/rs16081360 - 12 Apr 2024
Cited by 2 | Viewed by 1587
Abstract
Landsat 9 Operational Land Imager (L9-OLI) was launched on 27 September 2021, after completing a successful radiometric pre-launch calibration and characterization phase. The radiometric math model that governs the ground system—the data processing and analysis system (DPAS)—uses various calibration parameters that had been [...] Read more.
Landsat 9 Operational Land Imager (L9-OLI) was launched on 27 September 2021, after completing a successful radiometric pre-launch calibration and characterization phase. The radiometric math model that governs the ground system—the data processing and analysis system (DPAS)—uses various calibration parameters that had been derived based on the pre-launch tests and analysis. During the on-orbit commissioning phase, the OLI system acquired specific sets of data collects, which enabled the revalidation of the pre-launch absolute calibration scale and other associated instrument performance characteristics. The analysis results shown in this paper focus on the activities and results related to the transfer-to-orbit analysis for the SI-traceable pre-launch radiometric scale. Key topics discussed in this paper include: radiance and reflectance calibration parameters for OLI; solar diffuser collects; stimulation-lamp collects; dark response; signal-to-noise ratios; and noise characteristics; radiometric response stability and the on-orbit update to the radiance to reflectance conversion factors. It will be shown that the OLI response during the early on-orbit operation matched pre-launch results and therefore this re-validates the absolute radiometric scaling at the predicted pre-launch level within the expected level of uncertainties. The launch did not cause any significant changes to the OLI system from the perspective of the absolute radiometric calibration performance. Once the transfer to orbit of the absolute calibration was confirmed, it created a solid basis for further on-orbit refinements of the radiance calibration parameters. As such, follow-on calibration refinements are discussed in other articles within this special issue, and they address issues such as uniformity as well as cross-calibration activities. Full article
Show Figures

Figure 1

23 pages, 11502 KiB  
Article
Evaluation of VIIRS Thermal Emissive Bands Long-Term Calibration Stability and Inter-Sensor Consistency Using Radiative Transfer Modeling
by Feng Zhang, Xi Shao, Changyong Cao, Yong Chen, Wenhui Wang, Tung-Chang Liu and Xin Jing
Remote Sens. 2024, 16(7), 1271; https://doi.org/10.3390/rs16071271 - 4 Apr 2024
Cited by 3 | Viewed by 1631
Abstract
This study investigates the long-term stability of the Suomi National Polar-orbiting Partnership (S-NPP) Visible Infrared Imaging Radiometer Suite (VIIRS) moderate-resolution Thermal Emissive Bands (M TEBs; M12–M16) covering a period from February 2012 to August 2020. It also assesses inter-sensor consistency of the VIIRS [...] Read more.
This study investigates the long-term stability of the Suomi National Polar-orbiting Partnership (S-NPP) Visible Infrared Imaging Radiometer Suite (VIIRS) moderate-resolution Thermal Emissive Bands (M TEBs; M12–M16) covering a period from February 2012 to August 2020. It also assesses inter-sensor consistency of the VIIRS M TEBs among three satellites (S-NPP, NOAA-20, and NOAA-21) over eight months spanning from 18 March to 30 November 2023. The field of interest is limited to the ocean surface between 60°S and 60°N, specifically under clear-sky conditions. Taking radiative transfer modeling (RTM) as the transfer reference, we employed the Community Radiative Transfer Model (CRTM) to simulate VIIRS TEB brightness temperature (BTs), incorporating European Centre for Medium-range Weather Forecasts (ECMWF) reanalysis data as inputs. Our results reveal two key findings. Firstly, the reprocessed S-NPP VIIRS TEBs exhibit a robust long-term stability, as demonstrated through analyses of the observation minus background BT differences (O-B ∆BTs) between VIIRS measurements (O) and CRTM simulations (B). The drifts of the O-B BT differences are consistently less than 0.102 K/Decade across all S-NPP VIIRS M TEB bands. Notably, observations from VIIRS M14 and M16 stand out with drifts well within 0.04 K/Decade, reinforcing their exceptional reliability for climate change studies. Secondly, excellent inter-sensor consistency among these three VIIRS instruments is confirmed through the double-difference analysis method (O-O). This method relies on the O-B BT differences obtained from daily VIIRS operational data. The mean inter-VIIRS O-O BT differences remain within 0.08 K for all M TEBs, except for M13. Even in the case of M13, the O-O BT differences between NOAA-21 and NOAA-20/S-NPP have values of 0.312 K and 0.234 K, respectively, which are comparable to the 0.2 K difference observed in overlapping TEBs between VIIRS and MODIS. These disparities are primarily attributed to the significant differences in the Spectral Response Function (SRF) of NOAA-21 compared to NOAA-20 and S-NPP. It is also found that the remnant scene temperature dependence of NOAA-21 versus NOAA-20/S-NPP M13 O-O BT difference after accounting for SRF difference is ~0.0033 K/K, an order of magnitude smaller than the corresponding rates in the direct BT comparisons between NOAA-21 and NOAA-20/S-NPP. Our study confirms the versatility and effectiveness of the RTM-based TEB quality evaluation method in assessing long-term sensor stability and inter-sensor consistency. The double-difference approach effectively mitigates uncertainties and biases inherent to CRTM simulations, establishing a robust mechanism for assessing inter-sensor consistency. Moreover, for M12 operating as a shortwave infrared channel, it is found that the daytime O-B BT differences of S-NPP M12 exhibit greater seasonal variability compared to the nighttime data, which can be attributed to the idea that M12 radiance is affected by the reflected solar radiation during the daytime. Furthermore, in this study, we’ve also characterized the spatial distributions of inter-VIIRS BT differences, identifying variations among VIIRS M TEBs, as well as spatial discrepancies between the daytime and nighttime data. Full article
(This article belongs to the Collection The VIIRS Collection: Calibration, Validation, and Application)
Show Figures

Figure 1

Back to TopTop