Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (9)

Search Parameters:
Keywords = solar ORC desalination

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 4239 KiB  
Article
Thermodynamic and Exergetic Evaluation of a Newly Designed CSP Driven Cooling-Desalination Cogeneration System
by Hassan F. Elattar, Abdul Khaliq, Bassam S. Aljohani, Abdullah M. A. Alsharif and Hassanein A. Refaey
Processes 2025, 13(5), 1589; https://doi.org/10.3390/pr13051589 - 20 May 2025
Viewed by 530
Abstract
This investigation attempts to develop a tower solar collector-based system designed for the cogeneration of cooling and desalination. The traditional organic Rankine cycle (ORC) integrated with the ejector refrigeration cycle generates limited power and cooling at a single temperature. Acknowledging their [...] Read more.
This investigation attempts to develop a tower solar collector-based system designed for the cogeneration of cooling and desalination. The traditional organic Rankine cycle (ORC) integrated with the ejector refrigeration cycle generates limited power and cooling at a single temperature. Acknowledging their limitations, our present study uses an organic flash cycle (OFC) supported by solar heat combined with the two-phase ejector cycle and the reverse osmosis (RO) desalination unit. Since the OFC turbine is fed with two extra streams of fluid, therefore, it provides greater power to run the compressor of the ejector and pumps of the RO unit, resulting in the production of cooling at two different temperatures (refrigeration and air conditioning) and a higher mass flow rate of fresh water. A mathematical model is employed to assess the impact of coil curvature ratio, Rib height, and direct normal irradiation (DNI) on the temperature of the collector’s oil outlet. ANSYS-FLUENT conducts numerical simulations through computational fluid dynamics (CFD) analysis. The results indicate an ultimate increase in oil outlet temperature of 45% as the DNI increased from 450 to 1000 W/m2 at a curvature ratio of 0.095 when employing the 1st Rib. Further, a steady-state energy and exergy analysis is conducted to evaluate the performance of the proposed cogeneration, with different design parameters like DNI, coil curvature ratio, rib height, and OFC turbine inlet pressure. The energetic and exergetic efficiencies of the cogeneration system at DNI of 800 W/m2 are obtained as 16.67% and 6.08%, respectively. Exergetic assessment of the overall system shows that 29.57% is the exergy produced as cooling exergy, and the exergy accompanied by freshwater, 68.13%, is the exergy destroyed, and 2.3% is the exergy loss. The solar collector exhibits the maximum exergy destruction, followed by the ejector and RO pumps. Integrating multiple technologies into a system with solar input enhances efficiency, energy sustainability, and environmental benefits. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

40 pages, 7221 KiB  
Review
Advancements in Integrated Thermoelectric Power Generation and Water Desalination Technologies: A Comprehensive Review
by Oranit Traisak, Pranjal Kumar, Sara Vahaji, Yihe Zhang and Abhijit Date
Energies 2025, 18(6), 1454; https://doi.org/10.3390/en18061454 - 16 Mar 2025
Cited by 2 | Viewed by 1338
Abstract
This paper reviews recent advancements in integrated thermoelectric power generation and water desalination technologies, driven by the increasing global demand for electricity and freshwater. The growing population and reliance on fossil fuels for electricity generation pose challenges related to environmental pollution and resource [...] Read more.
This paper reviews recent advancements in integrated thermoelectric power generation and water desalination technologies, driven by the increasing global demand for electricity and freshwater. The growing population and reliance on fossil fuels for electricity generation pose challenges related to environmental pollution and resource depletion, necessitating the exploration of alternative energy sources and desalination techniques. While thermoelectric generators are capable of converting low-temperature thermal energy into electricity and desalination processes that can utilize low-temperature thermal energy, their effective integration remains largely unexplored. Currently available hybrid power and water systems, such as those combining conventional heat engine cycles (e.g., the Rankine and Kalina cycles) with reverse osmosis, multi-effect distillation, and humidification–dehumidification, are limited in effectively utilizing low-grade thermal energy for simultaneous power generation and desalination, while solid-state heat-to-work conversion technology, such as thermoelectric generators, have low heat-to-work conversion efficiency. This paper identifies a key research gap in the limited effective integration of thermoelectric generators and desalination, despite their complementary characteristics. The study highlights the potential of hybrid systems, which leverage low-grade thermal energy for simultaneous power generation and desalination. The review also explores emerging material innovations in high figure of merit thermoelectric materials and advanced MD membranes, which could significantly enhance system performance. Furthermore, hybrid power–desalination systems incorporating thermoelectric generators with concentrated photovoltaic cells, solar thermal collectors, geothermal energy, and organic Rankine cycles (ORCs) are examined to highlight their potential for sustainable energy and water production. The findings underscore the importance of optimizing material properties, system configurations, and operating conditions to maximize efficiency and output while reducing economic and environmental costs. Full article
(This article belongs to the Section B: Energy and Environment)
Show Figures

