Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (38)

Search Parameters:
Keywords = soft textile system

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1266 KB  
Communication
Design and Thermal Evaluation of a Soft Textile System with a Removable Gel Cooling Panel
by Radostina A. Angelova, Lilia Belova, Daniela Sofronova and Elena Borisova
Appl. Sci. 2026, 16(2), 857; https://doi.org/10.3390/app16020857 - 14 Jan 2026
Abstract
The study presents the thermal evaluation of soft knitted textile systems with removable gel cooling panels. Two prototype configurations with different geometries and gel panel sizes were investigated using infrared thermography under controlled laboratory conditions. The results show a moderated and gradual cooling [...] Read more.
The study presents the thermal evaluation of soft knitted textile systems with removable gel cooling panels. Two prototype configurations with different geometries and gel panel sizes were investigated using infrared thermography under controlled laboratory conditions. The results show a moderated and gradual cooling response during contact. The strongest surface cooling occurred shortly after contact, followed by a gradual increase in the surface temperature of the textile system due to heat transfer from the skin-temperature simulator. While the temperature of the skin-temperature simulator stabilised rapidly, the textile surface maintained a perceptible cooling effect over a longer period. Surface temperatures remained within ranges associated with comfort and safety under the applied experimental conditions. The findings indicate that system geometry and gel panel size influence heat exchange, while the knitted textile structure contributes to the observed cooling behaviour of the complete system. The results support the potential of knitted textile systems with removable gel cooling panels for gentle, localised cooling applications in controlled, non-clinical settings. Full article
43 pages, 3473 KB  
Review
Biochips on the Move: Emerging Trends in Wearable and Implantable Lab-on-Chip Health Monitors
by Nikolay L. Kazanskiy, Pavel A. Khorin and Svetlana N. Khonina
Electronics 2025, 14(16), 3224; https://doi.org/10.3390/electronics14163224 - 14 Aug 2025
Cited by 3 | Viewed by 8537
Abstract
Wearable and implantable Lab-on-Chip (LoC) biosensors are revolutionizing healthcare by enabling continuous, real-time monitoring of physiological and biochemical parameters in non-clinical settings. These miniaturized platforms integrate sample handling, signal transduction, and data processing on a single chip, facilitating early disease detection, personalized treatment, [...] Read more.
Wearable and implantable Lab-on-Chip (LoC) biosensors are revolutionizing healthcare by enabling continuous, real-time monitoring of physiological and biochemical parameters in non-clinical settings. These miniaturized platforms integrate sample handling, signal transduction, and data processing on a single chip, facilitating early disease detection, personalized treatment, and preventive care. This review comprehensively explores recent advancements in LoC biosensing technologies, emphasizing their application in skin-mounted patches, smart textiles, and implantable devices. Key innovations in biocompatible materials, nanostructured transducers, and flexible substrates have enabled seamless integration with the human body, while fabrication techniques such as soft lithography, 3D printing, and MEMS have accelerated development. The incorporation of nanomaterials significantly enhances sensitivity and specificity, supporting multiplexed and multi-modal sensing. We examine critical application domains, including glucose monitoring, cardiovascular diagnostics, and neurophysiological assessment. Design considerations related to biocompatibility, power management, data connectivity, and long-term stability are also discussed. Despite promising outcomes, challenges such as biofouling, signal drift, regulatory hurdles, and public acceptance remain. Future directions focus on autonomous systems powered by AI, hybrid wearable–implantable platforms, and wireless energy harvesting. This review highlights the transformative potential of LoC biosensors in shaping the future of smart, patient-centered healthcare through continuous, minimally invasive monitoring. Full article
(This article belongs to the Special Issue Lab-on-Chip Biosensors)
Show Figures

