Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (10)

Search Parameters:
Keywords = smoothed dissipative particle dynamics

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 14479 KiB  
Article
Exploring Dissipation Terms in the SPH Momentum Equation for Wave Breaking on a Vertical Pile
by Corrado Altomare, Yuzhu Pearl Li and Angelantonio Tafuni
J. Mar. Sci. Eng. 2025, 13(6), 1005; https://doi.org/10.3390/jmse13061005 - 22 May 2025
Viewed by 569
Abstract
Accurate simulation of fluid flow around vertical cylinders is essential in numerous engineering applications, particularly in the design and assessment of offshore structures, bridge piers, and coastal defenses. This study employs the smoothed particle hydrodynamics (SPH) method to investigate the complex dynamics of [...] Read more.
Accurate simulation of fluid flow around vertical cylinders is essential in numerous engineering applications, particularly in the design and assessment of offshore structures, bridge piers, and coastal defenses. This study employs the smoothed particle hydrodynamics (SPH) method to investigate the complex dynamics of breaking waves impacting a vertical pile, a scenario marked by strong free-surface deformation, turbulence, and the wave–structure interaction. The mesh-free nature of SPH makes it especially suitable for capturing such highly nonlinear and transient hydrodynamic phenomena. The primary objective of the research is to evaluate the performance of different SPH dissipation schemes, namely artificial viscosity, laminar viscosity, and sub-particle scale (SPS) turbulence models, in reproducing key hydrodynamic features. Numerical results obtained with each scheme are systematically compared against experimental data to assess their relative accuracy and physical fidelity. Specifically, the laminar + SPS model reproduced the peak horizontal wave force within 5% of experimental values, while the artificial viscosity model overestimated the force by up to 25%. The predicted wave impact occurred at a non-dimensional time of t/T0.28, closely matching the experimental observation. Furthermore, force and elevation predictions with the laminar + SPS model remained consistent across three particle spacings (dp=0.05m,0.065m,0.076m), demonstrating good numerical convergence. This work provides critical insights into the suitability of SPH for modeling wave–structure interactions under breaking wave conditions and highlights the importance of proper dissipation modeling in achieving realistic simulations. The performance of the dissipation schemes remained robust across three tested particle spacings, confirming consistency in force and elevation predictions. Additionally, it underscores the sensitivity of SPH predictions to spatial resolution, highlighting the need for careful calibration to ensure robust and reliable outcomes. The study contributes to advancing SPH as a practical tool for engineering design and hazard assessment in coastal and offshore environments. Full article
Show Figures

Figure 1

21 pages, 5158 KiB  
Article
Influence of Chinstrap Stiffness on Cerebrospinal Fluid Dynamics and Brain Stress in Helmet Impacts
by Jonathan Mayer, Daniel Nasef, Molly Bekbolatova, Hallie Zwibel and Milan Toma
Appl. Sci. 2025, 15(10), 5459; https://doi.org/10.3390/app15105459 - 13 May 2025
Viewed by 497
Abstract
This study explores the influence of chinstrap stiffness in baseball helmets on brain stress distribution during high-velocity impacts through a computational biomechanical model integrating neuroanatomical structures and helmet components. Using a framework that combines finite element analysis and smoothed-particle hydrodynamics, this research evaluates [...] Read more.
This study explores the influence of chinstrap stiffness in baseball helmets on brain stress distribution during high-velocity impacts through a computational biomechanical model integrating neuroanatomical structures and helmet components. Using a framework that combines finite element analysis and smoothed-particle hydrodynamics, this research evaluates fluid–structure interactions between cerebrospinal fluid, brain tissue, and six chinstrap configurations ranging from highly flexible to non-stretchable. The results reveal a critical trade-off: highly flexible straps reduce intracranial stress by dissipating energy through viscoelastic deformation but compromise helmet stability, while non-stretchable designs transmit undampened forces directly to the skull base, amplifying stress in vulnerable neurovascular regions. Intermediate stiffness configurations introduce a hazardous instability regime, where partial decoupling between the helmet and mandible causes lateral sliding of the chin guard, concentrating stresses at bony interfaces. The study identifies a nonlinear relationship between material rigidity and neuroprotection, emphasizing that optimal chinstrap design must balance elasticity to absorb impact energy with sufficient rigidity to maintain alignment and prevent stress redirection. Intermediate stiffness thresholds, despite partial energy absorption, paradoxically heighten risks due to incomplete coupling and dynamic instabilities. These findings challenge conventional helmet design paradigms, advocating for material engineering strategies that prioritize energy dissipation pathways while avoiding detrimental intermediate stiffness ranges. The insights advance concussion mitigation by refining chinstrap performance criteria to address both direct force transmission and instability-mediated injury mechanisms. Full article
(This article belongs to the Special Issue Advances in Fluid Mechanics Analysis)
Show Figures