Figure 1

20 pages, 3429 KiB  
Article
Optimizing Solar Energy Harvesting through Integrated Organic Rankine Cycle–Reverse Osmosis Systems: A Techno–Economic Analysis
by Lina Wang, Chunyu Zhou and Hamid Reza Rahbari
Sustainability 2023, 15(18), 13602; https://doi.org/10.3390/su151813602 - 12 Sep 2023
Cited by 7 | Viewed by 2056
Abstract
When it comes to seawater desalination in the small- to medium-electricity ranges, the organic Rankine cycle (ORC) powered by solar energy stands out as the most energy-efficient technology currently available. Various solar techniques have been developed to capture and absorb solar energy. Among [...] Read more.
When it comes to seawater desalination in the small- to medium-electricity ranges, the organic Rankine cycle (ORC) powered by solar energy stands out as the most energy-efficient technology currently available. Various solar techniques have been developed to capture and absorb solar energy. Among them, the parabolic trough collector (PTC) has gained recognition as a low-cost solar thermal collector with a long operating life. This study investigates the thermodynamic performance and economic parameters of a PTC-powered ORC using Dowtherm A and toluene as working fluids for the solar cycle and ORC cycle, respectively. Thermo-economic multi-objective optimization and decision-making techniques are applied to assess the system’s performance. Four key parameters are analyzed for their impact on exergy efficiency and total hourly cost. Using TOPSIS decision-making, the best solution from the Pareto frontier is identified, featuring an ORC exergy efficiency of 30.39% and a total hourly cost of 39.38 US$/h. The system parameters include a mass flow rate of fresh water at 137.7 m3/h, a total output net power of 577.9 kJ/kg, and a district heating supply of 1074 kJ/kg. The cost analysis reveals that the solar collector represents approximately 68% of the total hourly cost at 26.77 US$/h, followed by the turbine, thermoelectric generator, and reverse osmosis (RO) unit. Full article
Show Figures