Figure 1

16 pages, 1234 KB  
Article
A Lightweight Soft Exosuit for Elbow Rehabilitation Powered by a Multi-Bundle SMA Actuator
by Janeth Arias Guadalupe, Alejandro Pereira-Cabral Perez, Dolores Blanco Rojas and Dorin Copaci
Actuators 2025, 14(7), 337; https://doi.org/10.3390/act14070337 - 6 Jul 2025
Cited by 1 | Viewed by 2245
Abstract
Stroke is one of the leading causes of long-term disability worldwide, often resulting in motor impairments that limit the ability to perform daily activities independently. Conventional rehabilitation exoskeletons, while effective, are typically rigid, bulky, and expensive, limiting their usability outside of clinical settings. [...] Read more.
Stroke is one of the leading causes of long-term disability worldwide, often resulting in motor impairments that limit the ability to perform daily activities independently. Conventional rehabilitation exoskeletons, while effective, are typically rigid, bulky, and expensive, limiting their usability outside of clinical settings. In response to these challenges, this work presents the development and validation of a novel soft exosuit designed for elbow flexion rehabilitation, incorporating a multi-wire Shape Memory Alloy (SMA) actuator capable of both position and force control. The proposed system features a lightweight and ergonomic textile-based design, optimized for user comfort, ease of use, and low manufacturing cost. A sequential activation strategy was implemented to improve the dynamic response of the actuator, particularly during the cooling phase, which is typically a major limitation in SMA-based systems. The performance of the multi-bundle actuator was compared with a single-bundle configuration, demonstrating superior trajectory tracking and reduced thermal accumulation. Surface electromyography tests confirmed a decrease in muscular effort during assisted flexion, validating the device’s assistive capabilities. With a total weight of 0.6 kg and a fabrication cost under EUR 500, the proposed exosuit offers a promising solution for accessible and effective home-based rehabilitation. Full article
(This article belongs to the Special Issue Shape Memory Alloy (SMA) Actuators and Their Applications)
Show Figures

Figure 1

33 pages, 12802 KB  
Review
Developments and Future Directions in Stretchable Display Technology: Materials, Architectures, and Applications
by Myung Sub Lim and Eun Gyo Jeong
Micromachines 2025, 16(7), 772; https://doi.org/10.3390/mi16070772 - 30 Jun 2025
Viewed by 3632
Abstract
Stretchable display technology has rapidly evolved, enabling a new generation of flexible electronics with applications ranging from wearable healthcare and smart textiles to implantable biomedical devices and soft robotics. This review systematically presents recent advances in stretchable displays, focusing on intrinsic stretchable materials, [...] Read more.
Stretchable display technology has rapidly evolved, enabling a new generation of flexible electronics with applications ranging from wearable healthcare and smart textiles to implantable biomedical devices and soft robotics. This review systematically presents recent advances in stretchable displays, focusing on intrinsic stretchable materials, wavy surface engineering, and hybrid integration strategies. The paper highlights critical breakthroughs in device architectures, energy-autonomous systems, durable encapsulation techniques, and the integration of artificial intelligence, which collectively address challenges in mechanical reliability, optical performance, and operational sustainability. Particular emphasis is placed on the development of high-resolution displays that maintain brightness and color fidelity under mechanical strain, and energy harvesting systems that facilitate self-powered operation. Durable encapsulation methods ensuring long-term stability against environmental factors such as moisture and oxygen are also examined. The fusion of stretchable electronics with AI offers transformative opportunities for intelligent sensing and adaptive human–machine interfaces. Despite significant progress, issues related to large-scale manufacturing, device miniaturization, and the trade-offs between stretchability and device performance remain. This review concludes by discussing future research directions aimed at overcoming these challenges and advancing multifunctional, robust, and scalable stretchable display systems poised to revolutionize flexible electronics applications. Full article
(This article belongs to the Special Issue Advances in Flexible and Wearable Electronics: Devices and Systems)
Show Figures

