Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (13)

Search Parameters:
Keywords = solar diffuser stability monitor

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 6261 KB  
Article
The Development of a New Bi12ZnO20/AgI Heterosystem for the Degradation of Dye-Contaminated Water by Photocatalysis Under Solar Irradiation: Synthesis, Characterization and Kinetics
by Serine Madji, Mohamed Belmedani, Elhadj Mekatel, Sarra Zouaoui and Seif El Islam Lebouachera
Processes 2025, 13(5), 1342; https://doi.org/10.3390/pr13051342 - 27 Apr 2025
Cited by 4 | Viewed by 1296
Abstract
This study explores the efficiency of heterogeneous photocatalysis in wastewater treatment, which is recognized for inducing significant rates of degradation and mineralization of various contaminants, including dyes. The study focuses on the development of an innovative composite via a combination of the sillenite [...] Read more.
This study explores the efficiency of heterogeneous photocatalysis in wastewater treatment, which is recognized for inducing significant rates of degradation and mineralization of various contaminants, including dyes. The study focuses on the development of an innovative composite via a combination of the sillenite type semiconductor Bi12ZnO20 and the halide-type semiconductor AgI. Both semiconductors were synthesized via co-precipitation, and their phases were identified using X-ray diffraction and characterized by scanning electron microscopy, Raman spectroscopy, Brunauer–Emmett–Teller analysis for specific surface area, UV–Visible diffuse reflectance spectroscopy, and the point of zero charge. The evaluation of the photocatalytic activity of the Bi12ZnO20/AgI heterosystem was carried out by monitoring the degradation process of Basic Blue 41 (BB41) under solar irradiation conditions. The results of this study revealed that the Bi12ZnO20/AgI heterosystem achieved the efficient degradation of BB41, with a removal rate of 98% after 150 min of treatment. The mineralization study showed that the TOC value decreased from 19.89 mg L−1 to 6.87 mg L−1, indicating that a significant portion of BB41 was mineralized. Via kinetic research, it was established that the degradation process followed a pseudo-first-order mechanism. Furthermore, recycling tests showed that the synthesized heterostructures maintained good structural stability and acceptable reusability over several cycles. These findings highlight the potential of heterogeneous photocatalysis as a promising approach to addressing environmental challenges associated with azo dyes. Full article
Show Figures

Figure 1

34 pages, 4554 KB  
Article
Early Mission Calibration Performance of NOAA-21 VIIRS Reflective Solar Bands
by Ning Lei, Xiaoxiong Xiong, Kevin Twedt, Sherry Li, Tiejun Chang, Qiaozhen Mu and Amit Angal
Remote Sens. 2024, 16(19), 3557; https://doi.org/10.3390/rs16193557 - 24 Sep 2024
Cited by 1 | Viewed by 2227
Abstract
The Visible Infrared Imaging Radiometer Suite (VIIRS) is one of the key instruments on the recently launched NOAA-21 (previously known as JPSS-2) satellite. The VIIRS, like its predecessors on the SNPP and NOAA-20 satellites, provides daily global coverage in 22 spectral bands from [...] Read more.
The Visible Infrared Imaging Radiometer Suite (VIIRS) is one of the key instruments on the recently launched NOAA-21 (previously known as JPSS-2) satellite. The VIIRS, like its predecessors on the SNPP and NOAA-20 satellites, provides daily global coverage in 22 spectral bands from 412 nm to 12 μm. The geometrically and radiometrically calibrated observations are the basis for many operational applications and scientific research studies. A total of 14 of the 22 bands are reflective solar bands (RSBs), covering photon wavelengths from 412 nm to 2.25 μm. The RSBs were radiometrically calibrated prelaunch and have been regularly calibrated on orbit through the onboard solar diffuser (SD) and scheduled lunar observations. The on-orbit SD’s reflectance change is determined by the onboard solar diffuser stability monitor (SDSM). We review the calibration algorithms and present the early mission performance of the NASA N21 VIIRS RSBs. Using the calibration data collected at both the yaw maneuver and regular times, we derive the screen transmittance functions. The visible and near-infrared bands’ radiometric gains have been stable, nearly independent of time, and so were the radiometric gains of the shortwave-infrared bands after the second mid-mission outgassing. Further, we assess the Earth-view striping observed in the immediate prior collection (Collection 2.0) and apply a previously developed algorithm to mitigate the striping. The N21 VIIRS RSB detector signal-to-noise ratios are all above the design values with large margins. Finally, the uncertainties of the retrieved Earth-view top-of-the-atmosphere spectral reflectance factors at the respective typical spectral radiance levels are estimated to be less than 1.5% for all the RSBs, except band M11 whose reflectance factor uncertainty is 2.2%. Full article
(This article belongs to the Collection The VIIRS Collection: Calibration, Validation, and Application)
Show Figures