Figure 1

20 pages, 16673 KiB  
Article
Smoothed Particle Hydrodynamics-Based Study of 3D Confined Microflows
by Efstathios Chatzoglou, Antonios Liakopoulos and Filippos Sofos
Fluids 2023, 8(5), 137; https://doi.org/10.3390/fluids8050137 - 22 Apr 2023
Cited by 1 | Viewed by 2273
Abstract
In this study, we investigate the performance of the smoothed particle hydrodynamics (SPH) method regarding the computation of confined flows in microchannels. Modeling and numerical simulation with SPH involve the representation of flowing matter as distinct mass points, leading to particle discretization of [...] Read more.
In this study, we investigate the performance of the smoothed particle hydrodynamics (SPH) method regarding the computation of confined flows in microchannels. Modeling and numerical simulation with SPH involve the representation of flowing matter as distinct mass points, leading to particle discretization of the Navier–Stokes equations. The computational methodology exhibits similarities with other well-established particle methods, such as molecular dynamics (MD), dissipative particle dynamics (DPD), and smooth dissipative particle dynamics (SDPD). SPH has been extensively tested in the simulation of free-surface flows. However, studies on the performance of the method in internal flow computations are limited. In this work, we study flows in microchannels of variable cross-sections with a weakly compressible SPH formulation. After preliminary studies of flows in straight constant cross-section ducts, we focus on channels with sudden expansion and/or contraction. Flow models based on periodic or various inlet/outlet boundary conditions and their implementations are discussed in the context of 2D and 3D simulations. Numerical experiments are conducted to evaluate the accuracy of the method in terms of flowrate, velocity profiles, and wall shear stress. The relation between f and Re for constant cross-section channels is computed with excellent accuracy. SPH captured the flow characteristics and achieved very good accuracy. Compressibility effects due to the weakly compressible smoothed particle hydrodynamics (WCSPH) formulation are negligible for the flows considered. Several typical difficulties and pitfalls in the application of the SPH method in closed conduits are highlighted as well as some of the immediate needs for the method’s improvement. Full article
Show Figures

Figure 1

31 pages, 31657 KiB  
Article
Numerical Calculation of Slosh Dissipation
by Leon Cillie Malan, Chiara Pilloton, Andrea Colagrossi and Arnaud George Malan
Appl. Sci. 2022, 12(23), 12390; https://doi.org/10.3390/app122312390 - 3 Dec 2022
Cited by 7 | Viewed by 2440
Abstract
As part of the Sloshing Wing Dynamics H2020 EU project, an experimental campaign was conducted to study slosh-induced damping in a vertically excited tank filled with liquid water or oil and air. In this work, we simulate these experiments using two numerical approaches. [...] Read more.
As part of the Sloshing Wing Dynamics H2020 EU project, an experimental campaign was conducted to study slosh-induced damping in a vertically excited tank filled with liquid water or oil and air. In this work, we simulate these experiments using two numerical approaches. First, a single-phase, weakly compressible liquid model is used, and the gas flow (air) is not modeled. For this approach, a proven Smoothed Particle Hydrodynamics (SPH) model is used. In the second approach, both phases are simulated with an incompressible liquid and weakly compressible gas model via a Finite Volume Method (FVM) using Volume-of-Fluid (VOF) to track the liquid phase. In both approaches, the energy distribution of the flow is calculated over time in two- and three-dimensional simulations. It is found that there is reasonable agreement on the energy dissipation evolution between the methods. Both approaches show converging results in 2D simulations, although the SPH simulations seem to have a faster convergence rate. In general, the SPH results tend to overpredict the total dissipation compared to the experiment, while the finite volume 2D results underpredict it. Time histories of the center of mass positions are also compared. The SPH results show a much larger vertical center of mass motion compared to the FVM results, which is more pronounced for the high Reynolds number (water) case, probably linked to the absence of the air phase. On the other hand, the limited center of mass motion of the FVM could be linked to the need for higher spatial resolutions in order to resolve the complex gas–liquid interactions, particularly in 3D. Full article
(This article belongs to the Special Issue Liquid Slosh Damping: Experimental and Numerical Developments)
Show Figures