Figure 1

56 pages, 16805 KB  
Review
Lightweight Textile and Fiber-Reinforced Composites for Soft Body Armor (SBA): Advances in Panel Design, Materials, and Testing Standards
by Mohammed Islam Tamjid, Mulat Alubel Abtew and Caroline Kopot
J. Compos. Sci. 2025, 9(7), 337; https://doi.org/10.3390/jcs9070337 - 28 Jun 2025
Cited by 2 | Viewed by 3215
Abstract
Soft body armor (SBA) remains an essential component of first responder protection. However, most SBA design concepts do not adequately address the unique performance, morphological, and psychological needs of women as first responders. In this review, female-specific designs of ballistic-resistant panels, material systems, [...] Read more.
Soft body armor (SBA) remains an essential component of first responder protection. However, most SBA design concepts do not adequately address the unique performance, morphological, and psychological needs of women as first responders. In this review, female-specific designs of ballistic-resistant panels, material systems, and SBA performance testing are critically examined. The paper also explores innovations in shaping and design techniques, including darting, dartless shape construction, modular assembly, and body scanning with CAD integration to create contoured and structurally stable panels with improved coverage, reduced bulk, and greater mobility. In addition, the review addresses broadly used and emerging dry textile fabrics and fiber-reinforced polymers, considering various innovations, such as 3D warp interlock weave, shear thickening fluid (STF) coating, nanomaterials, and smart composites that improve energy dissipation and impact tolerance without sacrificing flexibility. In addition, the paper also examines various emerging ballistic performance testing standards and their revisions to incorporate gender-specific standards and measures their ability to decrease trauma effects and maintain flexibility and practical protection. Finally, it identifies existing challenges and areas of future research, such as optimizing multi-layer systems, addressing fatigue behavior, and improving multi-angle and low-velocity impact performance while providing avenues for future sustainable, adaptive, and performance-optimized body armor. Full article
Show Figures

Figure 1

12 pages, 4459 KB  
Article
Silver Ion-Chelated Waterborne Polyurethane Based Antibacterial Cotton Fabric via Coordination-Driven Immobilization
by Qiang Gao, Yajie Wang, Jianing Wang, Jiahao Sun, Jiqiang Cao, Zengying Liu and Xiang Liu
Coatings 2025, 15(6), 631; https://doi.org/10.3390/coatings15060631 - 24 May 2025
Viewed by 1137
Abstract
This research employed triethylenetetramine as a chelating agent to successfully synthesize a chelating-functional waterborne polyurethane (CWPU) dispersion by adjusting the ratio of hard and soft segments and optimizing the molecular structure through the use of a chain extender. This allowed for the establishment [...] Read more.
This research employed triethylenetetramine as a chelating agent to successfully synthesize a chelating-functional waterborne polyurethane (CWPU) dispersion by adjusting the ratio of hard and soft segments and optimizing the molecular structure through the use of a chain extender. This allowed for the establishment of a stable WPU/Ag composite emulsion system upon the addition of silver nitrate, and during the film formation process, the reducing properties of polyols were employed to in situ reduce Ag+, resulting in the formation of silver nanoparticles (AgNPs). Structural characterization analyses, including FTIR and XRD, verified that the reduced AgNPs were evenly distributed in the WPU matrix, and SEM observations revealed the presence of reduced AgNPs on the film. Further, contact angle and TG tests were performed to explore the impact of AgNPs on the hydrophilicity and thermal stability of the film. By applying WPU/Ag to cotton fabric through a padding finishing technique, the fabric retained a breathability of over 64.7% and mechanical properties exceeding 70.9%. Following 20 standardized washes, the antibacterial efficacy against Escherichia coli and Staphylococcus aureus remained above 99%. Even after undergoing 1200 abrasion tests, the antibacterial efficacy for both bacteria was sustained at over 93%, and the antibacterial rate continued to exceed 99% after a 6 h immersion in hot water. These findings suggest that the composite material possesses outstanding thermal stability, durability, and mechanical characteristics. This research offers a new methodology for the development of textiles that combine both usability and prolonged antibacterial efficacy. Full article
Show Figures