Figure 1

23 pages, 10245 KB  
Article
Preliminary Assessment of On-Orbit Radiometric Calibration Challenges in NOAA-21 VIIRS Reflective Solar Bands (RSBs)
by Taeyoung Choi, Changyong Cao, Slawomir Blonski, Xi Shao, Wenhui Wang and Khalil Ahmad
Remote Sens. 2024, 16(15), 2737; https://doi.org/10.3390/rs16152737 - 26 Jul 2024
Cited by 5 | Viewed by 1830
Abstract
The National Oceanic and Atmospheric Administration (NOAA) 21 Visible Infrared Imaging Radiometer Suite (VIIRS) was successfully launched on 10 November 2022. To ensure the required instrument performance, a series of Post-Launch Tests (PLTs) were performed and analyzed. The primary calibration source for NOAA-21 [...] Read more.
The National Oceanic and Atmospheric Administration (NOAA) 21 Visible Infrared Imaging Radiometer Suite (VIIRS) was successfully launched on 10 November 2022. To ensure the required instrument performance, a series of Post-Launch Tests (PLTs) were performed and analyzed. The primary calibration source for NOAA-21 VIIRS Reflective Solar Bands (RSBs) is the Solar Diffuser (SD), which retains the prelaunch radiometric calibration standard from prelaunch to on-orbit. Upon reaching orbit, the SD undergoes degradation as a result of ultraviolet solar illumination. The rate of SD degradation (called the H-factor) is monitored by a Solar Diffuser Stability Monitor (SDSM). The initial H-factor’s instability was significantly improved by deriving a new sun transmittance function from the yaw maneuver and one-year SDSM data. The F-factors (normally represent the inverse of instrument gain) thus calculated for the Visible/Near-Infrared (VISNIR) bands were proven to be stable throughout the first year of the on-orbit operations. On the other hand, the Shortwave Infrared (SWIR) bands unexpectedly showed fast degradation, which is possibly due to unknown substance accumulation along the optical path. To mitigate these SWIR band gain changes, the NOAA VIIRS Sensor Data Record (SDR) team used an automated calibration software package called RSBautoCal. In March 2024, the second middle-mission outgassing event to reverse SWIR band degradation was shown to be successful and its effects are closely monitored. Finally, the deep convective cloud trends and lunar collection results validated the operational F-factors. This paper summarizes the preliminary on-orbit radiometric calibration updates and performance for the NOAA-21 VIIRS SDR products in the RSB. Full article
(This article belongs to the Collection The VIIRS Collection: Calibration, Validation, and Application)
Show Figures