Figure 1

12 pages, 12309 KiB  
Article
Anti-Clogging Performance Optimization for Shunt-Hedging Drip Irrigation Emitters Based on Water–Sand Motion Characteristics
by Cheng Qin, Jinzhu Zhang, Zhenhua Wang, Desheng Lyu, Ningning Liu, Shaobo Xing and Fei Wang
Water 2022, 14(23), 3901; https://doi.org/10.3390/w14233901 - 30 Nov 2022
Cited by 8 | Viewed by 2395
Abstract
To improve the irrigation quality and anti-clogging performance of the emitter, it is necessary to design and optimize its flow channel structure. The shunt-hedging drip irrigation emitter (SHDIE) flow channel is a new type of flow channel. Using computational fluid dynamics, by setting [...] Read more.
To improve the irrigation quality and anti-clogging performance of the emitter, it is necessary to design and optimize its flow channel structure. The shunt-hedging drip irrigation emitter (SHDIE) flow channel is a new type of flow channel. Using computational fluid dynamics, by setting different conditions (such as particle size and injection position), the motion trajectory of sand particles and flow field distribution characteristics of the shunt-hedging flow channel were simulated. According to the simulation results, a new anti-clogging structural optimization scheme was proposed, and physical experiments verified its feasibility. The results showed that the flow index of the original flow channel (SHDIE1) and optimized flow channel (SHDIE2) were 0.479 and 0.486, respectively, which mainly relied on the shunting and hedging of water flow to energy dissipation. For sand particles with diameters of 0.05, 0.10, and 0.15 mm, the average values of the velocity amplitude ratio, η, were 0.9998, 0.9994, and 0.9991, respectively; the average values of the velocity phase difference, β, were −0.143°, −0.320°, and −0.409°, respectively. A larger sand particle diameter led to worse followability and a higher risk of blocking the channel. When the sand particles collided with the sensitive region of the flow channel, their movement direction would suddenly change, entering the vortex area. After colliding with the sensitive region of edge A, the maximum probability of sand particles entering the vortex area was increased to 87.5%, and then they stayed in the vortex area under the effect of the sensitive regions of edges B and C. After the sensitive regions were removed, the motion trajectories of sand particles became regular and smooth. The optimized flow channel’s (SHDIE2) anti-clogging performance was greatly improved by 60%, with a 1.46% loss of hydraulic performance. This study can provide theoretical support for designing the high anti-clogging emitter. Full article
Show Figures