Figure 1

14 pages, 5866 KB  
Article
Core-Sheath Structured Yarn for Biomechanical Sensing in Health Monitoring
by Wenjing Fan, Cheng Li, Bingping Yu, Te Liang, Junrui Li, Dapeng Wei and Keyu Meng
Biomimetics 2025, 10(5), 304; https://doi.org/10.3390/biomimetics10050304 - 9 May 2025
Cited by 1 | Viewed by 1268
Abstract
The rapidly evolving field of functional yarns has garnered substantial research attention due to their exceptional potential in enabling next-generation electronic textiles for wearable health monitoring, human–machine interfaces, and soft robotics. Despite notable advancements, the development of yarn-based strain sensors that simultaneously achieve [...] Read more.
The rapidly evolving field of functional yarns has garnered substantial research attention due to their exceptional potential in enabling next-generation electronic textiles for wearable health monitoring, human–machine interfaces, and soft robotics. Despite notable advancements, the development of yarn-based strain sensors that simultaneously achieve high flexibility, stretchability, superior comfort, extended operational stability, and exceptional electrical performance remains a critical challenge, hindered by material limitations and structural design constraints. Here, we present a bioinspired, hierarchically structured core-sheath yarn sensor (CSSYS) engineered through an efficient dip-coating process, which synergistically integrates the two-dimensional conductive MXene nanosheets and one-dimensional silver nanowires (AgNWs). Furthermore, the sensor is encapsulated using a yarn-based protective layer, which not only preserves its inherent flexibility and wearability but also effectively mitigates oxidative degradation of the sensitive materials, thereby significantly enhancing long-term durability. Drawing inspiration from the natural architecture of plant stems—where the inner core provides structural integrity while a flexible outer sheath ensures adaptive protection—the CSSYS exhibits outstanding mechanical and electrical performance, including an ultralow strain detection limit (0.05%), an ultrahigh gauge factor (up to 744.45), rapid response kinetics (80 ms), a broad sensing range (0–230% strain), and exceptional cyclic stability (>20,000 cycles). These remarkable characteristics enable the CSSYS to precisely capture a broad spectrum of physiological signals, ranging from subtle arterial pulsations and respiratory rhythms to large-scale joint movements, demonstrating its immense potential for next-generation wearable health monitoring systems. Full article
(This article belongs to the Special Issue Bio-Inspired Flexible Sensors)
Show Figures

Graphical abstract

14 pages, 6650 KB  
Article
Development of a Biomechanical Diagnosis and Analysis System Using a Textile Elbow Angle Sensor: Integrating Inverse Dynamics and Multi-Layer Perceptron Techniques
by Sang-Un Kim and Joo-Yong Kim
Processes 2025, 13(3), 748; https://doi.org/10.3390/pr13030748 - 4 Mar 2025
Cited by 4 | Viewed by 1194
Abstract
The recent development of algorithms through artificial intelligence and the ability to measure the human body through soft textile sensors has enabled the provision of meaningful information to the wearer. In this study, a sensor sleeve using a textile elbow angle sensor that [...] Read more.
The recent development of algorithms through artificial intelligence and the ability to measure the human body through soft textile sensors has enabled the provision of meaningful information to the wearer. In this study, a sensor sleeve using a textile elbow angle sensor that can measure the bending and relaxation of the elbow was manufactured and measured. In addition, biomechanical data from Biomechanical of Bodies (BoB)-4, a software capable of inverse dynamics that can optimally calculate the load on human joints and segments during exercise, was collected. A continuous system of resistance angle and angle biomechanical data was designed with an artificial intelligence multilayer perceptron (MLP) algorithm, and the accuracy and output results were checked. Consequently, the accuracy of MLP1 and MLP2 is exceedingly high, at approximately 0.80 and 1.00, respectively. The biomechanical data of the system is comparable to that of BoB, rendering it suitable for providing reliable information to the wearer. Based on this study, it is possible to develop algorithms and systems that can perform biomechanical analysis for various exercise movements in the future. Full article
(This article belongs to the Special Issue Research on Intelligent Fault Diagnosis Based on Neural Network)
Show Figures