Figure 1

23 pages, 10073 KB  
Article
S-NPP VIIRS Lunar Calibrations over 10 Years in Reflective Solar Bands (RSB)
by Taeyoung Choi, Changyong Cao, Xi Shao and Wenhui Wang
Remote Sens. 2022, 14(14), 3367; https://doi.org/10.3390/rs14143367 - 13 Jul 2022
Cited by 12 | Viewed by 3135
Abstract
Since 28 October 2011, the VIIRS Infrared Imaging Radiometer Suite (VIIRS) on the Suomi National Polar-orbiting Partnership (S-NPP) has operated over 10 years and successfully generated scientific global images for the Earth’s environment and climate studies. Besides thermal and day night bands, VIIRS [...] Read more.
Since 28 October 2011, the VIIRS Infrared Imaging Radiometer Suite (VIIRS) on the Suomi National Polar-orbiting Partnership (S-NPP) has operated over 10 years and successfully generated scientific global images for the Earth’s environment and climate studies. Besides thermal and day night bands, VIIRS has 14 reflective solar bands (RSBs) that cover a spectral range of 0.41 µm to 2.25 µm. The primary and daily source of calibration for the RSBs is the Solar Diffuser (SD) as an onboard calibrator, and its degradations are tracked by the Solar Diffuser Stability Monitor (SDSM). Alternatively, monthly scheduled lunar calibration has provided long-term on-orbit trends that validate the corresponding SD-based calibration results. In this paper, on-orbit lunar calibration and comparison results are focused on, in conjunction with the SD calibrations that are performed by the National Oceanic and Atmospheric Administration (NOAA) VIIRS team. In addition, a recent study showed that there is increasing striping in the VIIRS images in the RSBs caused by the non-uniform SD degradation. The estimation of the SD non-uniformity and a mitigation method is proposed along with the striping reductions. Full article
(This article belongs to the Special Issue VIIRS 2011–2021: Ten Years of Success in Earth Observations)
Show Figures

Figure 1

16 pages, 5219 KB  
Article
Pilot-Scale Studies of WO3/S-Doped g-C3N4 Heterojunction toward Photocatalytic NOx Removal
by Marta Kowalkińska, Agnieszka Fiszka Borzyszkowska, Anna Grzegórska, Jakub Karczewski, Paweł Głuchowski, Marcin Łapiński, Mirosław Sawczak and Anna Zielińska-Jurek
Materials 2022, 15(2), 633; https://doi.org/10.3390/ma15020633 - 14 Jan 2022
Cited by 18 | Viewed by 4135
Abstract
Due to the rising concentration of toxic nitrogen oxides (NOx) in the air, effective methods of NOx removal have been extensively studied recently. In the present study, the first developed WO3/S-doped g-C3N4 nanocomposite was synthesized [...] Read more.
Due to the rising concentration of toxic nitrogen oxides (NOx) in the air, effective methods of NOx removal have been extensively studied recently. In the present study, the first developed WO3/S-doped g-C3N4 nanocomposite was synthesized using a facile method to remove NOx in air efficiently. The photocatalytic tests performed in a newly designed continuous-flow photoreactor with an LED array and online monitored NO2 and NO system allowed the investigation of photocatalyst layers at the pilot scale. The WO3/S-doped-g-C3N4 nanocomposite, as well as single components, were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), Brunauer–Emmett–Teller surface area analysis (BET), X-ray fluorescence spectroscopy (XRF), X-ray photoemission spectroscopy method (XPS), UV–vis diffuse reflectance spectroscopy (DR/UV–vis), and photoluminescence spectroscopy with charge carriers’ lifetime measurements. All materials exhibited high efficiency in photocatalytic NO2 conversion, and 100% was reached in less than 5 min of illumination under simulated solar light. The effect of process parameters in the experimental setup together with WO3/S-doped g-C3N4 photocatalysts was studied in detail. Finally, the stability of the composite was tested in five subsequent cycles of photocatalytic degradation. The WO3/S-doped g-C3N4 was stable in time and did not undergo deactivation due to the blocking of active sites on the photocatalyst’s surface. Full article
Show Figures

