Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (11)

Search Parameters:
Keywords = snow surrogate

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 6706 KiB  
Article
Evaluating Autonomous Vehicle Safety Countermeasures in Freeways Under Sun Glare
by Hamed Esmaeeli, Arash Mazaheri, Tahoura Mohammadi Ghohaki and Ciprian Alecsandru
Future Transp. 2025, 5(1), 20; https://doi.org/10.3390/futuretransp5010020 - 14 Feb 2025
Cited by 1 | Viewed by 1239
Abstract
The use of traffic simulation to analyze traffic safety and performance has become common in transportation engineering. Microsimulation methods are increasingly used to analyze driving performance for different road geometries and environmental elements. Drivers’ perception has an important impact on driving performance factors [...] Read more.
The use of traffic simulation to analyze traffic safety and performance has become common in transportation engineering. Microsimulation methods are increasingly used to analyze driving performance for different road geometries and environmental elements. Drivers’ perception has an important impact on driving performance factors contributing to traffic safety on transportation facilities (highways, arterials, intersections, etc.). Impaired vision leads to failure in drivers’ perception and making right decisions. Various studies investigated the impact of environmental elements (fog, rain, snow, etc.) on driving performance. However, there is limited research examining the potentially detrimental effects on driving capabilities due to differing exposure to natural light brightness, in particular sun exposure. Autonomous vehicles (AVs) showed a significant impact enhancing traffic capacity and improving safety margins in car-following models. AVs may also enhance and/or complement human driving under deteriorated driving conditions such as sun glare. This study uses a calibrated traffic simulation and surrogate safety assessment model to improve traffic operations and safety performance under impaired visibility using different types of autonomous vehicles. A combination of visibility reduction, traffic flow characteristics, and autonomy levels of AVs was simulated and assessed in terms of the number of conflicts, severity level, and traffic operations. The simulation analysis results used to reveal the contribution of conflicts to the risk of crashes varied based on the influence of autonomy level on safe driving during sun glare exposure. The outcome of this study indicates the benefits of using different levels of AVs as a solution to driving under vision impairment situations that researchers, traffic engineers, and policy makers can use to enhance traffic operation and road safety in urban areas. Full article
Show Figures

Figure 1

13 pages, 5647 KiB  
Article
A Reliable Medium for Monitoring Atmospheric Deposition near Emission Sources by Using Snow from Agricultural Areas
by Jiayang Liu, Zaijin Sun, Wenkai Lei, Jingwen Xu, Qian Sun, Zhicheng Shen, Yixuan Lyu, Huading Shi, Ying Zhou, Lan Zhang, Zefeng Wu and Yuepeng Pan
Atmosphere 2025, 16(1), 26; https://doi.org/10.3390/atmos16010026 - 29 Dec 2024
Viewed by 776
Abstract
Atmospheric deposition is an important source of heavy metal in soil and the use of dust collection cylinders is a traditional monitoring method. This method has limitations in agricultural areas because polluted soil particles may become resuspended and eventually deposited into these cylinders, [...] Read more.
Atmospheric deposition is an important source of heavy metal in soil and the use of dust collection cylinders is a traditional monitoring method. This method has limitations in agricultural areas because polluted soil particles may become resuspended and eventually deposited into these cylinders, leading to overestimates in the amount of atmospheric deposition in soil. To address this concern, we propose that frequent snowfall can help suppress local soil dust resuspension and that fresh snow can serve as an efficient surrogate surface when collecting atmospheric deposition samples. To investigate the rationality of this method, 52 snow samples were collected from sites surrounding smelting plants in Anyang, an industrial region of North China. The results revealed that the concentration of cadmium in the melted snow ranged between 0.03 and 41.09 μg/L, with mean values three times higher around the industrial sites (5.31 μg/L) than background farmlands (1.54 μg/L). In addition, the cadmium concentration in the snow from sites surrounding the factories was higher in the north than in the south because of prevailing winds blowing from the southwest. Moreover, snow samples from sites with high concentrations of cadmium and sulfate can be categorized into different groups via the clustering method, conforming to the spatial distribution of particulate matter emissions and sulfur dioxide satellite column concentrations. Finally, a positive correlation was found between the cadmium content in the snow and the production capacity (R2 = 0.90, p < 0.05) and total permitted emissions (R2 = 0.69, p > 0.05) of the nearby factories. These findings demonstrate that snow is a reliable medium for documenting atmospheric dry deposition associated with specific industrial emissions. Full article
(This article belongs to the Section Biosphere/Hydrosphere/Land–Atmosphere Interactions)
Show Figures