Figure 1

21 pages, 9644 KB  
Article
Ballistic Impact Study of an Aramid Fabric by Changing the Projectile Trajectory
by Larisa Titire and Cristian Muntenita
Fibers 2025, 13(1), 8; https://doi.org/10.3390/fib13010008 - 14 Jan 2025
Cited by 3 | Viewed by 2725
Abstract
Personal protective systems widely use aramid textile fabrics, whether in soft or rigid form, to protect against various types of ballistic threats. Ballistic impact refers to a high-velocity impact caused by a thrusting source, often involving a low-mass object. To use these materials [...] Read more.
Personal protective systems widely use aramid textile fabrics, whether in soft or rigid form, to protect against various types of ballistic threats. Ballistic impact refers to a high-velocity impact caused by a thrusting source, often involving a low-mass object. To use these materials effectively in structural applications, it is crucial to have a thorough understanding of their ballistic behavior when subjected to high-velocity impact. Upon contact of the projectile with the ballistic material, complex ballistic penetration processes take place, which require a comprehensive and quantitative examination for a better understanding. This study aims to analyze the damage mechanism of aramid fabric by altering the projectile impact trajectory based on numerical simulations. We aim to obtain a thorough understanding of the behavior of the aramid fabric by performing numerical simulations and examining the penetration process in detail. The obtained results are analyzed based on the von Mises stress distribution (panel and projectile, projectile only, and main wires), projectile deformation, projectile velocity during ballistic impact, and based on photographs obtained during the impact. Full article
Show Figures

Figure 1

10 pages, 2044 KB  
Article
Wearable Surface Electromyography System to Predict Freeze of Gait in Parkinson’s Disease Patients
by Anna Moore, Jinxing Li, Christopher H. Contag, Luke J. Currano, Connor O. Pyles, David A. Hinkle and Vivek Shinde Patil
Sensors 2024, 24(23), 7853; https://doi.org/10.3390/s24237853 - 9 Dec 2024
Cited by 6 | Viewed by 4177
Abstract
Freezing of gait (FOG) is a disabling yet poorly understood paroxysmal gait disorder affecting the vast majority of patients with Parkinson’s disease (PD) as they reach advanced stages of the disorder. Falling is one of the most disabling consequences of a FOG episode; [...] Read more.
Freezing of gait (FOG) is a disabling yet poorly understood paroxysmal gait disorder affecting the vast majority of patients with Parkinson’s disease (PD) as they reach advanced stages of the disorder. Falling is one of the most disabling consequences of a FOG episode; it often results in injury and a future fear of falling, leading to diminished social engagement, a reduction in general fitness, loss of independence, and degradation of overall quality of life. Currently, there is no robust or reliable treatment against FOG in PD. In the absence of reliable and effective treatment for Parkinson’s disease, alleviating the consequences of FOG represents an unmet clinical need, with the first step being reliable FOG prediction. Current methods for FOG prediction and prevention cannot provide real-time readouts and are not sensitive enough to detect changes in walking patterns or balance. To fill this gap, we developed an sEMG system consisting of a soft, wearable garment (pair of shorts and two calf sleeves) embedded with screen-printed electrodes and stretchable traces capable of picking up and recording the electromyography activities from lower limb muscles. Here, we report on the testing of these garments in healthy individuals and in patients with PD FOG. The preliminary testing produced an initial time-to-onset commencement that persisted > 3 s across all patients, resulting in a nearly 3-fold drop in sEMG activity. We believe that these initial studies serve as a solid foundation for further development of smart digital textiles with integrated bio and chemical sensors that will provide AI-enabled, medically oriented data. Full article
(This article belongs to the Section Wearables)
Show Figures