Figure 1

25 pages, 14719 KiB  
Article
Two-Phase Smoothed Particle Hydrodynamics Modelling of Hydrodynamic-Aerodynamic and Wave-Structure Interaction
by Zhenyu Ouyang and Boo Cheong Khoo
Energies 2022, 15(9), 3251; https://doi.org/10.3390/en15093251 - 28 Apr 2022
Cited by 2 | Viewed by 2444
Abstract
A two-phase (air and water) smoothed particle hydrodynamics (SPH) method is employed to study the hydrodynamic-aerodynamic and wave interaction with fixed and floating structures in a wave basin. The method is first verified for a classical two-phase dam-breaking. A mirror-open boundary is implemented [...] Read more.
A two-phase (air and water) smoothed particle hydrodynamics (SPH) method is employed to study the hydrodynamic-aerodynamic and wave interaction with fixed and floating structures in a wave basin. The method is first verified for a classical two-phase dam-breaking. A mirror-open boundary is implemented at the top and left sides of a two-phase wave basin with a piston to generate a second-order regular wave. It is observed that, compared to the single-phase simulation, the two-phase one obtains a smoother water surface and prevents the non-physical water splash when interacting with the sloped dissipative beach. This wave basin is also used to investigate wave-structure problems such as wave interaction with a rigid cantilever beam fixed to the basin bottom and downstream of the wave-maker mechanism and the dynamics of a single floating box and two floating boxes in the waves. A typical wave-structure interaction period is captured and described using pressure contours and velocity vectors at three selected instants for the wave-rigid cantilever beam case. With the increase of the structure’s height, the wave height after the structure decreases, but no evident variation is found when changing its thickness. Besides the hydrodynamics interaction, a periodical collision is observed between the two floating boxes on the wave surface. Full article
Show Figures

Figure 1

19 pages, 11368 KiB  
Article
Two-Phase Gas and Dust Free Expansion: Three-Dimensional Benchmark Problem for CFD Codes
by Olga P. Stoyanovskaya, Vitaliy V. Grigoryev, Anastasiya N. Suslenkova, Maxim N. Davydov and Nikolay V. Snytnikov
Fluids 2022, 7(2), 51; https://doi.org/10.3390/fluids7020051 - 24 Jan 2022
Cited by 3 | Viewed by 3039
Abstract
In the computational mechanics of multiphase dispersed flows, there is an issue of computing the interaction between phases in a mixture of a carrier fluid and dispersed inclusions. The problem is that an accurate dynamics simulation of a mixture of gas and finely [...] Read more.
In the computational mechanics of multiphase dispersed flows, there is an issue of computing the interaction between phases in a mixture of a carrier fluid and dispersed inclusions. The problem is that an accurate dynamics simulation of a mixture of gas and finely dispersed solids with intense interphase interaction requires much more computational power compared to pure gas or a mixture with moderate interaction between phases. To tackle this problem, effective numerical methods are being searched for to ensure adequate computational cost, accuracy, and stability of the results at an arbitrary intensity of momentum and energy exchange between phases. Thus, to assess the approximation, dispersive, dissipative, and asymptotic properties of numerical methods, benchmark solutions of relevant test problems are required. Such solutions are known for one-dimensional problems with linear plane waves. We introduce a novel analytical solution for the nonlinear problem of spherically symmetric expansion of a gas and dust ball into a vacuum. Therein, the dynamics of carrier and dispersed phases are modeled using equations for a compressible inviscid gas. Solid particles do not have intrinsic pressure and are assumed to be monodisperse. The carrier and dispersed phases exchange momentum. In the derived solution, the velocities of gas and dust clouds depend linearly on the radii. The results were reproduced at high, moderate, and low momentum exchange between phases using the SPH-IDIC (Smoothed Particle Hydrodynamics with Implicit Drag in Cell) method implemented based on the open-source OpenFPM library. We reported an example of using the solution as a benchmark for CFD (computational fluid dynamics) models verification and for the evaluation of numerical methods. Our benchmark solution generator developed in the free Scilab environment is publicly available. Full article
Show Figures