Figure 1

26 pages, 5796 KiB  
Article
Performance Evaluation of a Solar Heat-Driven Poly-Generation System for Residential Buildings Using Various Arrangements of Heat Recovery Units
by Saeed Alqaed, Ali Fouda, Hassan F. Elattar, Jawed Mustafa, Fahad Awjah Almehmadi, Hassanein A. Refaey and Mathkar A. Alharthi
Energies 2022, 15(22), 8750; https://doi.org/10.3390/en15228750 - 21 Nov 2022
Cited by 11 | Viewed by 2121
Abstract
Poly-generation systems are a feasible alternative to conventional energy production techniques in buildings. A poly-generation system allows for the concurrent production of electricity, heat, cold, and fresh water, with considerable advantages regarding technology, finances, energy recovery, and the environment. In the present study, [...] Read more.
Poly-generation systems are a feasible alternative to conventional energy production techniques in buildings. A poly-generation system allows for the concurrent production of electricity, heat, cold, and fresh water, with considerable advantages regarding technology, finances, energy recovery, and the environment. In the present study, the organic Rankine cycle (ORC), the humidification–dehumidification desalination system (HDH), and the desiccant cooling system (DCS) are merged with three unique solar-driven poly-generation systems (BS, IS-I, and IS-II) and numerically examined. The proposed options provide energy, space cooling, domestic heating, and potable water to buildings of small/medium scale. Using n-octane ORC working fluid, the impact of operational circumstances on system productivity and execution characteristics was considered. The findings show that (i) the suggested poly-generation systems can provide electrical power, conditioned space cooling, local heating, and fresh water, whereas keeping the conditioned area pleasant, (ii) the IS-I system achieves the best system performance among all compared arrangements (BS and IS-II); (iii) the attained extreme values of W˙net, m˙fresh, Q˙cooling, Q˙heating, and TGOR are 102.0 kW (all systems), 214.70 kg/h (IS-II), 29.940 kW (IS-II), 225.6 kW (IS-I), and 0.6303 (IS-I), respectively. Full article
Show Figures

Figure 1

25 pages, 3361 KiB  
Article
Energy Performance Assessment of a Novel Solar Poly-Generation System Using Various ORC Working Fluids in Residential Buildings
by Fahad Awjah Almehmadi, H. F. Elattar, A. Fouda, Saeed Alqaed, Jawed Mustafa, Mathkar A. Alharthi and H. A. Refaey
Energies 2022, 15(21), 8286; https://doi.org/10.3390/en15218286 - 6 Nov 2022
Cited by 11 | Viewed by 2065
Abstract
Poly-generation systems are an exciting new technology that provide an alternative to separating existing energy production methods in buildings. A poly-generation system enables the efficient simultaneous production of heating, cooling, fresh water, and electricity, resulting in many technological, economic, energy recovery, and environmental [...] Read more.
Poly-generation systems are an exciting new technology that provide an alternative to separating existing energy production methods in buildings. A poly-generation system enables the efficient simultaneous production of heating, cooling, fresh water, and electricity, resulting in many technological, economic, energy recovery, and environmental advantages. This study numerically investigates three proposed novel solar-driven poly-generation systems (BS, IS-I, and IS-II) integrated with organic Rankine cycle (ORC), humidification-dehumidification desalination system (HDH), and desiccant cooling system (DCS) with different heat recovery system arrangements. The suggested systems supply residential structures with energy, space conditioning, domestic heating, and fresh water. The effects of system operating circumstances on productivity and performance characteristics and several organic working fluid types (n-octane, R245fa, R113, isopentane, and toluene) on optimum system performance have been investigated. The results show that (i) the average enhancement percentage of TGOR using integrated poly-generation systems over the separated ones is 68.5%, 68.5%, and 95.5% for BS, IS-I, and IS-II systems, respectively; (ii) when comparing the three systems, the IS-I system outperforms the other systems (BS & IS-II); and (iii) the maximum values of Wnet, mfresh, Qcooling, and Qheating, obtained for different proposed systems using n-octane are 102 kW (all systems), 214.7 kg/h (IS-II), 29.94 kW (IS-II), and 225.6 kW (IS-I); (iv) R113 has the highest TGOR of 0.6924 (IS-I) compared to other organic fluids. (v) The improvements in Wnet, mfresh, Qcooling and Qheating with using toluene instead of R113 at tf1 = 40 °C are 177.5%, 105.8%, 389.25%, and 79%, respectively. Full article
Show Figures