Figure 1

13 pages, 2371 KB  
Article
Deflection and Performance Analysis of Shape Memory Alloy-Driven Fiber–Elastomer Composites with Anisotropic Structure
by Anett Endesfelder, Achyuth Ram Annadata, Aline Iobana Acevedo-Velazquez, Markus Koenigsdorff, Gerald Gerlach, Klaus Röbenack, Chokri Cherif and Martina Zimmermann
Materials 2024, 17(19), 4855; https://doi.org/10.3390/ma17194855 - 2 Oct 2024
Cited by 2 | Viewed by 1700
Abstract
Due to their advantageous characteristics, shape memory alloys (SMAs) are prominent representatives in smart materials. They can be used in application fields such as soft robotics, biomimetics, and medicine. Within this work, a fiber–elastomer composite with integrated SMA wire is developed and investigated. [...] Read more.
Due to their advantageous characteristics, shape memory alloys (SMAs) are prominent representatives in smart materials. They can be used in application fields such as soft robotics, biomimetics, and medicine. Within this work, a fiber–elastomer composite with integrated SMA wire is developed and investigated. Bending and torsion occur when the SMA is activated because of the anisotropic structure of the textile. The metrological challenge in characterizing actuators that perform both bending and torsion lies in the large active deformation of the composite and the associated difficulties in fully imaging and analyzing this with optical measurement methods. In this work, a multi-sensor camera system with up to four pairs of cameras connected in parallel is used. The structure to be characterized is recorded from all sides to evaluate the movement in three-dimensional space. The energy input and the time required for an even deflection of the actuator are investigated experimentally. Here, the activation parameters for the practical energy input required for long life with good deflection, i.e., good efficiency, were analyzed. Different parameters and times are considered to minimize the energy input and, thus, to prevent possible overheating and damage to the wire. Thermography is used to evaluate the heating of the SMA wire at different actuation times over a defined time. Full article
Show Figures

Figure 1

13 pages, 21058 KB  
Article
Color Analysis of Brocade from the 4th to 8th Centuries Driven by Image-Based Matching Network Modeling
by Hui Feng, Xibin Sheng, Lingling Zhang, Yuwan Liu and Bingfei Gu
Appl. Sci. 2024, 14(17), 7802; https://doi.org/10.3390/app14177802 - 3 Sep 2024
Cited by 3 | Viewed by 1963
Abstract
To achieve the color matching rules for the textiles discovered during Silk Road excavations between the 4th and 8th centuries, this research proposed an image-based matching network modeling method. The Silk Road facilitated trade and cultural exchange between the East and West, and [...] Read more.
To achieve the color matching rules for the textiles discovered during Silk Road excavations between the 4th and 8th centuries, this research proposed an image-based matching network modeling method. The Silk Road facilitated trade and cultural exchange between the East and West, and the textiles found along the way depict the development of fabrics in a color scheme with great cultural significance. A total of 165 images with brocade patterns were collected from a book with a detailed description of the Western influences on textiles along the Silk Road. Two different clustering methods, including the K-means clustering method and octree quantization approach, were used to extract the primary and secondary colors. By combining the HSV color space with the PCCS color system, the color distribution was analyzed to discover the features of representative color patterns. The co-occurrence relationship of the auxiliary colors was explored using the Apriori algorithm, and a total of eight association rules were established. The results showed that the K-means clustering algorithm can show a better effect of color classification to obtain three primary colors and nine secondary colors. The matching mechanism with a visualized network model was also proposed, which showed that reddish-yellow tones are the main colors in the brocade patterns, and the light and soft tones separately account for 27% and 20%. Beige and brown are the most common colorways, with a confidence level of 47%. One style of brocade pattern was used to demonstrate different appearances within various color networks, which could be applied to 3D virtual fitting. This image-based matching network modeling approach makes the color matching schemes visible, and can assist fashion design with fabric features influenced by historical and cultural development. Full article
Show Figures

Figure 1

14 pages, 9762 KB  
Article
Design and Evaluation of Smart Textile Actuator with Chain Structure
by Ju-Hee Lee and Min-Woo Han
Materials 2023, 16(16), 5517; https://doi.org/10.3390/ma16165517 - 8 Aug 2023
Cited by 8 | Viewed by 2889
Abstract
Textiles composed of fibers can have their mechanical properties adjusted by changing the arrangement of the fibers, such as strength and flexibility. Particularly, in the case of smart textiles incorporating active materials, various deformations could be created based on fiber patterns that determine [...] Read more.
Textiles composed of fibers can have their mechanical properties adjusted by changing the arrangement of the fibers, such as strength and flexibility. Particularly, in the case of smart textiles incorporating active materials, various deformations could be created based on fiber patterns that determine the directivity of active materials. In this study, we design a smart fiber-based textile actuator with a chain structure and evaluate its actuation characteristics. Smart fiber composed of shape memory alloy (SMA) generates deformation when the electric current is applied, causing the phase transformation of SMA. We fabricated the smart chain column and evaluated its actuating mechanism based on the size of the chain and the number of rows. In addition, a crochet textile actuator was designed using interlooping smart chains and developed into a soft gripper that can grab objects. With experimental verifications, this study provides an investigation of the relationship between the chain actuator’s deformation, actuating force, actuator temperature, and strain. The results of this study are expected to be relevant to textile applications, wearable devices, and other technical fields that require coordination with the human body. Additionally, it is expected that it can be utilized to configure a system capable of flexible operation by combining rigid elements such as batteries and sensors with textiles. Full article
Show Figures