Graphical abstract

23 pages, 15636 KiB  
Article
A Novel Improved Coupled Dynamic Solid Boundary Treatment for 2D Fluid Sloshing Simulation
by Kaidong Tao, Xueqian Zhou and Huiolong Ren
J. Mar. Sci. Eng. 2021, 9(12), 1395; https://doi.org/10.3390/jmse9121395 - 7 Dec 2021
Cited by 7 | Viewed by 2649
Abstract
In order to achieve stable and accurate sloshing simulations with complex geometries using Smoothed Particle Hydrodynamic (SPH) method, a novel improved coupled dynamic solid boundary treatment (SBT) is proposed in this study. Comparing with the previous SBT algorithms, the new SBT algorithm not [...] Read more.
In order to achieve stable and accurate sloshing simulations with complex geometries using Smoothed Particle Hydrodynamic (SPH) method, a novel improved coupled dynamic solid boundary treatment (SBT) is proposed in this study. Comparing with the previous SBT algorithms, the new SBT algorithm not only can reduce numerical dissipation, but also can greatly improve the ability to prevent fluid particles penetration and to expand the application to model unidirectional deformable boundary. Besides the new SBT algorithm, a number of modified algorithms for correcting density field and position shifting are applied to the new SPH scheme for improving numerical stability and minimizing numerical dissipation in sloshing simulations. Numerical results for three sloshing cases in tanks with different geometries are investigated in this study. In the analysis of the wave elevation and the pressure on the tank, the SPH simulation with the new SBT algorithm shows a good agreement with the experiment and the simulations using the commercial code STAR-CCM+. Especially, the sloshing case in the tank with deformable bottom demonstrates the robustness of the new boundary method. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

18 pages, 2996 KiB  
Article
SPH Simulation of Hydraulic Jump on Corrugated Riverbeds
by Shenglong Gu, Fuping Bo, Min Luo, Ehsan Kazemi, Yunyun Zhang and Jiahua Wei
Appl. Sci. 2019, 9(3), 436; https://doi.org/10.3390/app9030436 - 28 Jan 2019
Cited by 8 | Viewed by 4994
Abstract
This paper presents a numerical study of the hydraulic jump on corrugated riverbed using the Smoothed Particle Hydrodynamics (SPH) method. By simulating an experimental benchmark example, the SPH model is demonstrated to predict the wave profile, velocity field, and energy dissipation rate of [...] Read more.
This paper presents a numerical study of the hydraulic jump on corrugated riverbed using the Smoothed Particle Hydrodynamics (SPH) method. By simulating an experimental benchmark example, the SPH model is demonstrated to predict the wave profile, velocity field, and energy dissipation rate of hydraulic jump with good accuracy. Using the validated SPH model, the dynamic evolvement of the hydraulic jump on corrugated riverbed is studied focusing on the vortex pattern, jump length, water depth after hydraulic jump, and energy dissipation rate. In addition, the influences of corrugation height and length on the characteristics of hydraulic jump are parametrically investigated. Full article
Show Figures

Figure 1

16 pages, 736 KiB  
Article
Simulation of Individual Polymer Chains and Polymer Solutions with Smoothed Dissipative Particle Dynamics
by Sergey Litvinov, Qingguang Xie, Xiangyu Hu, Nikolaus Adams and Marco Ellero
Fluids 2016, 1(1), 7; https://doi.org/10.3390/fluids1010007 - 6 Feb 2016
Cited by 21 | Viewed by 7275
Abstract
In an earlier work (Litvinov et al., Phys.Rev.E 77, 066703 (2008)), a model for a polymer molecule in solution based on the smoothed dissipative particle dynamics method (SDPD) has been presented. In the present paper, we show that the model can be extended [...] Read more.
In an earlier work (Litvinov et al., Phys.Rev.E 77, 066703 (2008)), a model for a polymer molecule in solution based on the smoothed dissipative particle dynamics method (SDPD) has been presented. In the present paper, we show that the model can be extended to three-dimensional situations and simulate effectively diluted and concentrated polymer solutions. For an isolated suspended polymer, calculated static and dynamic properties agree well with previous numerical studies and theoretical predictions based on the Zimm model. This implies that hydrodynamic interactions are fully developed and correctly reproduced under the current simulated conditions. Simulations of polymer solutions and melts are also performed using a reverse Poiseuille flow setup. The resulting steady rheological properties (viscosity, normal stress coefficients) are extracted from the simulations and the results are compared with the previous numerical studies, showing good results. Full article
(This article belongs to the Special Issue Rheology and the Thermo-Mechanics of Non-Newtonian Fluids)
Show Figures

Figure 1

Back to TopTop