Graphical abstract

27 pages, 7214 KB  
Article
Ten Years of SNPP VIIRS Reflective Solar Bands On-Orbit Calibration and Performance
by Junqiang Sun, Xiaoxiong Xiong, Ning Lei, Sherry Li, Kevin Twedt and Amit Angal
Remote Sens. 2021, 13(15), 2944; https://doi.org/10.3390/rs13152944 - 27 Jul 2021
Cited by 12 | Viewed by 3089
Abstract
The Visible Infrared Imaging Radiometer Suite (VIIRS) onboard the Suomi National Polar-orbiting Partnership (SNPP) has successfully operated on-orbit for nearly ten years since its launch in October 2011, continuously making global observations and improving studies of changes in the Earth’s climate and environment. [...] Read more.
The Visible Infrared Imaging Radiometer Suite (VIIRS) onboard the Suomi National Polar-orbiting Partnership (SNPP) has successfully operated on-orbit for nearly ten years since its launch in October 2011, continuously making global observations and improving studies of changes in the Earth’s climate and environment. VIIRS has 22 spectral bands, among which 14 are reflective solar bands (RSBs) covering a spectral range from 0.41 to 2.25 μm. The SNPP VIIRS RSBs are primarily calibrated by the onboard solar diffuser (SD), with its on-orbit degradation tracked by an onboard SD stability monitor (SDSM). The near-monthly scheduled lunar observations, together with the sensor responses over stable ground targets, have contributed to the sensor’s mission-long on-orbit calibration and characterization. Numerous improvements have been made in the RSB calibration methodology since SNPP VIIRS was launched, and the RSB calibration has reached a mature stage after almost ten years of on-orbit operation. SNPP is a joint NASA/NOAA mission and there are two teams, the NASA VIIRS Calibration Support Team (VCST) and the NOAA VIIRS Sensor Data Record Team, which are dedicated to SNPP VIIRS on-orbit calibration. In this paper, we focus on the calibration performed by the NASA VCST. The SNPP VIIRS RSB calibration methodologies used to produce the calibration coefficient look up tables for the latest NASA Level 1B Collection 2 products are reviewed and the calibration improvements incorporated in this collection are described. Recent calibration changes include the removal of image striping caused by non-uniform degradation of the SD, improvements to the method for combining lunar and SD data, mitigation of the effects due a recent anomaly in the SD measurements, estimation of the SD degradation beyond 935 nm, and fitting strategy improvements for look-up table delivery. Overall, the SNPP VIIRS RSBs have performed well since its launch and continue to meet design specifications. Full article
Show Figures

Figure 1

26 pages, 9276 KB  
Article
Water-Covered Roof Versus Inverted Flat Roof on the Mediterranean Coast: A Comparative Study of Thermal and Energy Behavior
by Almudena Espinosa-Fernández, Víctor Echarri-Iribarren and Claudio A. Sáez
Appl. Sci. 2020, 10(7), 2288; https://doi.org/10.3390/app10072288 - 27 Mar 2020
Cited by 7 | Viewed by 4403
Abstract
Reservoir, or water-collecting roofs present greater thermal inertia than inverted flat roofs due to the mass of water they contain. This feature gives them better thermal performance and leads to greater stability in the indoor air temperature Ti and the wall surface [...] Read more.
Reservoir, or water-collecting roofs present greater thermal inertia than inverted flat roofs due to the mass of water they contain. This feature gives them better thermal performance and leads to greater stability in the indoor air temperature Ti and the wall surface temperatures. In the summer, they can dampen the effect of solar radiation and regulate external thermal loads thanks to their greater effusivity and thermal capacity. This research compares the thermal behavior of the roofs of two buildings located in Alicante on the Spanish Mediterranean coast: a loft flat in the city center and a water-covered roof in the Museum of the University of Alicante (MUA). Values for effusivity, diffusivity, thermal capacity, decrement factor, time lag and internal, as well as external thermal admittance were obtained. After monitoring both roofs during 2014, behavior simulations were performed in Design Builder using 6 different scenarios reflecting different combinations in both buildings of water-covered, inverted and conventional roofs and marble or terrazzo paving. The water-covered roof led to a higher decrement factor and time lag, as well as to a reduction of annual energy demands between 8.86% and 9.03%. Full article
(This article belongs to the Special Issue Efficiency and Optimization of Buildings Energy Consumption)
Show Figures