Figure 1

11 pages, 2558 KB  
Article
Measuring the Flex Life of Conductive Yarns in Narrow Fabric
by Paula Veske, Frederick Bossuyt, Filip Thielemans and Jan Vanfleteren
Micromachines 2023, 14(4), 781; https://doi.org/10.3390/mi14040781 - 30 Mar 2023
Cited by 2 | Viewed by 2443
Abstract
Due to constant advancements in materials research, conductive textile-based materials have been used increasingly in textile-based wearables. However, due to the rigidity of electronics or the need for their encapsulation, conductive textile materials, such as conductive yarns, tend to break faster around transition [...] Read more.
Due to constant advancements in materials research, conductive textile-based materials have been used increasingly in textile-based wearables. However, due to the rigidity of electronics or the need for their encapsulation, conductive textile materials, such as conductive yarns, tend to break faster around transition areas than other parts of e-textile systems. Thus, the current work aims to find the limits of two conductive yarns woven into a narrow fabric at the electronics encapsulation transition point. The tests consisted of repeated bending and mechanical stress, and were conducted using a testing machine built from off-the-shelf components. The electronics were encapsulated with an injection-moulded potting compound. In addition to identifying the most reliable conductive yarn and soft–rigid transition materials, the results examined the failure process during the bending tests, including continuous electrical measurements. Full article
Show Figures

Figure 1

7 pages, 4157 KB  
Communication
Dielectric Elastomer Cooperative Microactuator Systems—DECMAS
by Stefan Seelecke, Julian Neu, Sipontina Croce, Jonas Hubertus, Günter Schultes and Gianluca Rizzello
Actuators 2023, 12(4), 141; https://doi.org/10.3390/act12040141 - 27 Mar 2023
Cited by 3 | Viewed by 2515
Abstract
This paper presents results of the first phase of “Dielectric Elastomer Cooperative Microactuator Systems” (DECMAS), a project within the German Research Foundation Priority Program 2206, “Cooperative Multistable Multistage Microactuator Systems” (KOMMMA). The goal is the development of a soft cooperative microactuator system combining [...] Read more.
This paper presents results of the first phase of “Dielectric Elastomer Cooperative Microactuator Systems” (DECMAS), a project within the German Research Foundation Priority Program 2206, “Cooperative Multistable Multistage Microactuator Systems” (KOMMMA). The goal is the development of a soft cooperative microactuator system combining high flexibility with large-stroke/high-frequency actuation and self-sensing capabilities. The softness is due to a completely polymer-based approach using dielectric elastomer membrane structures and a specific silicone bias system designed to achieve large strokes. The approach thus avoids fluidic or pneumatic compo-nents, enabling, e.g., future smart textile applications with cooperative sensing, haptics, and even acoustic features. The paper introduces design concepts and a first soft, single-actuator demonstrator along with experimental characterization, before expanding it to a 3 × 1 system. This system is used to experimentally study coupling effects, supported by finite element and lumped parameter simulations, which represent the basis for future cooperative control methods. Finally, the paper also introduces a new methodology to fabricate metal-based electrodes of sub-micrometer thickness with high membrane-straining capability and extremely low resistance. These electrodes will enable further miniaturization towards future microscale applications. Full article
(This article belongs to the Special Issue Cooperative Microactuator Devices and Systems)
Show Figures

Figure 1

Back to TopTop