Figure 1

24 pages, 6405 KiB  
Article
Towards an Efficient Multi-Generation System Providing Power, Cooling, Heating, and Freshwater for Residential Buildings Operated with Solar-Driven ORC
by Fahad Awjah Almehmadi, Hassan Fawzy Elattar, Ali Fouda, Saeed Alqaed, Mathkar A. Alharthi and Hassanein Abdelmohsen Refaey
Appl. Sci. 2022, 12(21), 11157; https://doi.org/10.3390/app122111157 - 3 Nov 2022
Cited by 12 | Viewed by 2593
Abstract
In buildings, multi-generation systems are a promising technology that can replace discrete traditional energy production methods. A multi-generation system makes it possible to efficiently produce electricity, cooling, heating, and freshwater simultaneously. This study involved the numerical analysis of a modified proposed novel solar-driven [...] Read more.
In buildings, multi-generation systems are a promising technology that can replace discrete traditional energy production methods. A multi-generation system makes it possible to efficiently produce electricity, cooling, heating, and freshwater simultaneously. This study involved the numerical analysis of a modified proposed novel solar-driven multi-generation system (MGS-II) integrated with the Organic Rankine Cycle (ORC), Humidification–Dehumidification Desalination System (HDH), and Desiccant Cooling System (DCS) by using heat recovery and thermal energy storage (TES) units. In addition, a comparison study with the basic multi-generation system (MGS-I) is performed. The proposed system is designed to supply electricity, air conditioning, domestic heating, and fresh water to small/medium-sized buildings. How operating conditions affect system productivity and performance metrics have been investigated. The results show that the proposed multi-generation system (MGS-II) can produce electrical power, space cooling, domestic heating and fresh water while maintaining comfortable conditions inside the conditioned space. Moreover, the MGS-II outperforms the MGS-I system, and the maximum MGS-II system productivity; electricity production (\({W_{net}^{\bullet}}\)), freshwater (\({m_{fresh}^{\bullet} }\)), space cooling (\({Q_{cooling}^{\bullet} }\)), and domestic heating (\({Q_{heating}^{\bullet} }\)) are 102.3 kW, 141.5 kg/h, 20.77 kW, and 225 kW, respectively. In addition, the highest total gained output ratio (TGOR), specific total gained energy (STG), and specific total gained energy equivalent price (STGP) of the MGS-II system are 0.6303, 3.824 kWh/m2, and 0.149 USD/m2, respectively. The accepted ranges of comfortable space-supplied air conditions (temperature and humidity) are 15.5–18.2 °C and 9.2–12.00 gv/kga for both systems, MGS-I and MGS-II. Finally, the current system (MGS-II) has the maximum of the system’s performance indicators and productivity (TGOR and \({{\overset{.}{m}}_{fresh} }\)) compared with the other reported systems. Full article
(This article belongs to the Section Energy Science and Technology)
Show Figures

Figure 1

23 pages, 2969 KiB  
Review
Solar Desalination Driven by Organic Rankine Cycles (Orc) and Supercritical CO2 Power Cycles: An Update
by Agustín M. Delgado-Torres and Lourdes García-Rodríguez
Processes 2022, 10(1), 153; https://doi.org/10.3390/pr10010153 - 13 Jan 2022
Cited by 13 | Viewed by 4135
Abstract
In the field of desalination powered by renewable energies, the use of solar power cycles exhibits some favorable characteristics, such as the possibility of implementing thermal energy storage systems or a multi-generation scheme (e.g., electricity, water, cooling, hydrogen). This article presents a review [...] Read more.
In the field of desalination powered by renewable energies, the use of solar power cycles exhibits some favorable characteristics, such as the possibility of implementing thermal energy storage systems or a multi-generation scheme (e.g., electricity, water, cooling, hydrogen). This article presents a review of the latest design proposals in which two power cycles of great potential are considered: the organic Rankine cycle and the supercritical CO2 power cycle, the latter of growing interest in recent years. The designs found in the literature are grouped into three main types of systems. In the case of solar ORC-based systems, the option of reverse osmosis as a desalination technology is considered in medium-temperature solar systems with storage but also with low-temperature using solar ponds. In the first case, it is also common to incorporate single-effect absorption systems for cooling production. The use of thermal desalination processes is also found in many proposals based on solar ORC. In this case, the usual configuration implies the cycle’s cooling by the own desalination process. This option is also common in systems based on the supercritical CO2 power cycle where MED technology is usually selected. Designs proposals are reviewed and assessed to point out design recommendations. Full article
(This article belongs to the Special Issue Desalination Processes by Renewable Energy (RE))
Show Figures