Figure 1

23 pages, 4842 KiB  
Article
Evaluation of Snowboarding Helmets in Mitigation of the Biomechanical Responses of Head Surrogate
by Atul Harmukh and Shailesh G. Ganpule
Appl. Sci. 2024, 14(23), 11460; https://doi.org/10.3390/app142311460 - 9 Dec 2024
Cited by 1 | Viewed by 1280
Abstract
Traumatic brain injury (TBI) during snowboarding sports is a major concern. A robust evaluation of existing snowboarding helmets is desired. Head kinematics (i.e., linear acceleration, angular velocity, angular acceleration) and associated brain responses (brain pressure, equivalent (von Mises) stress, and maximum principal strain) [...] Read more.
Traumatic brain injury (TBI) during snowboarding sports is a major concern. A robust evaluation of existing snowboarding helmets is desired. Head kinematics (i.e., linear acceleration, angular velocity, angular acceleration) and associated brain responses (brain pressure, equivalent (von Mises) stress, and maximum principal strain) of the head are a predominant cause of TBI or concussion. The conventional snowboarding helmet, which mitigates linear acceleration, is typically used in snow sports. However, the role of conventional snowboarding helmets in mitigating angular head kinematics is marginal or insignificant. In recent years, new anti-rotational technologies (e.g., MIPS, WaveCel) have been developed that seek to reduce angular kinematics (i.e., angular velocity, angular acceleration). However, investigations regarding the performance of snowboarding helmets in terms of the mitigation of head kinematics and brain responses are either extremely limited or not available. Toward this end, we have evaluated the performance of snowboarding helmets (conventional and anti-rotational technologies) against blunt impact. We also evaluated the performance of newly developed low-cost, silica-based anti-rotational pads by integrating them with conventional helmets. Helmets were mounted on a head surrogate–Hybrid III neck assembly. The head surrogate consisted of skin, skull, dura mater, and brain. The geometry of the head surrogate was based on the GHBMC head model. Substructures of the head surrogate was manufactured using additive manufacturing and/or molding. A linear impactor system was used to simulate/recreate snowfield hazards (e.g., tree stump, rock, pole) loading. Following the ASTM F2040 standard, an impact velocity of 4.6 ± 0.2 m/s was used. The head kinematics (i.e., linear acceleration, angular velocity, angular acceleration) and brain simulant pressures were measured in the head surrogate. Further, using the concurrent simulation, the brain simulant responses (i.e., pressure, von Mises stress, and maximum principal strain) were computed. The front and side orientations were considered. Our results showed that the helmets with anti-rotation technologies (i.e., MIPS, WaveCel) significantly reduced the angular kinematics and brain responses compared to the conventional helmet. Further, the performance of the silica pad-based anti-rotational helmet was comparable to the existing anti-rotational helmets. Lastly, the effect of a comfort liner on head kinematics was also investigated. The comfort liner further improved the performance of anti-rotational helmets. Overall, these results provide important data and novel insights regarding the performance of various snowboarding helmets. These data have utility in the design and development of futuristic snowboarding helmets and safety protocols. Full article
Show Figures