Figure 1

20 pages, 8236 KB  
Article
MODIS Aqua Reflective Solar Band Calibration for NASA’s R2018 Ocean Color Products
by Shihyan Lee, Gerhard Meister and Bryan Franz
Remote Sens. 2019, 11(19), 2187; https://doi.org/10.3390/rs11192187 - 20 Sep 2019
Cited by 14 | Viewed by 4474
Abstract
Remote-sensing ocean color products have stringent requirements on radiometric calibration stability. To address a calibration deficiency in Moderate Resolution Imaging Spectroradiometer (MODIS) Aqua in recent years, the NASA Ocean Biology Processing Group (OBPG) developed a new calibration for reflective solar bands. Prior to [...] Read more.
Remote-sensing ocean color products have stringent requirements on radiometric calibration stability. To address a calibration deficiency in Moderate Resolution Imaging Spectroradiometer (MODIS) Aqua in recent years, the NASA Ocean Biology Processing Group (OBPG) developed a new calibration for reflective solar bands. Prior to the reprocessing of NASA’s ocean color products for 2018 (R2018), the OBPG MODIS products had been based on calibration provided by the MODIS Calibration Support Team (MCST). Several modifications were made to the MCST calibration approach to improve the calibration accuracy for ocean color products. These include (1) applying 936-nm detector normalization to solar diffuser stability monitor (SDSM) data to reduce coherent noise; (2) modeling solar diffuser (SD) degradation wavelength dependency to determine SD degradation in near-infrared and shortwave infrared wavelengths; (3) computing detector gains using SD screen-closed data to better match ocean radiance levels in all bands; (4) performing a simple atmospheric correction to reduce bidirectional reflectance distribution function (BRDF) effects in desert trends; (5) estimating and using modulated relative spectral response (RSR) impact on ocean data to adjust the calibration coefficients; (6) using smoothing to characterize the temporal change in calibration; and characterizing response versus scan angle (RVS) changes using 2nd-order polynomials to improve spatial/temporal calibration stability. Relative to the previous R2014 ocean color products, the R2018 calibration removed the suspect late-mission global trends in blue-band water-leaving reflectance and some anomalously large short-term variability (spikes) in the temporal trend of chlorophyll concentration. This paper will describe the OBPG calibration with a focus on the differences between the MCST and OBPG approaches. Full article
(This article belongs to the Special Issue Fiducial Reference Measurements for Satellite Ocean Colour)
Show Figures

Graphical abstract

18 pages, 3913 KB  
Article
Radiometric Inter-Consistency of VIIRS DNB on Suomi NPP and NOAA-20 from Observations of Reflected Lunar Lights over Deep Convective Clouds
by Changyong Cao, Yan Bai, Wenhui Wang and Taeyoung Choi
Remote Sens. 2019, 11(8), 934; https://doi.org/10.3390/rs11080934 - 17 Apr 2019
Cited by 24 | Viewed by 7428
Abstract
The Visible Infrared Imaging Radiometer Suite (VIIRS) Day/Night Band (DNB) is capable of observing reflected lunar radiances at night with its high gain stage (HGS), and the radiometric calibration is traceable to the sun through gain transfer from the low gain stage (LGS) [...] Read more.
The Visible Infrared Imaging Radiometer Suite (VIIRS) Day/Night Band (DNB) is capable of observing reflected lunar radiances at night with its high gain stage (HGS), and the radiometric calibration is traceable to the sun through gain transfer from the low gain stage (LGS) calibrated near the terminator with the solar diffuser. Meanwhile, deep convective clouds (DCC) are known to have a stable reflectance in the visible spectral range. Therefore, the reflected lunar radiance at night from the DCC provides a unique dataset for the inter-calibration of VIIRS DNB on different satellites such as Suomi National Polar-orbiting Partnership (NPP) and NOAA-20, as well as quantifying the lunar radiance as a function of lunar phase angle. This study demonstrates a methodology for comparing nighttime Suomi NPP and NOAA-20 VIIRS DNB measured DCC reflected lunar radiance at various phase angles using data from July 2018 to March 2019 with an 86 second sampling interval and comparing Suomi NPP VIIRS DNB measured lunar radiances with those from lunar model predictions. The result shows good consistency between these two instruments on the two satellites, although a low bias in the NOAA-20 VIIRS DNB of ~5% is found. Also, observed lunar radiance from VIIRS DNB on Suomi NPP is found to be consistent with model predictions within 3% ± 5% (1σ) for a large range of lunar phase angles. However, discrepancies are significant near full moon, due to lunar opposition effects, and limitations of the lunar models. This study is useful not only for monitoring the DNB calibration stability and consistency across satellites, but also may help validate lunar models independently. Full article
(This article belongs to the Special Issue Remote Sensing: 10th Anniversary)
Show Figures