Figure 1

35 pages, 6068 KiB  
Article
Design and Comparative Techno-Economic Analysis of Two Solar Polygeneration Systems Applied for Electricity, Cooling and Fresh Water Production
by Ighball Baniasad Askari, Francesco Calise and Maria Vicidomini
Energies 2019, 12(22), 4401; https://doi.org/10.3390/en12224401 - 19 Nov 2019
Cited by 28 | Viewed by 4843
Abstract
Two solar polygeneration systems were investigated for electricity, cooling and fresh water production. In the first scenario ( LF PS ), the linear Fresnel (LF) solar field was used as thermal source of the Organic Rankine Cycle (ORC), absorption chiller (ACH) and multi-effect [...] Read more.
Two solar polygeneration systems were investigated for electricity, cooling and fresh water production. In the first scenario ( LF PS ), the linear Fresnel (LF) solar field was used as thermal source of the Organic Rankine Cycle (ORC), absorption chiller (ACH) and multi-effect desalination (MED) unit. In the second scenario ( PV PS ), photovoltaic (PV) panels were considered as the electricity source to supply the electricity load that is required for lighting, electrical devices, compression chiller (CCH) and reverse osmosis (RO) units. A techno-economic comparison was made between two scenarios based on the land use factor (F), capacity utilization factor (CUF), payback period, levelized cost of electricity (LCE), levelized cost of cooling energy (LCC) and levelized cost of water (LCW). The calculations were conducted for four different locations in order to determine the effect of solar radiation level on the LCE, LCC and LCW of systems in both scenarios. The results showed that the LCE and LCW of PV PS is lower than that of LF PS and the LCC of LF PS is lower than that of PV PS . Also, the payback period of LF PS and PV PS systems are obtained as 13.97 years and 13.54 years, respectively, if no incentive is considered for the electricity sale. Full article
Show Figures

Figure 1

22 pages, 827 KiB  
Article
Exergetic Analysis of an Integrated Tri-Generation Organic Rankine Cycle
by Ratha Z. Mathkor, Brian Agnew, Mohammed A. Al-Weshahi and Fathi Latrsh
Energies 2015, 8(8), 8835-8856; https://doi.org/10.3390/en8088835 - 20 Aug 2015
Cited by 24 | Viewed by 6599
Abstract
This paper reports on a study of the modelling, validation and analysis of an integrated 1 MW (electrical output) tri-generation system energized by solar energy. The impact of local climatic conditions in the Mediterranean region on the system performance was considered. The output [...] Read more.
This paper reports on a study of the modelling, validation and analysis of an integrated 1 MW (electrical output) tri-generation system energized by solar energy. The impact of local climatic conditions in the Mediterranean region on the system performance was considered. The output of the system that comprised a parabolic trough collector (PTC), an organic Rankine cycle (ORC), single-effect desalination (SED), and single effect LiBr-H2O absorption chiller (ACH) was electrical power, distilled water, and refrigerant load. The electrical power was produced by the ORC which used cyclopentane as working fluid and Therminol VP-1 was specified as the heat transfer oil (HTO) in the collectors with thermal storage. The absorption chiller and the desalination unit were utilize the waste heat exiting from the steam turbine in the ORC to provide the necessary cooling energy and drinking water respectively. The modelling, which includes an exergetic analysis, focuses on the performance of the solar tri-generation system. The simulation results of the tri-generation system and its subsystems were produced using IPSEpro software and were validated against experimental data which showed good agreement. The tri-generation system was able to produce about 194 Ton of refrigeration, and 234 t/day distilled water. Full article
(This article belongs to the Special Issue Tri-Generation Cycles, Combined Heat, Power and Cooling (CHPC))
Show Figures

Figure 1

Back to TopTop