Figure 1

10 pages, 2726 KiB  
Article
Perlite Has Similar Diffusion Properties for Oxygen and Carbon Dioxide to Snow: Implications for Avalanche Safety Equipment Testing and Breathing Studies
by Simon Walzel, Martin Rozanek and Karel Roubik
Appl. Sci. 2023, 13(23), 12569; https://doi.org/10.3390/app132312569 - 22 Nov 2023
Viewed by 1394
Abstract
On average, one hundred people die each year under avalanche snow. Despite extensive global research on gas exchange in buried avalanche victims, it remains unclear how the diffusion of respiratory gases affects survival under avalanche snow. This study aims to determine how oxygen [...] Read more.
On average, one hundred people die each year under avalanche snow. Despite extensive global research on gas exchange in buried avalanche victims, it remains unclear how the diffusion of respiratory gases affects survival under avalanche snow. This study aims to determine how oxygen and carbon dioxide diffuse through snow, as well as through wet and dry perlite, which may serve as a surrogate for avalanche snow. A custom-made apparatus to study the diffusion of respiratory gases consisted of a plastic cylinder (1200 mm long, ID 300 mm) with 13 gas sampling needles evenly spaced along the axis of the cylinder filled with the tested material. Following 60 min of free diffusion, gas samples were analyzed using a vital signs monitor with a module for respiratory gas analysis (E-CAiOVX, Datex-Ohmeda, GE Healthcare, Chicago, IL, USA). A combination of 16% oxygen, 5% carbon dioxide, and 79% nitrogen was used. The rates of diffusion for both respiratory gases were comparable in snow and both forms of perlite. Oxygen propagated faster than carbon dioxide. Due to similar diffusion characteristics to snow, perlite possesses the potential to stand in as an effective substitute for soft snow for the study of respiratory dynamics, for conducting breathing experiments, and for testing avalanche safety equipment. Full article
(This article belongs to the Section Materials Science and Engineering)
Show Figures

Figure 1

12 pages, 1970 KiB  
Article
The Light Absorption Heating Method for Measurement of Light Absorption by Particles Collected on Filters
by Carl G. Schmitt, Martin Schnaiter, Claudia Linke and W. Patrick Arnott
Atmosphere 2022, 13(5), 824; https://doi.org/10.3390/atmos13050824 - 18 May 2022
Cited by 2 | Viewed by 3265
Abstract
A new instrument for the quantification of light absorption by particles collected on filters has been developed to address long standing environmental questions about light-absorbing particles in air, water, and on snow and ice. The Light Absorption Heating Method (LAHM) uses temperature changes [...] Read more.
A new instrument for the quantification of light absorption by particles collected on filters has been developed to address long standing environmental questions about light-absorbing particles in air, water, and on snow and ice. The Light Absorption Heating Method (LAHM) uses temperature changes when filters are exposed to light to quantify absorption. Through the use of calibration standards, the observed temperature response of unknown materials can be related to the absorption cross section of the substance collected on the filter. Here, we present a detailed description of the instrument and calibration. The results of the calibration tests using a common surrogate for black carbon, Fullerene soot, show that the instrument provides stable results even when exposed to adverse laboratory conditions, and that there is little drift in the instrument over longer periods of time. Calibration studies using Fullerene soot suspended in water, airborne propane soot, as well as atmospheric particulates show consistent results for absorption cross section when using accepted values for the mass absorption cross section of the soot and when compared to results from a 3-wavelength photoacoustic instrument. While filter sampling cannot provide the time resolution of other instrumentation, the LAHM instrument fills a niche where time averaging is reasonable and high-cost instrumentation is not available. The optimal range of absorption cross sections for LAHM is from 0.1 to 5.0 cm2 (~1.0–50.0 µg soot) for 25 mm filters and 0.4 to 20 cm2 (4.0–200.0 µg soot) for 47 mm filters, with reduced sensitivity to higher values. Full article
(This article belongs to the Special Issue Light-Absorbing Particles in Snow and Ice)
Show Figures