Graphical abstract

22 pages, 3169 KB  
Article
Optimization of a Deep Convective Cloud Technique in Evaluating the Long-Term Radiometric Stability of MODIS Reflective Solar Bands
by Qiaozhen Mu, Aisheng Wu, Xiaoxiong Xiong, David R. Doelling, Amit Angal, Tiejun Chang and Rajendra Bhatt
Remote Sens. 2017, 9(6), 535; https://doi.org/10.3390/rs9060535 - 27 May 2017
Cited by 33 | Viewed by 5245
Abstract
MODIS reflective solar bands are calibrated on-orbit using a solar diffuser and near-monthly lunar observations. To monitor the performance and effectiveness of the on-orbit calibrations, pseudo-invariant targets such as deep convective clouds (DCCs), Libya-4, and Dome-C are used to track the long-term stability [...] Read more.
MODIS reflective solar bands are calibrated on-orbit using a solar diffuser and near-monthly lunar observations. To monitor the performance and effectiveness of the on-orbit calibrations, pseudo-invariant targets such as deep convective clouds (DCCs), Libya-4, and Dome-C are used to track the long-term stability of MODIS Level 1B product. However, the current MODIS operational DCC technique (DCCT) simply uses the criteria set for the 0.65-µm band. We optimize several critical DCCT parameters including the 11-µm IR-band Brightness Temperature (BT11) threshold for DCC identification, DCC core size and uniformity to help locate DCCs at convection centers, data collection time interval, and probability distribution function (PDF) bin increment for each channel. The mode reflectances corresponding to the PDF peaks are utilized as the DCC reflectances. Results show that the BT11 threshold and time interval are most critical for the Short Wave Infrared (SWIR) bands. The Bidirectional Reflectance Distribution Function model is most effective in reducing the DCC anisotropy for the visible channels. The uniformity filters and PDF bin size have minimal impacts on the visible channels and a larger impact on the SWIR bands. The newly optimized DCCT will be used for future evaluation of MODIS on-orbit calibration by MODIS Characterization Support Team. Full article
Show Figures

Graphical abstract

15 pages, 2127 KB  
Article
Spectral Dependent Degradation of the Solar Diffuser on Suomi-NPP VIIRS Due to Surface Roughness-Induced Rayleigh Scattering
by Xi Shao, Changyong Cao and Tung-Chang Liu
Remote Sens. 2016, 8(3), 254; https://doi.org/10.3390/rs8030254 - 17 Mar 2016
Cited by 38 | Viewed by 9155
Abstract
The Visible Infrared Imaging Radiometer Suite (VIIRS) onboard Suomi National Polar Orbiting Partnership (SNPP) uses a solar diffuser (SD) as its radiometric calibrator for the reflective solar band calibration. The SD is made of Spectralon™ (one type of fluoropolymer) and was chosen because [...] Read more.
The Visible Infrared Imaging Radiometer Suite (VIIRS) onboard Suomi National Polar Orbiting Partnership (SNPP) uses a solar diffuser (SD) as its radiometric calibrator for the reflective solar band calibration. The SD is made of Spectralon™ (one type of fluoropolymer) and was chosen because of its controlled reflectance in the Visible/Near-Infrared/Shortwave-Infrared region and its near-Lambertian reflectance property. On-orbit changes in VIIRS SD reflectance as monitored by the Solar Diffuser Stability Monitor showed faster degradation of SD reflectance for 0.4 to 0.6 µm channels than the longer wavelength channels. Analysis of VIIRS SD reflectance data show that the spectral dependent degradation of SD reflectance in short wavelength can be explained with a SD Surface Roughness (length scale << wavelength) based Rayleigh Scattering (SRRS) model due to exposure to solar UV radiation and energetic particles. The characteristic length parameter of the SD surface roughness is derived from the long term reflectance data of the VIIRS SD and it changes at approximately the tens of nanometers level over the operational period of VIIRS. This estimated roughness length scale is consistent with the experimental result from radiation exposure of a fluoropolymer sample and validates the applicability of the Rayleigh scattering-based model. The model is also applicable to explaining the spectral dependent degradation of the SDs on other satellites. This novel approach allows us to better understand the physical processes of the SD degradation, and is complementary to previous mathematics based models. Full article
(This article belongs to the Collection Visible Infrared Imaging Radiometers and Applications)
Show Figures