Figure 1

19 pages, 40305 KiB  
Article
Quantitative Investigation of Radiometric Interactions between Snowfall, Snow Cover, and Cloud Liquid Water over Land
by Zeinab Takbiri, Lisa Milani, Clement Guilloteau and Efi Foufoula-Georgiou
Remote Sens. 2021, 13(13), 2641; https://doi.org/10.3390/rs13132641 - 5 Jul 2021
Cited by 5 | Viewed by 3422
Abstract
Falling snow alters its own microwave signatures when it begins to accumulate on the ground, making retrieval of snowfall challenging. This paper investigates the effects of snow-cover depth and cloud liquid water content on microwave signatures of terrestrial snowfall using reanalysis data and [...] Read more.
Falling snow alters its own microwave signatures when it begins to accumulate on the ground, making retrieval of snowfall challenging. This paper investigates the effects of snow-cover depth and cloud liquid water content on microwave signatures of terrestrial snowfall using reanalysis data and multi-annual observations by the Global Precipitation Measurement (GPM) core satellite with particular emphasis on the 89 and 166 GHz channels. It is found that over shallow snow cover (snow water equivalent (SWE) 100 kg m2) and low values of cloud liquid water path (LWP 100–150 g m2), the scattering of light snowfall (intensities 0.5 mm h1) is detectable only at frequency 166 GHz, while for higher snowfall rates, the signal can also be detected at 89 GHz. However, when SWE exceeds 200 kg m2 and the LWP is greater than 100–150 g m2, the emission from the increased liquid water content in snowing clouds becomes the only surrogate microwave signal of snowfall that is stronger at frequency 89 than 166 GHz. The results also reveal that over high latitudes above 60°N where the SWE is greater than 200 kg m2 and LWP is lower than 100–150 g m2, the snowfall microwave signal could not be detected with GPM without considering a priori data about SWE and LWP. Our findings provide quantitative insights for improving retrieval of snowfall in particular over snow-covered terrain. Full article
(This article belongs to the Special Issue Remote Sensing of Precipitation at the Mid- to High-Latitudes)
Show Figures

Graphical abstract

20 pages, 3096 KiB  
Article
Influence of Pavement Structure, Traffic, and Weather on Urban Flexible Pavement Deterioration
by David Llopis-Castelló, Tatiana García-Segura, Laura Montalbán-Domingo, Amalia Sanz-Benlloch and Eugenio Pellicer
Sustainability 2020, 12(22), 9717; https://doi.org/10.3390/su12229717 - 21 Nov 2020
Cited by 63 | Viewed by 7696
Abstract
Various studies have been recently conducted to predict pavement condition, but most of them were developed in a certain region where climate conditions were kept constant and/or the research focused on specific road distresses using single parameters. Thus, this research aimed at determining [...] Read more.
Various studies have been recently conducted to predict pavement condition, but most of them were developed in a certain region where climate conditions were kept constant and/or the research focused on specific road distresses using single parameters. Thus, this research aimed at determining the influence of pavement structure, traffic demand, and climate factors on urban flexible pavement condition over time. To do this, the Structural Number was used as an indicator of the pavement capacity, various traffic and climate variables were defined, and the Pavement Condition Index was used as a surrogate measure of pavement condition. The analysis was focused on the calibration of regression models by using the K-Fold Cross Validation technique. As a result, for a given pavement age, pavement condition worsens as the Equivalent Single Axle Load and the Annual Average Height of Snow increased. Likewise, a cold Annual Average Temperature (5–15 °C) and a large Annual Average Range of Temperature (20–30 °C) encourage a more aggressive pavement deterioration process. By contrast, warm climates with low temperature variations, which are associated with low precipitation, lead to a longer pavement service life. Additionally, a new classification of climate zones was proposed on the basis of the weather influence on pavement deterioration. Full article
(This article belongs to the Special Issue Road Traffic and Pavement Engineering toward Sustainable Development)
Show Figures