Graphical abstract

16 pages, 3491 KB  
Article
Radiometric Stability Monitoring of the Suomi NPP Visible Infrared Imaging Radiometer Suite (VIIRS) Reflective Solar Bands Using the Moon
by Taeyoung Choi, Xi Shao, Changyong Cao and Fuzhong Weng
Remote Sens. 2016, 8(1), 15; https://doi.org/10.3390/rs8010015 - 25 Dec 2015
Cited by 40 | Viewed by 8270
Abstract
The Suomi NPP (S-NPP) Visible Infrared Imaging Radiometer Suite (VIIRS) performs the scheduled lunar roll maneuver on a monthly basis. The lunar calibration coefficients and lunar F-factor are calculated by taking the ratio of the lunar observed radiance to the simulated radiance from [...] Read more.
The Suomi NPP (S-NPP) Visible Infrared Imaging Radiometer Suite (VIIRS) performs the scheduled lunar roll maneuver on a monthly basis. The lunar calibration coefficients and lunar F-factor are calculated by taking the ratio of the lunar observed radiance to the simulated radiance from the Miller and Turner (MT) lunar model. The lunar F-factor is also validated against that derived from the VIIRS Solar Diffuser (SD). The MT model-based lunar F-factors in general agree with SD F-factors. The Lunar Band Ratio (LBR) is also derived from two channel lunar radiances and is implemented in the National Oceanic and Atmospheric Administration (NOAA) Integrated Calibration and Validation System (ICVS) to monitor the VIIRS long-term radiometric performance. The lunar radiances at pixels are summed for each of the VIIRS Reflective Solar Bands (RSBs) and normalized by the reference band M11 which has the most stable SD-based calibration coefficient. LBRs agree with the SD based F-factor ratios within one percent. Based on analysis with these two independent lunar calibration methods, SD-based and LBR-based calibrations show a lifetime consistency. Thus, it is recommended that LBR be used for both VIIRS radiometric calibration and lifetime stability monitoring. Full article
(This article belongs to the Collection Visible Infrared Imaging Radiometers and Applications)
Show Figures

Graphical abstract

17 pages, 2075 KB  
Article
Radiometric Non-Uniformity Characterization and Correction of Landsat 8 OLI Using Earth Imagery-Based Techniques
by Frank Pesta, Suman Bhatta, Dennis Helder and Nischal Mishra
Remote Sens. 2015, 7(1), 430-446; https://doi.org/10.3390/rs70100430 - 31 Dec 2014
Cited by 38 | Viewed by 9115
Abstract
Landsat 8 is the first satellite in the Landsat mission to acquire spectral imagery of the Earth using pushbroom sensor instruments. As a result, there are almost 70,000 unique detectors on the Operational Land Imager (OLI) alone to monitor. Due to minute variations [...] Read more.
Landsat 8 is the first satellite in the Landsat mission to acquire spectral imagery of the Earth using pushbroom sensor instruments. As a result, there are almost 70,000 unique detectors on the Operational Land Imager (OLI) alone to monitor. Due to minute variations in manufacturing and temporal degradation, every detector will exhibit a different behavior when exposed to uniform radiance, causing a noticeable striping artifact in collected imagery. Solar collects using the OLI’s on-board solar diffuser panels are the primary method of characterizing detector level non-uniformity. This paper reports on an approach for using a side-slither maneuver to estimate relative detector gains within each individual focal plane module (FPM) in the OLI. A method to characterize cirrus band detector-level non-uniformity using deep convective clouds (DCCs) is also presented. These approaches are discussed, and then, correction results are compared with the diffuser-based method. Detector relative gain stability is assessed using the side-slither technique. Side-slither relative gains were found to correct streaking in test imagery with quality comparable to diffuser-based gains (within 0.005% for VNIR/PAN; 0.01% for SWIR) and identified a 0.5% temporal drift over a year. The DCC technique provided relative gains that visually decreased striping over the operational calibration in many images. Full article
(This article belongs to the Special Issue Landsat-8 Sensor Characterization and Calibration)
Show Figures

Graphical abstract

Back to TopTop