Figure 1

11 pages, 1570 KiB  
Letter
Evaluation of Methods for Mapping the Snow Cover Area at High Spatio-Temporal Resolution with VENμS
by Mohamed Wassim Baba, Simon Gascoin, Olivier Hagolle, Elsa Bourgeois, Camille Desjardins and Gérard Dedieu
Remote Sens. 2020, 12(18), 3058; https://doi.org/10.3390/rs12183058 - 18 Sep 2020
Cited by 8 | Viewed by 3632
Abstract
The VENμS mission launched in 2017 provides multispectral optical images of the land surface with a 2-day revisit time at 5 m resolution for over 100 selected sites. A few sites are subject to seasonal snow accumulation, which gives the opportunity [...] Read more.
The VENμS mission launched in 2017 provides multispectral optical images of the land surface with a 2-day revisit time at 5 m resolution for over 100 selected sites. A few sites are subject to seasonal snow accumulation, which gives the opportunity to monitor the variations of the snow cover area at unprecedented spatial and temporal resolution. However, the 12 spectral bands of VENμS only cover the visible and near-infrared region of the spectra while existing snow detection algorithms typically make use of a shortwave infrared band to determine the presence of snow. Here, we evaluate two alternative snow detection algorithms. The first one is based on a normalized difference index between the near-infrared and the visible bands, and the second one is based on a machine learning approach using the Theia Sentinel-2 snow products as training data. Both approaches are tested using Sentinel-2 data (as surrogate of VENμS data) as well as actual VENμS in the Pyrenees and the High Atlas. The results confirm the possibility of retrieving snow cover without SWIR with a slight loss in performance. As expected, the results confirm that the machine learning method provides better results than the index-based approach (e.g., an RMSE equal to the learning method 1.35% and for the index-based method 10.80% in the High Atlas.). The improvement is more evident in the Pyrenees probably due to the presence of vegetation which complicates the spectral signature of the snow cover area in VENμS images. Full article
(This article belongs to the Special Issue VENµS Image Processing Techniques and Applications)
Show Figures

Graphical abstract

5 pages, 489 KiB  
Proceeding Paper
Water Ski Binding Release Characteristics in Forward Lean
by Bethany L. Suderman, Alexander Sklar, Lenka L. Stepan and Irving S. Scher
Proceedings 2020, 49(1), 76; https://doi.org/10.3390/proceedings2020049076 - 15 Jun 2020
Viewed by 2051
Abstract
To reduce the risk of injury, waterski bindings should secure the foot to the ski when the likelihood of lower leg injury is low (retention) and free the foot when the likelihood of injury is high (release). Unlike snow skiing, there are no [...] Read more.
To reduce the risk of injury, waterski bindings should secure the foot to the ski when the likelihood of lower leg injury is low (retention) and free the foot when the likelihood of injury is high (release). Unlike snow skiing, there are no standards dictating the release of waterski bindings. Testing was completed to determine release torques in forward lean of three commercially available waterski boot-binding systems. Each binding was mounted to a 66-inch waterski and the boot was fitted on a lower leg surrogate with a torque transducer. A forward-lean bending moment was applied quasi-statically about the transverse axis of the ski until the binding released the boot. For the three boot-binding systems, the range of release torques were 126 to 219, 50 Nm to 141, and 63 to 127 Nm. Full article
Show Figures

Figure 1

19 pages, 2352 KiB  
Article
Restoration Treatments Improve Overstory Tree Resistance Attributes and Growth in a Ponderosa Pine/Douglas-Fir Forest
by Justin S. Crotteau and Christopher R. Keyes
Forests 2020, 11(5), 574; https://doi.org/10.3390/f11050574 - 21 May 2020
Cited by 8 | Viewed by 2763
Abstract
Research Highlights: This study provides much needed insight into the development of resistance to disturbance and growth dynamics of overstory trees in response to restoration-based fuel reduction, and will be useful to scientists and managers attempting to better grasp the relative merits of [...] Read more.
Research Highlights: This study provides much needed insight into the development of resistance to disturbance and growth dynamics of overstory trees in response to restoration-based fuel reduction, and will be useful to scientists and managers attempting to better grasp the relative merits of restoration treatment types. Background and Objectives: Restoration-based fuel reduction treatments are common in dry, fire-prone forests of the western United States. The primary objective of such treatments is to immediately reduce a stand’s crown fire hazard. However, the impact of these treatments on residual trees is relevant to assess their longevity and resistance to future disturbances. In this study, we evaluate the effects of restoration on retained overstory ponderosa pine (Pinus ponderosa Lawson & C. Lawson) and Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) trees in western Montana, where treatments were experimentally implemented 13 years prior as part of the national Fire and Fire Surrogate study. Materials and Methods: We examined tree attributes in response to the following replicated treatments: thin-only, burn-only, thin + burn, and a no-action control. We analyzed three different tree attributes that confer resistance to common disturbances: height-to-diameter ratio (resistance to wind), bark thickness (resistance to surface fire), and growth efficiency (resistance to bark beetles). Results: Our models suggest that thinning (with or without burning) alters tree attributes relative to the control in a manner that may increase tree resistance to wind and snow breakage, surface fire, and biotic agents such as bark beetles. Further analysis of annual growth of ponderosa pine and Douglas-fir varied by treatment type: thinning-based restoration (thin-only and thin + burn) increased diameter growth for both species, crown length and width in ponderosa pine, and crown length in Douglas-fir relative to unthinned treatments. Burning (burn-only and thin + burn) did not significantly affect tree growth relative to unburned treatments. Conclusions: While low-severity prescribed burning treatments are often used for restoration and have various ecosystem benefits, this study demonstrates that thinning (alone or in addition to burning) produces more measureable, beneficial results to overstory tree disturbance resistance metrics and growth. Full article
(This article belongs to the Section Forest Ecology and Management)
Show Figures

Figure 1

19 pages, 7531 KiB  
Article
Observations of a Coniferous Forest at 9.6 and 17.2 GHz: Implications for SWE Retrievals
by Aaron Thompson and Richard Kelly
Remote Sens. 2019, 11(1), 6; https://doi.org/10.3390/rs11010006 - 20 Dec 2018
Cited by 7 | Viewed by 3367
Abstract
UWScat, a ground-based Ku- and X-band scatterometer, was used to compare forested and non-forested landscapes in a terrestrial snow accumulation environment as part of the NASA SnowEx17 field campaign. Field observations from Trail Valley Creek, Northwest Territories; Tobermory, Ontario; and the Canadian Snow [...] Read more.
UWScat, a ground-based Ku- and X-band scatterometer, was used to compare forested and non-forested landscapes in a terrestrial snow accumulation environment as part of the NASA SnowEx17 field campaign. Field observations from Trail Valley Creek, Northwest Territories; Tobermory, Ontario; and the Canadian Snow and Ice Experiment (CASIX) campaign in Churchill, Manitoba, were also included. Limited sensitivity to snow was observed at 9.6 GHz, while the forest canopy attenuated the signal from sub-canopy snow at 17.2 GHz. Forested landscapes were distinguishable using the volume scattering component of the Freeman–Durden three-component decomposition model by applying a threshold in which values ≥50% indicated forested landscape. It is suggested that the volume scattering component of the decomposition can be used in current snow water equivalent (SWE) retrieval algorithms in place of the forest cover fraction (FF), which is an optical surrogate for microwave scattering and relies on ancillary data. The performance of the volume scattering component of the decomposition was similar to that of FF when used in a retrieval scheme. The primary benefit of this method is that it provides a current, real-time estimate of the forest state, it automatically accounts for the incidence angle and canopy structure, and it provides coincident information on the forest canopy without the use of ancillary data or modeling, which is especially important in remote regions. Additionally, it enables the estimation of forest canopy transmissivity without ancillary data. This study also demonstrates the use of these frequencies in a forest canopy application, and the use of the Freeman–Durden three-component decomposition on scatterometer observations in a terrestrial snow accumulation environment. Full article
(This article belongs to the Special Issue Data Fusion for Improved Forest Inventories and Planning)
Show Figures

Graphical abstract

Back to TopTop